Linear repetition in polytopal cut and project sets

Henna Koivusalo (joint with Jamie Walton)

University of Vienna, Austria

Periodic and aperiodic tilings

Periodic tiling

Aperiodic tiling

- Wang tiles 1961, Berger 1966
- Penrose tiling 1970s

- Schechtman 1984 (Nobel prize 2011)
 Paul Steinhardt and
 - Dov Levine 1984

Materialscientist, CC BY-SA 3.0

Quasicrystals in nature

Paul Steinhardt, CC BY-SA 4.0

Paul Steinhardt, CC BY-SA 4.0

Patterns in cut and project sets

Patterns in cut and project sets

- E_V totally irrational
 d-subspace of
 E
- $\mathbb{E}_{<} \text{ any transversal} \\ (k d) \text{-subspace}$
- Γ lattice
- W window
- $\blacktriangleright \ \mathcal{S} = W + \mathbb{E}_{\vee} \text{ slice}$
- ▶ π_{\vee} projection to \mathbb{E}_{\vee}

Cut and project set

$$\Lambda = \pi(\mathcal{S} \cap (\Gamma + s)) \subset \mathbb{E}_{\lor}$$

Patterns in cut and project sets

Size *r* neighbourhood of a point $y \in \Lambda$, of shape Ω :

Pattern

$$P(y,r) = \Lambda \cap (r\Omega + y)$$

Analysing patterns

- ▶ P(y,r) equivalent to P(y',r) if P(y,r) = P(y',r) + y y'
- $\blacktriangleright [P(y,r)] = \mathcal{P}(y,r)$
- **complexity**: p(r) = number of different patterns of size r
- repetitivity function: Rep : ℝ₊ → ℝ₊, any pattern of size Rep(r) contains all patterns of size r

Some previous work

- **b** growth rate of p(r): ~Julien 2010
- Inearity of Rep?: Lagarias and Pleasants 2003

_emma

There is a one-to-one correspondence between

patterns [P], and

• acceptance domains $A \subset W$.

Lemma

The complexity function can be evaluated by counting the number of acceptance domains.

Lemma

The repetitivity function can be evaluated by finding Rep(r) so large that every acceptance domain contains a point from P(y, Rep(r)). This is equivalent to acceptance domains being of 'even size'.

- Characterisation of cut and project sets with linear repetitivity for a cube W
- Number of different frequences at which patches are observed as well as the speed at which they converge
- Equivalent form of a famous open problem in Diophantine approximation

(subsets of {Haynes, Julien, K., Sadun, Walton})

Our results for polytopal windows

Polytopes and stabilisers

- ▶ *W* intersection of positive half-spaces $H^+ \in \mathcal{H}^+$
- ▶ sides $H \in \mathcal{H}$ affine hyperplanes in $\mathbb{E}_{<}$
- ► stabiliser $\Gamma^H = \{\gamma \in \Gamma \mid \pi_<(\gamma) + H = H\}$

Theorem (K., Walton, Erg. Theory Dynam. Systems, 2020)

The complexity p(r) of a cut and project set with a polytope W grows as $p(r) \approx r^{\alpha}$, where the number $\alpha \in \{d, \ldots, d(k-d)\}$ depends on the shape of W relative to $\pi_{<}(\Gamma)$.

Theorem

For $H \in \mathcal{H}$, let β_H be the dimension of the linear span of $\pi_{<}(\Gamma^H)$. Given a flag $f \subset \mathcal{H}$, let

$$\alpha_f = \sum_{H \in f} d - \mathsf{rk}(\Gamma^H) + \beta_H.$$

Then $\alpha = \max_f \alpha_f$.

Theorem (K., Walton, 2020?)

A polytopal, **homogeneous**, **hyperplane spanning** cut and project set has a linear repetitivity function if and only if

- (i) it has minimal complexity, and
- ii) it decomposes into subsystems satisfying a Diophantine condition.

Theorem (K., Walton, 2020?)

A polytopal, **homogeneous**, **hyperplane spanning** cut and project set has a linear repetitivity function if and only if

- (i) it has minimal complexity, and
- (ii) it decomposes into subsystems satisfying a Diophantine condition.
 - homogeneous and hyperplane spanning: window W is a polytope that is 'well-aligned' with respect to π_<(Γ)
 - condition (ii): Γ_< is 'not too dense' in a quantifiable way

Homogeneous

▶ there is some $o \in \mathbb{E}_{<}$ such that

► all $H \in \mathcal{H}$ have some $\gamma_H \in \Gamma$,

$$\bigcap_{H\in\mathcal{H}}(H+\pi_{<}(\gamma_{H}))=\{o\}$$

- $\blacktriangleright H \in \mathcal{H}$
- ► the linear span of stabiliser $\pi_{<}(\Gamma^{H})$ is the subspace generated by H
- ▶ $\beta_H = k d 1$ (from calculating complexity)

Decomposing schemes: Example

Decomposing schemes: Example

- H_i define W_i
- ▶ Γ 'splits' into subgroups $Γ^1 + Γ^2$ with $π_<(Γ^i) ⊂ X_i$
- ► $H \in \mathcal{H}_i$ define stabilisers $\Gamma^i(H) = \{\gamma \in \Gamma^i \mid \pi_<(\gamma) + H = H\}$

Find a maximal decomposition into (X_i, W_i, Γ^i)

$$\blacktriangleright \mathbb{E}_{<} = X_1 + \cdots + X_m$$

$$\blacktriangleright W = W_1 + \cdots + W_m, \ W_i \subset X_i$$

▶ Γ has $\Gamma^1 + \cdots + \Gamma^m$ as a finite index subgroup, $\pi_<(\Gamma^i) \subset X_i$ densely

- (X_i, W_i, Γ^i) are not cut and project schemes, however
- ▶ $\pi_{<}(\Gamma^{i})$ -translates of W_{i} define 'acceptance domains' etc.

Theorem

A polytopal, homogeneous, hyperplane spanning cut and project set has a linear repetitivity function if and only if

(i) for any choice of flag $f\subset \mathcal{H}$

$$\sum_{H \in f} k - rk(\Gamma^H) - 1 = d, \text{ and }$$

(ii) each subsystem (X_i, W_i, Γ^i) satisfies: there is c > 0 such that for each $\gamma \in \Gamma^i(r) \setminus \{0\}$,

$$|\pi_{<}(\gamma)| \geq \frac{c}{r^{rk\Gamma^{i}-rk\Gamma^{i}(H)-1}}.$$

Theorem

A polytopal, homogeneous, hyperplane spanning cut and project set has a linear repetitivity function if and only if

(i) for any choice of flag $f\subset \mathcal{H}$

$$\sum_{H \in f} k - rk(\Gamma^H) - 1 = d, \text{ and }$$

(ii) each subsystem (X_i, W_i, Γⁱ) satisfies: there is c > 0 such that for each γ ∈ Γⁱ(r) \ {0},

$$|\pi_{<}(\gamma)| \geq \frac{c}{r^{rk\Gamma^{i}-rk\Gamma^{i}(H)-1}}.$$

Lemma

For $H, K \in \mathcal{H}_i$, the ranks of the stabilisers $rk\Gamma^i(H) = rk\Gamma^i(K)$.

- strict generalisation of [HKW] (cubes W)
- canonical windows
- sharpness?
- how common is linear repetitivity?