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of ( is the set

Xa(B) = {Zaiﬁf ‘neN,a € A} .

i=0
Studied since the early 90s, early work of Bugeaud, Erdés,
Jod, Komornik, Loreti, Feng, Wen and others.
In particular if 3 € (1,2) is Pisot and A = {0,1} then X4(3)
is relatively dense, uniformly discrete, differences between
nearest neighbours take only finitely many values.

Today's Questions: What can we say about the measures

pn(x) =P (Z aifl — Z b3 = x)
i=0 i=0

where each a;, b; picked independently from {0,1} with
probability (3, 1).
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Zaiﬁ(n+l)71 — ,8 <Z aiIBnl> + api1
i=1 i=1

» Therefore

n
S aif" =Ty 000 Toy(0).

i=1

Xa(B) = {Za;ﬁ(”_i) ‘neN,a € A}

i=1
= {T,,0---T5(0):neN, a € A}
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> Let ¢ be the golden mean, ¢? = ¢ + 1.
> Xi013(¢) ={Ta, 0+ T5,(0) : n €N, a; € {0,1}}




The Golden Mean

» Let ¢ be the golden mean, ¢? = ¢ + 1.
> X{O,l}(qb) = {Tan - Ta1(0) tneN a € {07 1}}

o @ L @ @ L L
> Gaps of size 1 and ¢ — 1.

» Gap sequence ABAABABAABA - -- generated by Fibonacci
substitution

A— AB,B— A
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the maps T; in terms of their action on coordinates in terms
of eigenvalues.

> Not so hard to see that we can never escape the strip between
the two dotted purple lines. Slightly harder - every lattice
point (z1, zg) between the two dotted lines can be reached:

z ~ ~ 0
<Z:)>:Talo...OTan(0>.






red moves add 1 ~ (0,1), blue moves add g — 1 ~ (1, —1).
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We can move through the spectrum
Lemma
Let the map G on X{_1011(9) X (—¢2, ¢?) be given by

(X+2¢_37y_%_3) y6[¢7¢2)
G(X>Y): (X+¢_17y_%_1) yG(O,(b)
(x+2=0d,y+2+3) ye (-0

Then if x is the nth element to the right of 0 in X;_1 9 1}(¢) and xc
is the corresponding point in the contracting direction we have that
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Measures on Spectra

» Today's Questions: What can we say about the measures

pn(x) =P (Z aif" =Y b = X)
i=0 i=0

where each a;, b; picked independently from {0,1} with
probability (%, %)
> a; — b; € {—1,0,1} with probability (, 3, 1).
> So
pn(x) =P(T¢, 0+ T¢,(0) = x)

where ¢; € {-1,0,1} w.p. (1,1,1)
> 1in(x) supported on X;_1913(5). Maps Ti(x) = Bx +i
expand, so we have a finite recurrent bit near 0 and a

dissipative bit.
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> ¢ = 1+2 2 ai,---,ap, b1, -+, by iid. with probability (%,%)
Theorem (Batsis, K.)
There exist 0 > 1 and a function f : X;{_101y(¢) — RT such that

im 0"P {Z ai¢’' — Z bi¢' = x} = f(x).
i=0 i=0

» Here 6 and f are easily computable, 6 is the max eigenvalue
of a finite matrix.

» ¢ can be replaced by any algebraic integer 8 € (1,2) for
which all of the other Galois conjugates f3; have |3;| # 1.



Let Ti(x) = ¢x +i.
Xi-1013(¢) ={Tq 0+ T¢,(0) : n € N¢; € {~1,0,1}}.
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bounded (indep of n) amount of time reaching x.



Let Ti(x) = ¢x +i.
X{—l,O,l}(¢) = {Tcl O === Tcn(O) ne NC,' S {—1,0, 1}}
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» There is a recurrent piece (for the dynamics of Ty, T_1, T1)
between —@? and ¢2.

» For x € X{_1,0.1}(#), x outside of the recurrent interval, n
large, any orbit piece

x=Tg 0---0T,(0)

spends a long time in the recurrent piece before spending a
bounded (indep of n) amount of time reaching x.
> So
fin(x) 1= P (x = Te, 0+ 0 T (0))

decays like 8" where 6 is the max eigenvalue of the matrix
encoding the dynamics on the recurrent piece.
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Goal for next section: We can move through X;_; ¢ 1}(3) using
an odometer map. Can we do something similar for the measure?
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x =31 ce"". A; square matrices for i € {—1,0,1}. un(x) first
entry of vector
fin(x) = (100---)Ag - A,

Moreover, this vector encodes information on mass of all
x" € Xi_1,0,13(B) which are close enough to x.If x' is the nearest
neighbour (to the right) of x € X{_;1}(8), then

W(x) = ,un(X/) ((100- - )Aq A1

pn(x)  ((100---)Ag - - Ag,)a

Strictly positive matrices contract projective space. Our matrices
aren't strictly positive, but we mess around a bit. For

x € X{_1011(9) let xc € [0,1] be the corresponding point in the
contracting window and x’ be the nearest neighbour of x.

Theorem [Batsis, K.] There exists a function ¢ : [0,1] — R,
continuous except on a set of Hausdorff dimension < 1, such that

uOd = (xe).




A Concrete Example

Theorem (Batsis, K.)
Let the map F on X{_101}(¢) x (—¢?, ¢?) x R be given by
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Then if x is the nth element to the right of 0 in X_y ¢ 1(#) we
have that

(x, xc, In(u(x))) = F"(0,0,0).
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Bernoulli Convolutions:

» Given 8 € (1,2) the Bernoulli convolution vg is the weak*
limit of the measures vg , given by

1
Vo =5n D Oxn,ap
ai---ap€{0,1}"

» Bernoulli convolutions are self-similar measures

1
vg = 5(1/50 To—l—ljﬁo Tl)
» Have dimension < 1 when [ is Pisot, dimension 1 when
B € (1,2) is non-algebraic (Varju 2020). Absolutely
continuous for Leb almost every 5 € (1,2) (Solomyak 95).
» Very few specific examples of absolutely continuous Bernoulli
convolutions, due to Garsia (1950s) and Varju (2020).
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Theorem (Batsis, K.)
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Theorem (Batsis, K.)

Suppose there exists a constant C that the total number N,, of
words ay - -+ ap, by - - - by € {0,1}" satisfying

n—i 1
’Z bi) ‘<ﬁ

4\ "
N"<C(B>

for all n € N. Then vg is absolutely continuous.

satisfies

Goal: Let 8 € (1,2) be an algebraic unit, non-Pisot, no Galois
conjugates of absolute value one. Use the cut and project structure
of the sets X4(3) to study pairs of words ay, - - - ap, b1, - by as
above. Use the measures p, to count them.



