# Bernoulli Convolutions and Measures on the Spectra of Algebraic Integers

Tom Kempton, joint with Alex Batsis

University of Manchester

January 2021

Given a real number β > 1 and an alphabet A the spectrum of β is the set

$$X_{\mathcal{A}}(eta) := \left\{ \sum_{i=0}^n a_i eta^i : n \in \mathbb{N}, a_i \in \mathcal{A} 
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a real number β > 1 and an alphabet A the spectrum of β is the set

$$X_{\mathcal{A}}(\beta) := \left\{ \sum_{i=0}^{n} a_i \beta^i : n \in \mathbb{N}, a_i \in \mathcal{A} 
ight\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Studied since the early 90s, early work of Bugeaud, Erdős, Joó, Komornik, Loreti, Feng, Wen and others.

Given a real number β > 1 and an alphabet A the spectrum of β is the set

$$X_{\mathcal{A}}(\beta) := \left\{ \sum_{i=0}^{n} a_i \beta^i : n \in \mathbb{N}, a_i \in \mathcal{A} 
ight\}.$$

- Studied since the early 90s, early work of Bugeaud, Erdős, Joó, Komornik, Loreti, Feng, Wen and others.
- In particular if β ∈ (1,2) is Pisot and A = {0,1} then X<sub>A</sub>(β) is relatively dense, uniformly discrete, differences between nearest neighbours take only finitely many values.

Given a real number β > 1 and an alphabet A the spectrum of β is the set

$$X_{\mathcal{A}}(eta) := \left\{ \sum_{i=0}^n a_i eta^i : n \in \mathbb{N}, a_i \in \mathcal{A} 
ight\}.$$

- Studied since the early 90s, early work of Bugeaud, Erdős, Joó, Komornik, Loreti, Feng, Wen and others.
- In particular if β ∈ (1,2) is Pisot and A = {0,1} then X<sub>A</sub>(β) is relatively dense, uniformly discrete, differences between nearest neighbours take only finitely many values.
- Today's Questions: What can we say about the measures

$$\mu_n(x) := \mathbb{P}\left(\sum_{i=0}^n a_i\beta^i - \sum_{i=0}^n b_i\beta^i = x\right)$$

• Define 
$$T_i : \mathbb{R} \to \mathbb{R}$$
:  $T_i(x) = \beta x + i$ .

► Define 
$$T_i : \mathbb{R} \to \mathbb{R}$$
:  $T_i(x) = \beta x + i$ .  
► 
$$\sum_{i=1}^{n+1} a_i \beta^{(n+1)-i} = \beta \left( \sum_{i=1}^n a_i \beta^{n-i} \right) + a_{n+1}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Define 
$$T_i: \mathbb{R} \to \mathbb{R}$$
:  $T_i(x) = \beta x + i$ .
$$\sum_{i=1}^{n+1} a_i \beta^{(n+1)-i} = \beta \left( \sum_{i=1}^n a_i \beta^{n-i} \right) + a_{n+1}$$
Therefore
n

$$\sum_{i=1}^n a_i \beta^{n-i} = T_{a_n} \circ \cdots \circ T_{a_1}(0).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Define 
$$T_i: \mathbb{R} \to \mathbb{R}$$
:  $T_i(x) = \beta x + i$ .
$$\sum_{i=1}^{n+1} a_i \beta^{(n+1)-i} = \beta \left( \sum_{i=1}^n a_i \beta^{n-i} \right) + a_{n+1}$$
Therefore
$$\sum_{i=1}^n a_i \beta^{n-i} = T_{a_n} \circ \cdots \circ T_{a_1}(0).$$

$$\begin{array}{ll} X_{\mathcal{A}}(\beta) & := & \left\{ \sum_{i=1}^n a_i \beta^{(n-i)} : n \in \mathbb{N}, a_i \in \mathcal{A} \right\} \\ & = & \left\{ T_{a_n} \circ \cdots T_{a_1}(0) : n \in \mathbb{N}, a_i \in \mathcal{A} \right\} \end{array}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Let  $\phi$  be the golden mean,  $\phi^2 = \phi + 1$ .

(ロ)、(型)、(E)、(E)、 E) の(()

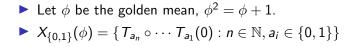
ō

Let φ be the golden mean, φ<sup>2</sup> = φ + 1.
 X<sub>{0,1}</sub>(φ) = {T<sub>a<sub>n</sub></sub> ∘ · · · T<sub>a<sub>1</sub></sub>(0) : n ∈ N, a<sub>i</sub> ∈ {0,1}}

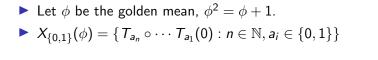
▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let φ be the golden mean, φ<sup>2</sup> = φ + 1.
 X<sub>{0,1}</sub>(φ) = {T<sub>an</sub> ∘ · · · T<sub>a1</sub>(0) : n ∈ N, a<sub>i</sub> ∈ {0,1}}

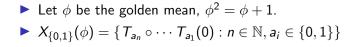
















• Gaps of size 1 and  $\phi - 1$ .

 Gap sequence ABAABABAABA... generated by Fibonacci substitution

 $A \rightarrow AB, B \rightarrow A$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶ Using the fact that  $\phi^2 = \phi + 1$ , we can represent multiplying by  $\phi$  as an action on  $\mathbb{Z}^2$ . Let  $\begin{pmatrix} z_1 \\ z_0 \end{pmatrix} \sim z_1 \phi + z_0$ .

$$\phi(z_1\phi+z_0)=z_1\phi^2+z_0\phi=(z_1+z_0)\phi+z_1\sim \left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}z_1\\z_0\end{array}\right)$$

$$\phi(z_1\phi+z_0)=z_1\phi^2+z_0\phi=(z_1+z_0)\phi+z_1\sim \left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}z_1\\z_0\end{array}\right)$$

• 
$$T_i : \mathbb{R} \to \mathbb{R}, \ T_i(x) = \phi x + i \text{ has companion } \tilde{T}_i : \mathbb{Z}^2 \to \mathbb{Z}^2.$$

$$\tilde{T}_{i}\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)=\left(\begin{array}{c}1&1\\1&0\end{array}\right)\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)+\left(\begin{array}{c}0\\i\end{array}\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\phi(z_1\phi+z_0)=z_1\phi^2+z_0\phi=(z_1+z_0)\phi+z_1\sim \left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}z_1\\z_0\end{array}\right)$$

• 
$$T_i : \mathbb{R} \to \mathbb{R}, \ T_i(x) = \phi x + i \text{ has companion } \tilde{T}_i : \mathbb{Z}^2 \to \mathbb{Z}^2.$$

$$\tilde{T}_{i}\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)=\left(\begin{array}{c}1&1\\1&0\end{array}\right)\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)+\left(\begin{array}{c}0\\i\end{array}\right)$$



$$\phi(z_1\phi+z_0)=z_1\phi^2+z_0\phi=(z_1+z_0)\phi+z_1\sim \left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}z_1\\z_0\end{array}\right)$$

• 
$$T_i : \mathbb{R} \to \mathbb{R}, \ T_i(x) = \phi x + i \text{ has companion } \tilde{T}_i : \mathbb{Z}^2 \to \mathbb{Z}^2.$$

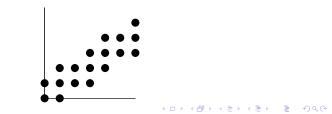
$$\tilde{T}_{i}\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)=\left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)+\left(\begin{array}{c}0\\i\end{array}\right)$$

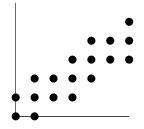


$$\phi(z_1\phi+z_0)=z_1\phi^2+z_0\phi=(z_1+z_0)\phi+z_1\sim \left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}z_1\\z_0\end{array}\right)$$

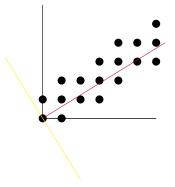
• 
$$T_i : \mathbb{R} \to \mathbb{R}, \ T_i(x) = \phi x + i \text{ has companion } \tilde{T}_i : \mathbb{Z}^2 \to \mathbb{Z}^2.$$

$$\tilde{T}_{i}\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)=\left(\begin{array}{c}1&1\\1&0\end{array}\right)\left(\begin{array}{c}z_{1}\\z_{0}\end{array}\right)+\left(\begin{array}{c}0\\i\end{array}\right)$$

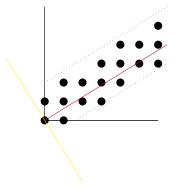




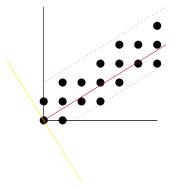
▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国・ 釣A⊙



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

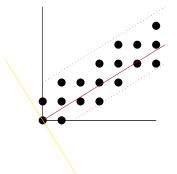


▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●



• It makes sense to diagonalise the matrix  $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ . Think of the maps  $\tilde{T}_i$  in terms of their action on coordinates in terms of eigenvalues.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



• It makes sense to diagonalise the matrix  $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ . Think of the maps  $\tilde{T}_i$  in terms of their action on coordinates in terms of eigenvalues.

Not so hard to see that we can never escape the strip between the two dotted purple lines. Slightly harder - every lattice point (z<sub>1</sub>, z<sub>0</sub>) between the two dotted lines can be reached:

$$\left(\begin{array}{c} z_1\\ z_0 \end{array}\right) = \tilde{T}_{a_1} \circ \cdots \circ \tilde{T}_{a_n} \left(\begin{array}{c} 0\\ 0 \end{array}\right).$$



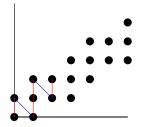
◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶



red moves add 1  $\sim$  (0,1), blue moves add  $\beta$  – 1  $\sim$  (1, –1).

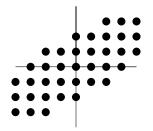


red moves add  $1 \sim (0,1),$  blue moves add  $\beta - 1 \sim (1,-1).$ 

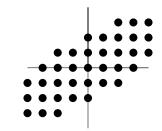


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# Including digit -1



# Including digit -1



We can move through the spectrum

#### Lemma

Let the map G on  $X_{\{-1,0,1\}}(\phi) imes (-\phi^2,\phi^2)$  be given by

$$G(x,y) = \begin{cases} (x+2\phi-3, y-\frac{2}{\phi}-3) & y \in [\phi, \phi^2) \\ (x+\phi-1, y-\frac{1}{\phi}-1) & y \in (0,\phi) \\ (x+2-\phi, y+2+\frac{1}{\phi}) & y \in (-\phi^2, 0] \end{cases}$$

Then if x is the nth element to the right of 0 in  $X_{\{-1,0,1\}}(\phi)$  and  $x_c$  is the corresponding point in the contracting direction we have that

Today's Questions: What can we say about the measures

$$\mu_n(x) := \mathbb{P}\left(\sum_{i=0}^n a_i \beta^{n-i} - \sum_{i=0}^n b_i \beta^{n-i} = x\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Today's Questions: What can we say about the measures

$$\mu_n(x) := \mathbb{P}\left(\sum_{i=0}^n a_i \beta^{n-i} - \sum_{i=0}^n b_i \beta^{n-i} = x\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• 
$$a_i - b_i \in \{-1, 0, 1\}$$
 with probability  $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ .

Today's Questions: What can we say about the measures

$$\mu_n(x) := \mathbb{P}\left(\sum_{i=0}^n a_i \beta^{n-i} - \sum_{i=0}^n b_i \beta^{n-i} = x\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\mu_n(x) = \mathbb{P}(T_{c_n} \circ \cdots T_{c_1}(0) = x)$$
  
where  $c_i \in \{-1, 0, 1\}$  w.p.  $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ 

Today's Questions: What can we say about the measures

$$\mu_n(x) := \mathbb{P}\left(\sum_{i=0}^n a_i \beta^{n-i} - \sum_{i=0}^n b_i \beta^{n-i} = x\right)$$

where each  $a_i$ ,  $b_i$  picked independently from  $\{0, 1\}$  with probability  $(\frac{1}{2}, \frac{1}{2})$ .

*a<sub>i</sub>* − *b<sub>i</sub>* ∈ {−1, 0, 1} with probability (<sup>1</sup>/<sub>4</sub>, <sup>1</sup>/<sub>2</sub>, <sup>1</sup>/<sub>4</sub>).
 So

$$\mu_n(x) = \mathbb{P}(T_{c_n} \circ \cdots T_{c_1}(0) = x)$$

where  $c_i \in \{-1, 0, 1\}$  w.p.  $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ 

μ<sub>n</sub>(x) supported on X<sub>{-1,0,1}</sub>(β). Maps T<sub>i</sub>(x) = βx + i expand, so we have a finite recurrent bit near 0 and a dissipative bit.

• 
$$\phi = \frac{1+\sqrt{5}}{2}$$
,  $a_1, \dots, a_n, b_1, \dots, b_n$  i.i.d. with probability  $(\frac{1}{2}, \frac{1}{2})$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

▶  $\phi = \frac{1+\sqrt{5}}{2}$ ,  $a_1, \dots, a_n, b_1, \dots, b_n$  i.i.d. with probability  $(\frac{1}{2}, \frac{1}{2})$ . Theorem (Batsis, K.)

There exist  $\theta > 1$  and a function  $f : X_{\{-1,0,1\}}(\phi) \to \mathbb{R}^+$  such that

$$\lim_{n\to\infty}\theta^n \mathbb{P}\left\{\sum_{i=0}^n a_i\phi^i - \sum_{i=0}^n b_i\phi^i = x\right\} = f(x).$$

•  $\phi = \frac{1+\sqrt{5}}{2}$ ,  $a_1, \dots, a_n, b_1, \dots, b_n$  i.i.d. with probability  $(\frac{1}{2}, \frac{1}{2})$ . Theorem (Batsis, K.)

There exist  $\theta > 1$  and a function  $f : X_{\{-1,0,1\}}(\phi) \to \mathbb{R}^+$  such that

$$\lim_{n\to\infty}\theta^n \mathbb{P}\left\{\sum_{i=0}^n a_i\phi^i - \sum_{i=0}^n b_i\phi^i = x\right\} = f(x).$$

Here θ and f are easily computable, θ is the max eigenvalue of a finite matrix.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

•  $\phi = \frac{1+\sqrt{5}}{2}$ ,  $a_1, \dots, a_n, b_1, \dots, b_n$  i.i.d. with probability  $(\frac{1}{2}, \frac{1}{2})$ . Theorem (Batsis, K.)

There exist  $\theta > 1$  and a function  $f : X_{\{-1,0,1\}}(\phi) \to \mathbb{R}^+$  such that

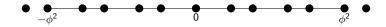
$$\lim_{n\to\infty}\theta^n \mathbb{P}\left\{\sum_{i=0}^n a_i\phi^i - \sum_{i=0}^n b_i\phi^i = x\right\} = f(x).$$

• Here  $\theta$  and f are easily computable,  $\theta$  is the max eigenvalue of a finite matrix.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

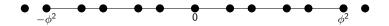
φ can be replaced by any algebraic integer β ∈ (1, 2) for which all of the other Galois conjugates β<sub>i</sub> have |β<sub>i</sub>| ≠ 1.

Let 
$$T_i(x) = \phi x + i$$
.  
 $X_{\{-1,0,1\}}(\phi) = \{T_{c_1} \circ \cdots T_{c_n}(0) : n \in \mathbb{N} c_i \in \{-1,0,1\}\}.$ 





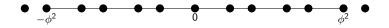
Let 
$$T_i(x) = \phi x + i$$
.  
 $X_{\{-1,0,1\}}(\phi) = \{T_{c_1} \circ \cdots T_{c_n}(0) : n \in \mathbb{N} c_i \in \{-1,0,1\}\}.$ 



► There is a recurrent piece (for the dynamics of T<sub>0</sub>, T<sub>-1</sub>, T<sub>1</sub>) between -φ<sup>2</sup> and φ<sup>2</sup>.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let 
$$T_i(x) = \phi x + i$$
.  
 $X_{\{-1,0,1\}}(\phi) = \{T_{c_1} \circ \cdots T_{c_n}(0) : n \in \mathbb{N} c_i \in \{-1,0,1\}\}.$ 



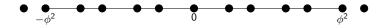
- ► There is a recurrent piece (for the dynamics of T<sub>0</sub>, T<sub>-1</sub>, T<sub>1</sub>) between -φ<sup>2</sup> and φ<sup>2</sup>.
- For x ∈ X<sub>{−1,0,1}</sub>(φ), x outside of the recurrent interval, n large, any orbit piece

$$x = T_{c_n} \circ \cdots \circ T_{c_1}(0)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

spends a long time in the recurrent piece before spending a bounded (indep of n) amount of time reaching x.

Let 
$$T_i(x) = \phi x + i$$
.  
 $X_{\{-1,0,1\}}(\phi) = \{T_{c_1} \circ \cdots T_{c_n}(0) : n \in \mathbb{N} c_i \in \{-1,0,1\}\}.$ 



- ► There is a recurrent piece (for the dynamics of T<sub>0</sub>, T<sub>-1</sub>, T<sub>1</sub>) between -φ<sup>2</sup> and φ<sup>2</sup>.
- For x ∈ X<sub>{−1,0,1}</sub>(φ), x outside of the recurrent interval, n large, any orbit piece

$$x=T_{c_n}\circ\cdots\circ T_{c_1}(0)$$

spends a long time in the recurrent piece before spending a bounded (indep of n) amount of time reaching x.

So

$$\mu_n(x) := \mathbb{P}\left(x = T_{c_n} \circ \cdots \circ T_{c_1}(0)\right)$$

decays like  $\theta^n$  where  $\theta$  is the max eigenvalue of the matrix encoding the dynamics on the recurrent piece.

Let  $\mu$  be the infinite, locally finite measure on  $X_{\{-1,0,1\}}(\beta)$  given by

$$\mu = \sum_{x \in X_{\{-1,0,1\}}(\beta)} f(x) \delta_x.$$

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

Let  $\mu$  be the infinite, locally finite measure on  $X_{\{-1,0,1\}}(\beta)$  given by

$$\mu=\sum_{x\in X_{\{-1,0,1\}}(\beta)}f(x)\delta_x.$$

**Goal for next section:** We can move through  $X_{\{-1,0,1\}}(\beta)$  using an odometer map. Can we do something similar for the measure?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Let  $\mu$  be the infinite, locally finite measure on  $X_{\{-1,0,1\}}(\beta)$  given by

$$\mu = \sum_{x \in X_{\{-1,0,1\}}(\beta)} f(x) \delta_x.$$

We defined  $\mu$  using simple dynamics, count all paths from 0 to x under  $T_i$  by drawing a very large matrix which includes them all.

Let  $\mu$  be the infinite, locally finite measure on  $X_{\{-1,0,1\}}(\beta)$  given by

$$\mu = \sum_{x \in X_{\{-1,0,1\}}(\beta)} f(x) \delta_x.$$

We defined  $\mu$  using simple dynamics, count all paths from 0 to x under  $T_i$  by drawing a very large matrix which includes them all.

**Idea:** If we know one path from 0 to x then we can find all others. Different codes coding x must stay close to each other.

Let  $\mu$  be the infinite, locally finite measure on  $X_{\{-1,0,1\}}(\beta)$  given by

$$\mu=\sum_{x\in X_{\{-1,0,1\}}(\beta)}f(x)\delta_x.$$

We defined  $\mu$  using simple dynamics, count all paths from 0 to x under  $T_i$  by drawing a very large matrix which includes them all.

**Idea:** If we know one path from 0 to x then we can find all others. Different codes coding x must stay close to each other.

#### Lemma

If  $x=\sum_{i=1}^n c_i\beta^{n-i}$  and  $x=\sum_{i=1}^n d_i\beta^{n-i},\ c_i,d_i\in\{-1,0,1\}$  then for all m< n

$$\sum_{i=1}^{m} (c_i - d_i) \beta^{m-i} \in \left( X_{\{-2,-1,0,1,2\}}(\beta) \cap \left(\frac{-2}{\beta - 1}, \frac{2}{\beta - 1}\right) \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which is a finite set.

Let  $\mu$  be the infinite, locally finite measure on  $X_{\{-1,0,1\}}(\beta)$  given by

$$\mu=\sum_{x\in X_{\{-1,0,1\}}(\beta)}f(x)\delta_x.$$

We defined  $\mu$  using simple dynamics, count all paths from 0 to x under  $T_i$  by drawing a very large matrix which includes them all.

**Idea:** If we know one path from 0 to x then we can find all others. Different codes coding x must stay close to each other.

#### Lemma

If  $x=\sum_{i=1}^n c_i\beta^{n-i}$  and  $x=\sum_{i=1}^n d_i\beta^{n-i},\ c_i,d_i\in\{-1,0,1\}$  then for all m< n

$$\sum_{i=1}^{m} (c_i - d_i) \beta^{m-i} \in \left( X_{\{-2,-1,0,1,2\}}(\beta) \cap \left(\frac{-2}{\beta - 1}, \frac{2}{\beta - 1}\right) \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which is a finite set.

Now fix an  $x \in X_{\{-1,0,1\}}(\beta)$  and fix a code  $c_1 \cdots c_n \in \{-1,0,1\}^n$  such that  $x = \sum_{i=1}^n c_i \phi^{n-i}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\sum_{i=1}^n (c_i - d_i)\phi^{n-i} = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\sum_{i=1}^n (c_i-d_i)\phi^{n-i}=0.$$

 $(c_i - d_i) \in \{-2, -1, 0, 1, 2\}.$ 

$$\sum_{i=1}^n (c_i - d_i)\phi^{n-i} = 0.$$

 $(c_i - d_i) \in \{-2, -1, 0, 1, 2\}.$ Count paths

$$T_{e_n}\circ\cdots T_{e_1}(0)=0,$$

 $e_i = c_i - d_i$ .

$$\sum_{i=1}^n (c_i - d_i)\phi^{n-i} = 0.$$

 $(\textit{c}_i - \textit{d}_i) \in \{-2, -1, 0, 1, 2\}. \mathsf{Count}$  paths

$$T_{e_n}\circ\cdots T_{e_1}(0)=0,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $e_i = c_i - d_i$ . Such paths move around a finite set, dynamics studied by a finite transition matrix.

$$\sum_{i=1}^n (c_i - d_i)\phi^{n-i} = 0.$$

 $(\textit{c}_i - \textit{d}_i) \in \{-2, -1, 0, 1, 2\}. \mathsf{Count}$  paths

$$T_{e_n}\circ\cdots T_{e_1}(0)=0,$$

 $e_i = c_i - d_i$ . Such paths move around a finite set, dynamics studied by a finite transition matrix.

If we have a fixed choice of  $c_1 \cdots c_n$ , this places restrictions on  $c_i - d_i : d_i \in \{-1, 0, 1\}.$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\sum_{i=1}^n (c_i - d_i)\phi^{n-i} = 0.$$

 $(\textit{c}_i - \textit{d}_i) \in \{-2, -1, 0, 1, 2\}. \mathsf{Count}$  paths

$$T_{e_n}\circ\cdots T_{e_1}(0)=0,$$

 $e_i = c_i - d_i$ . Such paths move around a finite set, dynamics studied by a finite transition matrix.

If we have a fixed choice of  $c_1 \cdots c_n$ , this places restrictions on  $c_i - d_i : d_i \in \{-1, 0, 1\}. c_i = j \in \{-1, 0, 1\}$ , dynamics encoded by square matrix  $A_j$ .

$$\sum_{i=1}^n (c_i - d_i)\phi^{n-i} = 0.$$

 $(\textit{c}_i - \textit{d}_i) \in \{-2, -1, 0, 1, 2\}. \mathsf{Count}$  paths

$$T_{e_n}\circ\cdots T_{e_1}(0)=0,$$

 $e_i = c_i - d_i$ . Such paths move around a finite set, dynamics studied by a finite transition matrix.

If we have a fixed choice of  $c_1 \cdots c_n$ , this places restrictions on  $c_i - d_i : d_i \in \{-1, 0, 1\}. c_i = j \in \{-1, 0, 1\}$ , dynamics encoded by square matrix  $A_j$ .  $\mu_n(x)$  first entry of vector

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_r}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_n}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_n}$$

Moreover, this vector encodes information on mass of all  $x' \in X_{\{-1,0,1\}}(\beta)$  which are close enough to x.

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_n}$$

Moreover, this vector encodes information on mass of all  $x' \in X_{\{-1,0,1\}}(\beta)$  which are close enough to x.lf x' is the nearest neighbour (to the right) of  $x \in X_{\{-1,0,1\}}(\beta)$ , then

$$\psi(x) := \frac{\mu_n(x')}{\mu_n(x)} = \frac{((100\cdots)A_{c_1}\cdots A_{c_n})_1}{((100\cdots)A_{c_1}\cdots A_{c_n})_2}$$

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_n}$$

Moreover, this vector encodes information on mass of all  $x' \in X_{\{-1,0,1\}}(\beta)$  which are close enough to x.lf x' is the nearest neighbour (to the right) of  $x \in X_{\{-1,0,1\}}(\beta)$ , then

$$\psi(x) := \frac{\mu_n(x')}{\mu_n(x)} = \frac{((100\cdots)A_{c_1}\cdots A_{c_n})_1}{((100\cdots)A_{c_1}\cdots A_{c_n})_2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Strictly positive matrices contract projective space.

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_n}$$

Moreover, this vector encodes information on mass of all  $x' \in X_{\{-1,0,1\}}(\beta)$  which are close enough to x.lf x' is the nearest neighbour (to the right) of  $x \in X_{\{-1,0,1\}}(\beta)$ , then

$$\psi(x) := \frac{\mu_n(x')}{\mu_n(x)} = \frac{((100\cdots)A_{c_1}\cdots A_{c_n})_1}{((100\cdots)A_{c_1}\cdots A_{c_n})_2}$$

Strictly positive matrices contract projective space. Our matrices aren't strictly positive, but we mess around a bit.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\mu_n(x) = (100\cdots)A_{c_1}\cdots A_{c_n}$$

Moreover, this vector encodes information on mass of all  $x' \in X_{\{-1,0,1\}}(\beta)$  which are close enough to x.lf x' is the nearest neighbour (to the right) of  $x \in X_{\{-1,0,1\}}(\beta)$ , then

$$\psi(x) := \frac{\mu_n(x')}{\mu_n(x)} = \frac{((100\cdots)A_{c_1}\cdots A_{c_n})_1}{((100\cdots)A_{c_1}\cdots A_{c_n})_2}$$

Strictly positive matrices contract projective space. Our matrices aren't strictly positive, but we mess around a bit. For  $x \in \mathcal{X}_{\{-1,0,1\}}(\phi)$  let  $x_c \in [0,1]$  be the corresponding point in the contracting window and x' be the nearest neighbour of x.

**Theorem [Batsis, K.]** There exists a function  $\psi : [0,1] \to \mathbb{R}$ , continuous except on a set of Hausdorff dimension < 1, such that  $\frac{\mu(x')}{\mu(x)} = \psi(x_c)$ .

# A Concrete Example

#### Theorem (Batsis, K.)

Let the map F on  $X_{\{-1,0,1\}}(\phi) imes (-\phi^2,\phi^2) imes \mathbb{R}$  be given by

$$F(x, y, z) = \begin{cases} (x + 2\phi - 3, y - \frac{2}{\phi} - 3, z + \psi(y)) & y \in [\phi, \phi^2) \\ (x + \phi - 1, y - \frac{1}{\phi} - 1, z + \psi(y)) & y \in (0, \phi) \\ (x + 2 - \phi, y + 2 + \frac{1}{\phi}, z + \psi(y)) & y \in (-\phi^2, 0] \end{cases}$$

Then if x is the nth element to the right of 0 in  $X_{\{-1,0,1\}}(\phi)$  we have that

$$(x, x_c, \ln(\mu(x))) = F^n(0, 0, 0).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# A Concrete Example

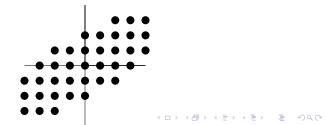
### Theorem (Batsis, K.)

Let the map F on  $X_{\{-1,0,1\}}(\phi) imes (-\phi^2,\phi^2) imes \mathbb{R}$  be given by

$$F(x, y, z) = \begin{cases} (x + 2\phi - 3, y - \frac{2}{\phi} - 3, z + \psi(y)) & y \in [\phi, \phi^2) \\ (x + \phi - 1, y - \frac{1}{\phi} - 1, z + \psi(y)) & y \in (0, \phi) \\ (x + 2 - \phi, y + 2 + \frac{1}{\phi}, z + \psi(y)) & y \in (-\phi^2, 0] \end{cases}$$

Then if x is the nth element to the right of 0 in  $X_{\{-1,0,1\}}(\phi)$  we have that

$$(x, x_c, \ln(\mu(x))) = F^n(0, 0, 0)$$



Given β ∈ (1,2) the Bernoulli convolution ν<sub>β</sub> is the weak\* limit of the measures ν<sub>β,n</sub> given by

$$\nu_{\beta_n} = \frac{1}{2^n} \sum_{\mathbf{a}_1 \cdots \mathbf{a}_n \in \{0,1\}^n} \delta_{\sum_{i=1}^n \mathbf{a}_i \beta^{-i}}$$

Given β ∈ (1,2) the Bernoulli convolution ν<sub>β</sub> is the weak\* limit of the measures ν<sub>β,n</sub> given by

$$\nu_{\beta_n} = \frac{1}{2^n} \sum_{\mathbf{a}_1 \cdots \mathbf{a}_n \in \{0,1\}^n} \delta_{\sum_{i=1}^n \mathbf{a}_i \beta^{-i}}$$

Bernoulli convolutions are self-similar measures

$$\nu_{\beta} = \frac{1}{2} \left( \nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1 \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Given β ∈ (1,2) the Bernoulli convolution ν<sub>β</sub> is the weak\* limit of the measures ν<sub>β,n</sub> given by

$$\nu_{\beta_n} = \frac{1}{2^n} \sum_{\mathbf{a}_1 \cdots \mathbf{a}_n \in \{0,1\}^n} \delta_{\sum_{i=1}^n \mathbf{a}_i \beta^{-i}}$$

Bernoulli convolutions are self-similar measures

$$\nu_{\beta} = \frac{1}{2} \left( \nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1 \right)$$

Have dimension < 1 when β is Pisot, dimension 1 when β ∈ (1, 2) is non-algebraic (Varju 2020). Absolutely continuous for Leb almost every β ∈ (1, 2) (Solomyak 95).

Given β ∈ (1,2) the Bernoulli convolution ν<sub>β</sub> is the weak\* limit of the measures ν<sub>β,n</sub> given by

$$\nu_{\beta_n} = \frac{1}{2^n} \sum_{\mathbf{a}_1 \cdots \mathbf{a}_n \in \{0,1\}^n} \delta_{\sum_{i=1}^n \mathbf{a}_i \beta^{-i}}$$

Bernoulli convolutions are self-similar measures

$$\nu_{\beta} = \frac{1}{2} \left( \nu_{\beta} \circ T_0 + \nu_{\beta} \circ T_1 \right)$$

- Have dimension < 1 when β is Pisot, dimension 1 when β ∈ (1,2) is non-algebraic (Varju 2020). Absolutely continuous for Leb almost every β ∈ (1,2) (Solomyak 95).
- Very few specific examples of absolutely continuous Bernoulli convolutions, due to Garsia (1950s) and Varju (2020).

If  $\nu_{\beta}$  is absolutely continuous then the density  $h_{\beta}$  also satisfies a self-similarity relation.

$$h_{\beta}(x) = \frac{\beta}{2}(h_{\beta}(T_0(x)) + h_{\beta}(T_1(x))).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If  $\nu_{\beta}$  is absolutely continuous then the density  $h_{\beta}$  also satisfies a self-similarity relation.

$$h_{\beta}(x) = \frac{\beta}{2}(h_{\beta}(T_0(x)) + h_{\beta}(T_1(x))).$$

In fact the absolute continuity of  $\nu_{\beta}$  is equivalent to the existence of an  $L^1$  function satisfying the above.

If  $\nu_{\beta}$  is absolutely continuous then the density  $h_{\beta}$  also satisfies a self-similarity relation.

$$h_{\beta}(x) = \frac{\beta}{2}(h_{\beta}(T_0(x)) + h_{\beta}(T_1(x))).$$

In fact the absolute continuity of  $\nu_{\beta}$  is equivalent to the existence of an  $L^1$  function satisfying the above.

### Theorem (Batsis, K.)

Suppose there exists a constant C that the total number  $\mathcal{N}_n$  of words  $a_1 \cdots a_n, b_1 \cdots b_n \in \{0, 1\}^n$  satisfying

$$|\sum_{i=1}^n (a_i-b_i)\beta^{n-i}| < \frac{1}{\beta-1}$$

satisfies

$$\mathcal{N}_n < C\left(\frac{4}{\beta}\right)^n$$

for all  $n \in \mathbb{N}$ . Then  $\nu_{\beta}$  is absolutely continuous.

#### Theorem (Batsis, K.)

Suppose there exists a constant C that the total number  $\mathcal{N}_n$  of words  $a_1 \cdots a_n, b_1 \cdots b_n \in \{0, 1\}^n$  satisfying

$$|\sum_{i=1}^n (a_i-b_i)\beta^{n-i}| < \frac{1}{\beta-1}$$

satisfies

$$\mathcal{N}_n < C\left(\frac{4}{\beta}\right)^n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all  $n \in \mathbb{N}$ . Then  $\nu_{\beta}$  is absolutely continuous.

### Theorem (Batsis, K.)

Suppose there exists a constant C that the total number  $\mathcal{N}_n$  of words  $a_1 \cdots a_n, b_1 \cdots b_n \in \{0, 1\}^n$  satisfying

$$|\sum_{i=1}^n (a_i-b_i)\beta^{n-i}| < \frac{1}{\beta-1}$$

satisfies

 $\mathcal{N}_n < C\left(\frac{4}{\beta}\right)^n$ 

for all  $n \in \mathbb{N}$ . Then  $\nu_{\beta}$  is absolutely continuous.

**Goal:** Let  $\beta \in (1,2)$  be an algebraic unit, non-Pisot, no Galois conjugates of absolute value one. Use the cut and project structure of the sets  $X_A(\beta)$  to study pairs of words  $a_1, \dots a_n, b_1, \dots b_n$  as above. Use the measures  $\mu_n$  to count them.