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Uniform approximation and asymptotic approximation

Theorem (Dirichlet)

Let α be a real number and Q be a positive integer. Then there
exists a rational number p/q such that 0 < q ≤ Q and∣∣∣∣α− p

q

∣∣∣∣ < 1

qQ
.

Theorem (Hurwitz)

For an irrational number α, there exist infinitely many rational
number p/q’s satisfying that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.



Uniform and asymptotic approximation rate

Let α be an irrational number.

▶ Asymptotic approximation rate C asymp(α) is defined as the
infimum of c such that

|qα− p| < c

q
for infinitely many p/q’s.

▶ Uniform approximation rate Cuniform(α) is defined as the
infimum of c satisfying that there exists q with 1 ≤ q ≤ Q

|qα− p| < c

Q
for sufficiently large Q.



Continued fraction

Let

α = a0 +
1

a1 +
1

a2 +
.. .

, a0 ∈ Z, an ∈ N, n ≥ 1.

Principal convergents for α:

pn
qn

= a0 +
1

a1 +
1

. . . + 1/an

.

Theorem (Legendre)

If

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then

p

q
=

pn
qn

for some n.



Best rational approximating numbers

A rational p/q is called a best approximation of α if any rational
a/b ̸= p/q such that 0 < b ≤ q satisfies

|qα− p| < |bα− a|.

Theorem (Lagrange)

For any irrational α, the set of best approximations of α is either{
pn
qn

: n ≥ 1

}
or

{
pn
qn

: n ≥ 0

}
depending on a1 = 1 or a1 ≥ 2.



Uniform and asymptotic approximation rate

Let α be an irrational and pn
qn

be its principal convergents.

▶ Asymptotic approximation rate

C asymp(α) = lim inf
n→∞

qn|qnα− pn|

▶ Uniform approximation rate

Cuniform(α) = lim sup
n→∞

qn|qn−1α− pn−1|

[Davenport-Schmidt]

Lagrange number L(α) = (C asymp(α))−1.



Action of the modular group

For

g =

(
p r
q s

)
∈ PSL2(Z), g−1 =

(
s −r
−q p

)
.

Let α be a real number.

q2 ·
∣∣∣∣α− p

q

∣∣∣∣ = q2 ·
∣∣∣∣g(g−1(α))− p

q

∣∣∣∣
= q2 ·

∣∣∣∣pg−1(α) + r

qg−1(α) + s
− p

q

∣∣∣∣
=

∣∣∣∣ ps − rq

g−1(α) + s/q

∣∣∣∣ = 1

|g−1(α)− g−1(∞)|
.

We consider rational numbers
p

q
as g(∞) for g ∈ PSL2(Z).



Let α be an irrational number.

For g ∈ PSL2(R), we write g =

(
a(g) b(g)
c(g) d(g)

)
.

Then

L(α) =

(
lim inf

p
q
∈Q

q2
∣∣∣∣α− p

q

∣∣∣∣
)−1

= lim sup
g∈PSL2(Z)

(
c(g)2

∣∣∣∣α− a(g)

c(g)

∣∣∣∣)−1

= lim sup
g∈PSL2(Z)

(
c(g)2 |α− g(∞)|

)−1

= lim sup
g∈PSL2(Z)

|g(α)− g(∞)| .

Therefore, Lagrange number L(α) is the limit superior of the
height of the geodesic from ∞ to α.



Lagrange number by the continued fraction expansion

P

v
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L(α) = lim sup
(
q2
∣∣∣α− p

q

∣∣∣)−1
= lim sup

n

(
q2n

∣∣∣α− pn
qn

∣∣∣)−1

= lim sup
n

([0; an−1, . . . , a1] + [an; an+1, an+2, . . . ])
−1 .



Classical Lagrange spectrum

The set of Lagrange numbers is called the Lagrange spectrum L .

discrete totally disconnected Hall’s ray
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Freiman’s constant = 4.528 · · ·

Markov (1879,1880) showed

L ∩ [0, 3) =

{√
9− 4

m2

∣∣∣m = 1, 2, 5, 13, 29, . . .

}
.

Here, m is a Markov number, one of solutions to

m2
1 +m2

2 +m2
3 = 3m1m2m3.



Geodesic flow on the fundamental domain

The Lagrange spectrum is the limit superior of the ”heights” of the
geodesics in H/SL2(Z).

i

F

i

F

i

F

Three closed geodesics on the fundamental domain of PSL2(Z).
They have maximal heights

√
5, 2

√
2, 2

√
3 (from left to right).



Diophantine approximation on group G

Let G be a finitely generated discrete subgroup of PSL2(R).
The group G acts on the upper half plane H as

g =

(
a b
c d

)
∈ G, g(z) =

az + b

cz + d
.

Let Q(G) be the set of points in R ∪ {∞} that are fixed by
parabolic elements of G and assume that ∞ ∈ Q(G).

Q(G) = {g(∞) ∈ R ∪ {∞} : g ∈ G}.

As before, for α ̸∈ Q(G), we define its Lagrange number

LG(α) = lim sup
g∈G

(
c(g)2 |α− g(∞)|

)−1
= lim sup

g∈G
|g(α)− g(∞)| ,

the limit superior of the height of the geodesic from ∞ to α.



The Hecke group

The Hecke group Hq is a subgroup of PSL2(R) generated by

S =

(
0 −1
1 0

)
, T =

(
1 λq

0 1

)
,

where λq = 2 cos π
q and q ≥ 3 is an integer.

The Hecke group Hq has the presentation

Hq
∼=
〈
S ,T |S2 = I , (ST )q = I

〉
.

If q = 3, then λ3 = 1 and H3 = PSL2(Z).
If q = 4, then λ4 =

√
2.

Moreover,

λ5 =

√
5 + 1

2
, λ6 =

√
3.



The Hecke group

Define the Lagrange spectrum on group G by

L (G) = {LG(α) |α ∈ R \Q(G)} .

In 1970’s, the Lagrange spectrum L (H4) is known as the
spectrum of 2-minimal form by A. Schmidt and the spectrum on
sublattice of index 2 by Vulakh. The spectrum L (H6) is also
studied by A. Schmidt.

Lehner (1985), Haas and Series (1986) studied the minimum of
Lagrange spectrum, which is called Hurwitz’s constant, for the
Hecke group Hq. In particular, if q is even, then the minimum of
the Lagrange spectrum L (Hq) is equal to 2.

The discrete part of the Lagrange spectrum L (Hq) is studied by
Series (1988) for q = 5 and by Vulakh (1997) for general cases .



Fundamental domain of the Hecke group H4

S =

(
0 −1
1 0

)
, T =

(
1 λ4

0 1

)
, λ4 =

√
2.

0− 1√
2

1√
2

1−1



The Lagrange spectrum L (H4)

discrete Hall’s ray
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The discrete part of the spectrum on H4 is known by Schmidt and
Vulakh independently{√

8− 2
x2

|x = 1, 5, 29, 65, . . .
}
∪
{√

8− 4
y2 |y = 1, 3, 11, 17, . . .

}
Here, x and y are integral solutions to 2x2 + y21 + y22 = 4xy1y2.



Three closed geodesics in the fundamental domain of Hecke group
H4 on the upper half plane H with three lowest heights.
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Note that the discrete part of the spectrum corresponds to closed
geodesics.



Theorem (K- Deokwon Sim)

1. For any ε > 0, we have

dimH

(
L (H4) ∩

[
0, 2

√
2 + ϵ

))
> 0.

2. There are two maximal gaps in L (H4)(√
238

5
,
√
10

)
and

(
√
10,

2124
√
2 + 48

√
238

1177

)
.

3. L (H4) contains every real number greater than 4
√
2.

Note that
√
10 is an isolated point. Two gaps in look similar to

the gaps (
√
12,

√
13) and

(√
13, 1

22(9
√
3 + 65)

)
in the classical

Markoff and Lagrange spectra



Rosen continued fraction

The Rosen continued fraction expansion is given by

α = a0
√
2 +

ϵ1

a1
√
2 +

ϵ2

a2
√
2 +

ϵ3

a3
√
2 +

. . .

,

where a0 ∈ Z, ai ∈ N and ϵi ∈ {−1,+1}.
Note that the expansion is not unique.

To make it unique, we introduce one of the following restrictions :

Rosen CF : ϵi+1 = −1 implies ai ≥ 2 for all i ≥ 1,

Dual Rosen CF : ϵi = −1 implies ai ≥ 2 for all i ≥ 1.

Let pn/qn and p′n/q
′
n be the convergent of α with the Rosen and

the dual Rosen continued fraction expansion respectively.



H4-best approximation numbers

If p/q is a H4-best approximation of α, then we have

|qα− p| < 1

q
.

If

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
, then

p

q
is a H4-best approximation of α.

Theorem (Ayreena Bakhtawar, K, Seul Bee Lee)

The set of H4-best approximation of α is{
pn
qn

| n ≥ 0

}
∪
{
p̃n
q̃n

| n ≥ 1

}
,

where pn/qn and p̃n/q̃n are the convergents of the Rosen and the
dual Rosen continued fraction respectively.



Dirichlet theorem for H4

Theorem (Ayreena Bakhtawar, K, Seul Bee Lee)

Let α ∈ R. For every Q there exists p/q ∈ Q(H4) such that

|qα− p| < 1 +
√
2

2

1

Q
, 1 ≤ q ≤ Q.

Note that α = 1 /∈ Q(H4) and

Cuniform
H4

(1) =

√
2 + 1

2
.



Motivations

1. Diophantine approximation on circles.

2. Diophantine approximation with specific parity rationals.

3. Translation surface - covering time on the translation surface.

• • •

•

•

• •

•

Ongoing project with Luca Marchese and Stefano Marmi



Diophantine approximation on the unit circle

1

(35 ,
4
5)

P = (α, β)

( 8
17 ,

15
17)

1

0

S1 = {(x , y) ∈ R2 | x2 + y2 = 1}.

A rational point Z =
(
a
c ,

b
c

)
∈ S1

corresponds a primitive Pythagorean
triple (a, b, c) since a2 + b2 = c2.

The height function Ht
(
a
c ,

b
c

)
= c .

For an irrational P ∈ S2, we define the Lagrange number as

L(P) = lim
Z

1

Ht(Z )d(P,Z )
= lim

c

√(
α− a

c

)2
+

(
β − b

c

)2
−1



Height should be modified for the unit circle

Let σ : R → S1 be the inverse of the stereographic projection.

σ(t) =

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)
.

Since ds =
2dt

t2 + 1
,

∣∣∣σ(ξ)− σ
(
p
q

)∣∣∣ ≈ 2q2

p2+q2

∣∣∣ξ − p
q

∣∣∣ .
σ

(
p

q

)
=

(
2pq

p2 + q2
,
p2 − q2

p2 + q2

)
, Ht(P) =

{
p2 + q2,

(p2 + q2)/2.

We should consider

Htmodified
Q

(
p

q

)
:=

{
q2 if p ̸≡ q mod 2,

q2/2 if p ≡ q mod 2,



Ford’s circles and the Diophantine approximation on R
For an irrational ξ, there are infinitely many p/q’s satisfying∣∣∣∣ξ − p

q

∣∣∣∣ < 1

2q2
.
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The radius of the horocycle based at
p

q
is

1

2q2
.

Two circles based at
p

q
and

p′

q′
are tangent ⇐⇒ |pq′ − qp′| = 1.



Ford’s circles for the unit circle
The radius of the horocycle at ( ac ,

b
c ) is 1/(1 +

√
2c). Horocycles

at ( ac ,
b
c ) and ( a

′

c ′ ,
b′

c ′ ) are tangent ⇔ aa′ + bb′ − cc ′ = −1.
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Stereographic projection (α, β) 7→ α
1−β

The horocycle based at (a/c , b/c) with radius 1/(1 +
√
2c) on S1

I

is mapped to the horocycle based at a/(c − b) with radius
1/(

√
2(c − b)) in H2.

(a, b, c) ↔
(
a

c
,
b

c

)
∈ S1 7→ a/c

1− b/c
=

a

c − b
.
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Comparision of Ford circles
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Approximation by elements of
√
2Q instead of Q.
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√
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p

q
7→

√
2p

q
=

{√
2p
q if q is odd,
p√
2q′

if q = 2q′.

If q is even, then the height become 2q′2 = q2/2.



The spectrum on the unit circle is a constant multiple of and the
spectrum on the Hecke group H4.
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Fundamental domain of H4

0 1√
2

i

√
2
1

0 1√
2

i

√
2
1

ϵ0

ϵ1 ϵ2

ϵ3

Let T =

(
1

√
2

0 1

)
, S =

(
0 −1
1 0

)
, R = ST−1 =

(
0 1

−1
√
2

)
.

We have fundamental domain F of H4 (left) and the Ideal
quadrilateral Q = F ∪ R(f ) ∪ R2(F ) ∪ R3(F ) (right).



Expansion of a real number by H4

Let

N1 = RS =

(
1 0√
2 1

)
, N2 = R2S =

(√
2 1

1
√
2

)
,

N3 = R3S =

(
1

√
2

0 1

)
.

− 1√
2

0 1√
2

√
2
1

3√
2

2
√
2

1

S · P P N3 · P

N1 · P N2 · P



Expansion of the real number

Since

N1 · [0,∞] =
[
0,

1√
2

]
, N2 · [0,∞] =

[ 1√
2
,
√
2
]
,

N3 · [0,∞] = [
√
2,∞],

we have

[0,∞] = N1 · [0,∞] ∪ N2 · [0,∞] ∪ N3 · [0,∞]

=
⋃

(d1,...,dk )∈{1,2,3}n
Nd1Nd2 · · ·Ndn · [0,∞].

We write α = [d1, d2, . . . ] ≥ 0 if

α ∈ Nd1Nd2 · · ·Ndn · [0,∞] for all n ≥ 1.



Let

Mn = Nd1Nd2 · · ·Ndn =

(
an bn
cn dn

)
, α = Mn · αn,

where αn ∈ [0,∞]. Then for all n ≥ 1,

Mn · 0 =
bn
dn

< α <
an
cn

= Mn · ∞.

Theorem
▶ If dn < cn, then

bn
dn

is a H4-best approximation.

▶ If cn < dn, then
an
cn

is a H4-best approximation.

▶ If αn < 1, then bn
dn

is a H4-best approximation.

▶ If αn > 1, then an
cn

is a H4-best approximation.

There are no more H4-best approximations.



Let

A =

(
1

√
2

0 1

)
, B =

(√
2 1

1
√
2

)
.

Then

N1 = JAJ, N2 = B, N3 = A, J =

(
0 1
1 0

)
.

Using the fact that BJ = JB, we can expand a real number with

A · α =
√
2 + α, B · α =

√
2− 1√

2 + α
, JA · α =

1√
2 + α

or

A · α =
√
2 + α, B · α =

√
2− 1√

2 + α
, AJ · α =

√
2 +

1

α
.

Both expansions gives convergent matrix of Mn or MnJ.



Remind that α = Mn · αn =

(
an bn
cn dn

)
· αn.

The expansion by A,B, JA gives the Rosen continued fraction
matrix. Moreover, the product matrix is

Ln =

{
Mn if cn < dn,

MnJ if cn > dn.

The expansion by A,B,AJ gives the dual Rosen continued fraction
matrix. Moreover, the product matrix is

Nn =

{
Mn if αn ≥ 1,

MnJ if αn < 1.

Note Ln · ∞ is the convergent of the Rosen continued fraction and
Nn · ∞ is the convergent of the dual Rosen continued fraction.



Thank you very much for attention!
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