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The Fibonacci Partition Function

» Let R(n) be the number of ways of writing n € N as the sum
of distinct Fibonacci numbers.

» For example

8=28
=5+3
=5+2+1

so R(8) = 3.
> (R(n)) = 17172717272717372727371737"'
» Fibonacci numbers F; = F, =1, F3 = 2, write

k
R(n) = # {n = Za,-FkJrz,,- - k large enough, a; € {0, 1}}

i=1



The Fibonacci Partition Function

> (R(”))?Oﬂ = 17 17 27 1? 2a 27 17 37 27 2: 37 17 37 e
» Berstel showed how to express R(n) in terms of a product of
matrices. Recently, Chow and Slattery gave an explicit (albeit
complicated) formula for R(n).
» Qur Goal: Determine the local, multiplicative structure of R.
» Can't answer: When is R(n) =77
Can answer: when is R(n) = R(n+1)?
How often do we have R(n+ 2) = 3R(n)?
What is the longest

R(n) < R(n+1) <--- < R(n+ k).
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» Define irrational rotation T : [ 2,> — [2,> by
® e
n 1 c [—1 1]
Yoo YSl 23
T(y) = v 19
n 1 1 c [1 1]
yT = Y< |13
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-1 1 11
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Dynamics
P> T is an irrational rotation by é
» his a Devil's staircase, log(h) has graph
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Figure: The function log(h), drawn by plotting y, = T"(0) against
jog () for 0 < n < 2582

> Theorem: S — h(T7(0))




Main Theorems

v

Theorem: R(n) = exp(3 71— log(h(T*(0))) for all n > 1.

» Given P = (p1, .., px) € QK, say R contains patch P at time n
if
R(n+1i)=piR(n) Vie {1, ---  k}.

» For any patch P, the set
{n € N: R contains patch P at time n}

is a cut and project set.



Trying to do dynamics

We could try to do dynamics on N U {0} to study Fibonacci
codings.

For example, 11 = 1x8 + 0x5 + 1x3 + 0x2 + Ox1.
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Trying to do dynamics

We could try to do dynamics on N U {0} to study Fibonacci
codings.

For example, 11 = 1x8 + 0x5 + 1x3 4+ 0x2 + 0x1. 11 ~ 10100.
Could think of sequence of codes

0— 1— 10— 101 — 1010 — 10100
00— 1—-» 2— 341=4— 54+2=7— 8+3=11

This dynamics doesn't work very well. Complicating factor is that
the map F, — F,41 is not quite linear.



Making things linear

We can write

" — "
Fn=
V5
where ¢ = 1+2\/§, P = 172‘/5 = _7}.

Idea: Replace F, with the pair (¢",9").

Lemma: Let n € N For any aj - - - ax € {0,1}* with
n= Zf'(:l ajFyyo_; define

k
Xy = § :ai¢k+271
i=1

k
k+2—i
Yn = E aﬂb + g
i=1

The map n — (xp, yn) is well defined and invertible.

R(n) = #{a1---a, € {0,1}*: Zf-;l aip* 271 = x,} for large k.



K
k42— k2
n:E aiFiio—i = (Xn, ¥n) = (E ajpkt2i § ajy '>.
i—1

The set X = {(xpn,yn) : n € N} is a strip through a lattice.

Define T;,S; : R — R, Ti(x) = ox + i¢?, Si(y) = vy + in?.
X ={(Ta, 0 Tay(0),Sa, 0+ 55,(0)) : k €N, 2 € {0,1}}.

R(n) = #{a1---ax € {0,1}K: T, 0--- T5,(0) = x,}



Dynamics on X
Proposition:

X:{(n+m4p,n+mw):n+m¢e {_21,1]}
¥ P

Proof: Since y, are generated from 0 using the contractive maps
So, S1, they must lie in the attractor of the iterated function
system {So, S1}. Reverse inclusion slightly less clean (still short).

Proposition:

(Xn+1+§0a}/n+1+'¢) Yn €

(Xn+17)/n+1) =
(Xn + @, ¥n + ) y €

ﬁw‘ = ﬁw‘ ,l_\

[

ﬁ\»—-ﬁ‘H

Proof: (xpi1,Yn+1) — (Xn,¥n) € X — X, a discrete set. Use
n= (x,+yn)/v5 and y, in bounded set.



Counting:

The Zeckendorf expansion of n writes n as the sum of
non-consecutive Fibonacci numbers. It is the greedy expansion of n
by Fibonacci numbers.

If X, = Tp, 0 Tp(0) (Zeckendorf expansion),
R(n) = #{ar - ax € {0,135 To, 0+ T, (0) = Toy 0+ T5, (0)}
i.e. want to count aj - - - ax such that
Th—a, 00 Tp—5(0) =0
Ti(x) = ox + i?, b —a; € {1,0,—1}.

Lemma: If Ty, 0---0 Ty _5(0) =0 and by - - - b greedy, then
for i < k

7_b,-—a,‘ O---0 Tbl—al(o) € {07 @, 1 + 90}



Matrices:
Let

1 01 1 00
Ail=10 01 |,A=|101
000 010

Prop: If n has Zeckendorf expansion b; - - - by and if
(V1 Vo V3) = (1 0 0)Ab1 c ‘Abk

then R(n) = v1, R(n —1) = v2 + v3. One of v, v3=0.

R(n) Vi

Ratio R(n—1) = vatvs"

Certain tails bg_p, - - - bk determine R(n)/R(n — 1) exactly, e.g.
since

1
A1AcAcA1 = 1
0

o O O

1
1
0
R(n) = R(n — 1) whenever by_3..b, = 1001.
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Two Iterated Function Systems

If n has Zeckendorf coding by - - - by then
Yn = Sp, 0+ 0 5p,(0)

A word by - - - b_, corresponds to an interval in [:721, é] n has
Zeckendorf coding ending byx_p, - - - by, if and only if

T7(0) = yn € Sp, 0+ Spy_, <[_1 1D

©? @

But these tails also tell me the ratio R(n)/R(n— 1)



Putting it all together

We turned n € N into a pair (xn, y») with good dynamics.
yn = T"(0) where T is an irrational rotation.

We could see R(n) and R(n — 1) by instead counting R(x5),
R(xn — ¢), R(xn — ¢ — 1) and using the good linear dynamics,
turning this into a matrix product indexed by the Zeckendorf
coding.

Certain tails in the Zeckendorf coding correspond to knowing the
ratio R(n)/R(n — 1) exactly. They also correspond to an interval
in which y, must lie. Defining h(T"(0)) = R(n)/R(n—1) on these
intervals gives a Devil's staircase structure.

We can now understand the local multiplicative structure of R(n)
by seeing where T"(0) lies. For any given local pattern in the
multiplicative structure, it occurs whenever T"(0) lies in a region
corresponding to the pattern.



