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The Spectrum of β
I Given a real number β > 1 and an alphabet A the spectrum

of β is the set

XA(β) :=

{
n∑

i=0

aiβ
i : n ∈ N, ai ∈ A

}
.

I Studied since the early 90s, early work of Bugeaud, Erdős,
Joó, Komornik, Loreti, Feng, Wen and others.

I In particular if β ∈ (1, 2) is Pisot and A = {0, 1} then XA(β)
is relatively dense, uniformly discrete, differences between
nearest neighbours take only finitely many values.

I Today’s Questions: What can we say about the measures

µn(x) := P

(
n∑

i=0

aiβ
i −

n∑
i=0

biβ
i = x

)
where each ai , bi picked independently from {0, 1} with
probability (12 ,

1
2).



The Spectrum of β
I Given a real number β > 1 and an alphabet A the spectrum

of β is the set

XA(β) :=

{
n∑

i=0

aiβ
i : n ∈ N, ai ∈ A

}
.

I Studied since the early 90s, early work of Bugeaud, Erdős,
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Some First Dynamics

I Define Ti : R→ R: Ti (x) = βx + i .

I
n+1∑
i=1

aiβ
(n+1)−i = β

(
n∑

i=1

aiβ
n−i

)
+ an+1

I Therefore
n∑

i=1

aiβ
n−i = Tan ◦ · · · ◦ Ta1(0).

I

XA(β) :=

{
n∑

i=1

aiβ
(n−i) : n ∈ N, ai ∈ A

}
= {Tan ◦ · · ·Ta1(0) : n ∈ N, ai ∈ A}
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The Golden Mean

I Let φ be the golden mean, φ2 = φ+ 1.

I X{0,1}(φ) = {Tan ◦ · · ·Ta1(0) : n ∈ N, ai ∈ {0, 1}}
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The Golden Mean

I Let φ be the golden mean, φ2 = φ+ 1.

I X{0,1}(φ) = {Tan ◦ · · ·Ta1(0) : n ∈ N, ai ∈ {0, 1}}

I Gaps of size 1 and φ− 1.

I Gap sequence ABAABABAABA · · · generated by Fibonacci
substitution

A→ AB,B → A



Where does the structure come from?
I Using the fact that φ2 = φ+ 1, we can represent multiplying

by φ as an action on Z2. Let

(
z1
z0

)
∼ z1φ+ z0.

I Then

φ(z1φ+z0) = z1φ
2+z0φ = (z1+z0)φ+z1 ∼

(
1 1
1 0

)(
z1
z0

)
I Ti : R→ R, Ti (x) = φx + i has companion T̃i : Z2 → Z2.

T̃i

(
z1
z0

)
=

(
1 1
1 0

)(
z1
z0

)
+

(
0
i

)
.
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I It makes sense to diagonalise the matrix

(
1 1
1 0

)
. Think of

the maps T̃i in terms of their action on coordinates in terms
of eigenvalues.

I Not so hard to see that we can never escape the strip between
the two dotted purple lines. Slightly harder - every lattice
point (z1, z0) between the two dotted lines can be reached:(

z1
z0

)
= T̃a1 ◦ · · · ◦ T̃an

(
0
0

)
.
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red moves add 1 ∼ (0, 1), blue moves add β − 1 ∼ (1,−1).
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Including digit −1

We can move through the spectrum

Lemma
Let the map G on X{−1,0,1}(φ)× (−φ2, φ2) be given by

G (x , y) =


(x + 2φ− 3, y − 2

φ − 3) y ∈ [φ, φ2)

(x + φ− 1, y − 1
φ − 1) y ∈ (0, φ)

(x + 2− φ, y + 2 + 1
φ) y ∈ (−φ2, 0]

Then if x is the nth element to the right of 0 in X{−1,0,1}(φ) and xc
is the corresponding point in the contracting direction we have that

(x , xc) = Gn(0, 0).
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Measures on Spectra

I Today’s Questions: What can we say about the measures

µn(x) := P

(
n∑

i=0

aiβ
n−i −

n∑
i=0

biβ
n−i = x

)

where each ai , bi picked independently from {0, 1} with
probability (12 ,

1
2).

I ai − bi ∈ {−1, 0, 1} with probability (14 ,
1
2 ,

1
4).

I So
µn(x) = P(Tcn ◦ · · ·Tc1(0) = x)

where ci ∈ {−1, 0, 1} w.p. (14 ,
1
2 ,

1
4)

I µn(x) supported on X{−1,0,1}(β). Maps Ti (x) = βx + i
expand, so we have a finite recurrent bit near 0 and a
dissipative bit.
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I φ = 1+
√
5

2 , a1, · · · , an, b1, · · · , bn i.i.d. with probability (12 ,
1
2).

Theorem (Batsis, K.)

There exist θ > 1 and a function f : X{−1,0,1}(φ)→ R+ such that

lim
n→∞

θnP

{
n∑

i=0

aiφ
i −

n∑
i=0

biφ
i = x

}
= f (x).

I Here θ and f are easily computable, θ is the max eigenvalue
of a finite matrix.

I φ can be replaced by any algebraic integer β ∈ (1, 2) for
which all of the other Galois conjugates βi have |βi | 6= 1.
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Let Ti (x) = φx + i .
X{−1,0,1}(φ) = {Tc1 ◦ · · ·Tcn(0) : n ∈ Nci ∈ {−1, 0, 1}}.

−φ2 0 φ2

I There is a recurrent piece (for the dynamics of T0,T−1,T1)
between −φ2 and φ2.

I For x ∈ X{−1,0,1}(φ), x outside of the recurrent interval, n
large, any orbit piece

x = Tcn ◦ · · · ◦ Tc1(0)

spends a long time in the recurrent piece before spending a
bounded (indep of n) amount of time reaching x .

I So
µn(x) := P (x = Tcn ◦ · · · ◦ Tc1(0))

decays like θn where θ is the max eigenvalue of the matrix
encoding the dynamics on the recurrent piece.
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Let µ be the infinite, locally finite measure on X{−1,0,1}(β) given by

µ =
∑

x∈X{−1,0,1}(β)

f (x)δx .

Goal for next section: We can move through X{−1,0,1}(β) using
an odometer map. Can we do something similar for the measure?
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Putting a Measure on X{−1,0,1}(β)
Let µ be the infinite, locally finite measure on X{−1,0,1}(β) given by

µ =
∑

x∈X{−1,0,1}(β)

f (x)δx .

We defined µ using simple dynamics, count all paths from 0 to x
under Ti by drawing a very large matrix which includes them all.

Idea: If we know one path from 0 to x then we can find all others.
Different codes coding x must stay close to each other.

Lemma
If x =

∑n
i=1 ciβ

n−i and x =
∑n

i=1 diβ
n−i , ci , di ∈ {−1, 0, 1} then

for all m < n

m∑
i=1

(ci − di )β
m−i ∈

(
X{−2,−1,0,1,2}(β) ∩ (

−2

β − 1
,

2

β − 1
)

)
which is a finite set.
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Now fix an x ∈ X{−1,0,1}(β) and fix a code c1 · · · cn ∈ {−1, 0, 1}n
such that x =

∑n
i=1 ciφ

n−i .

Want to understand all
d1 · · · dn ∈ {−1, 0, 1}n which code x . i.e. such that

n∑
i=1

(ci − di )φ
n−i = 0.

(ci − di ) ∈ {−2,−1, 0, 1, 2}.Count paths

Ten ◦ · · ·Te1(0) = 0,

ei = ci − di . Such paths move around a finite set, dynamics
studied by a finite transition matrix.

If we have a fixed choice of c1 · · · cn, this places restrictions on
ci − di : di ∈ {−1, 0, 1}.ci = j ∈ {−1, 0, 1}, dynamics encoded by
square matrix Aj . µn(x) first entry of vector

µn(x) = (100 · · · )Ac1 · · ·Acn
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x =
∑n

i=1 ciφ
n−i . Ai square matrices for i ∈ {−1, 0, 1}. µn(x) first

entry of vector
µn(x) = (100 · · · )Ac1 · · ·Acn

Moreover, this vector encodes information on mass of all
x ′ ∈ X{−1,0,1}(β) which are close enough to x .If x ′ is the nearest
neighbour (to the right) of x ∈ X{−1,0,1}(β), then

ψ(x) :=
µn(x ′)

µn(x)
=

((100 · · · )Ac1 · · ·Acn)1
((100 · · · )Ac1 · · ·Acn)2

Strictly positive matrices contract projective space. Our matrices
aren’t strictly positive, but we mess around a bit. For
x ∈ X{−1,0,1}(φ) let xc ∈ [0, 1] be the corresponding point in the
contracting window and x ′ be the nearest neighbour of x .

Theorem [Batsis, K.] There exists a function ψ : [0, 1]→ R,
continuous except on a set of Hausdorff dimension < 1, such that
µ(x ′)
µ(x) = ψ(xc).
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A Concrete Example

Theorem (Batsis, K.)

Let the map F on X{−1,0,1}(φ)× (−φ2, φ2)× R be given by

F (x , y , z) =


(x + 2φ− 3, y − 2

φ − 3, z + ψ(y)) y ∈ [φ, φ2)

(x + φ− 1, y − 1
φ − 1, z + ψ(y)) y ∈ (0, φ)

(x + 2− φ, y + 2 + 1
φ , z + ψ(y)) y ∈ (−φ2, 0]

Then if x is the nth element to the right of 0 in X{−1,0,1}(φ) we
have that

(x , xc , ln(µ(x))) = F n(0, 0, 0).
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Bernoulli Convolutions:

I Given β ∈ (1, 2) the Bernoulli convolution νβ is the weak∗

limit of the measures νβ,n given by

νβn =
1

2n

∑
a1···an∈{0,1}n

δ∑n
i=1 aiβ

−i

I Bernoulli convolutions are self-similar measures

νβ =
1

2
(νβ ◦ T0 + νβ ◦ T1)

I Have dimension < 1 when β is Pisot, dimension 1 when
β ∈ (1, 2) is non-algebraic (Varju 2020). Absolutely
continuous for Leb almost every β ∈ (1, 2) (Solomyak 95).

I Very few specific examples of absolutely continuous Bernoulli
convolutions, due to Garsia (1950s) and Varju (2020).
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If νβ is absolutely continuous then the density hβ also satisfies a
self-similarity relation.

hβ(x) =
β

2
(hβ(T0(x)) + hβ(T1(x))).

In fact the absolute continuity of νβ is equivalent to the existence
of an L1 function satisfying the above.

Theorem (Batsis, K.)

Suppose there exists a constant C that the total number Nn of
words a1 · · · an, b1 · · · bn ∈ {0, 1}n satisfying

|
n∑

i=1

(ai − bi )β
n−i | < 1

β − 1

satisfies

Nn < C

(
4

β

)n

for all n ∈ N. Then νβ is absolutely continuous.
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Goal: Let β ∈ (1, 2) be an algebraic unit, non-Pisot, no Galois
conjugates of absolute value one. Use the cut and project structure
of the sets XA(β) to study pairs of words a1, · · · an, b1, · · · bn as
above. Use the measures µn to count them.
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