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Motivation

Given q ∈ (1, 2], for each x ∈ Iq := [0, 1
q−1 ] there exists a sequence

(di) ∈ {0, 1}N such that

x =
∞

∑
i=1

di

qi =: πq((di)).

The sequence (di) = d1d2 . . . is called a q-expansion of x.

I For each k ∈N∪ {ℵ0} there exist q ∈ (1, 2] and x ∈ Iq such
that x has k different q-expansions (Erdős, Joó and Komornik
1990; Erdős, Horváth and Joó 1991; Erdős and Joó 1992).

I Let q ∈ (1, 2). Then Lebesgue a.e. x ∈ Iq has a continuum of
q-expansions (Sidorov, 2003).
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There is a great interest in unique q-expansions, due to their close
connections with open dynamical systems.
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Figure: The overlapping graphs of T0 : x 7→ qx and T1 : x 7→ qx− 1.



Univoque set

Let
U := {(x, q) : x has a unique q expansion} .

Then for each q ∈ (1, 2] the horizontal slice

Uq :=
{

x ∈ Iq : (x, q) ∈ U
}

is the set of x having a unique q-expansion.
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I Critical values qG = 1+
√

5
2 and qKL ≈ 1.78723 (Erdős, Joó and

Komornik 1990; Glendinning and Sidorov 2001);

I Topological structure (de Vries and Komornik 2009);

I Dimension results (Komornik, K. and Li 2017; Allaart and K.
2019).

What about the vertical slice of U?
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Komornik 1990; Glendinning and Sidorov 2001);

I Topological structure (de Vries and Komornik 2009);

I Dimension results (Komornik, K. and Li 2017; Allaart and K.
2019).

What about the vertical slice of U?



Univoque bases

For x ≥ 0 let

U (x) := {q ∈ (1, 2] : (x, q) ∈ U} .

I If x = 0, then U (0) = (1, 2] (trivial!).

I If x > 0, then the largest element of U (x) is

qx := min
{

2, 1 +
1
x

}
.

I If x ∈ (0, 1], then qx = 2.
I If x ∈ (1, ∞), then qx = 1 + 1

x , and in this case,

x =
∞

∑
i=1

1
qi

x
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qx = min
{

2, 1 + 1
x
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For x = 1 the set U = U (1) was well-studied:

I L(U ) = 0 (Erdős, Joó and Komornik 1990) and dimH U = 1
(Daróczy and Kátai 1995);

I U has a smallest member qKL ≈ 1.78723 (Komornik and
Loreti, 1998), and is transcendental (Allouche and Cosnard
2000);

I U is a Cantor set (Komornik and Loreti 2007);

I Local dimension (Allaart and K. 2020).
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I L(U ) = 0 (Erdős, Joó and Komornik 1990) and dimH U = 1
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For a general x > 0 we know very little about U (x).
I For x ∈ (0, 1) we have L(U (x)) = 0 and dimH U (x) = 1

(Lü, Tan and Wu 2014);

I For x ∈ (0, 1] the algebraic difference U (x)−U (x) contains
an interval (Dajani, Komornik, K. and Li 2018);

I The smallest element of U (x) (K. 2016; Allaart and K. 2020).
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(Lü, Tan and Wu 2014);

I For x ∈ (0, 1] the algebraic difference U (x)−U (x) contains
an interval (Dajani, Komornik, K. and Li 2018);

I The smallest element of U (x) (K. 2016; Allaart and K. 2020).



x

q

1

2

0 1

U (x)

qx = min
{

2, 1 + 1
x

}

U

For a general x > 0 we know very little about U (x).
I For x ∈ (0, 1) we have L(U (x)) = 0 and dimH U (x) = 1
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Variation principle

Theorem (K., Li, Lü, Wang and Xu, 2020)

For any x > 0 and for any q ∈ (1, qx] \ U we have

lim
δ→0

dimH(U (x) ∩ (q− δ, q + δ)) = lim
δ→0

dimH(Uq ∩ (x− δ, x + δ)).
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Proof

The proof is based on the local bi-Hölder continuity of the map

Φx : U (x)→ U(x); q 7→ x1(q)x2(q) . . . ,

where U(x) is the set of all unique expansions of x for some
q ∈ U (x).

We also need the local bi-Hölder continuity of the projection map

πq : Uq → Uq; (di) 7→
∞

∑
i=1

di

qi ,

where Uq is the set of all unique q-expansions.
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Proof conti

Let q ∈ (1, qx] \ U and x = πq(Φx(q)). Then ∃ δ > 0 such that

(q− δ, q + δ) ∩ U = ∅.

This defines a nearly bijective map

φ : U (x) ∩ (q− δ, q + δ) → Uq ∩ (x− η, x + ζ)
p 7→ πq(Φx(p)).

Note that δ→ 0 implies η, ζ → 0.It is also nearly bi-Lipschitz:

C1|p1 − p2|1+ε ≤ |φ(p1)− φ(p2)| ≤ C2|p1 − p2|1−ε.

This implies

lim
δ→0

dimH(U (x)∩ (q− δ, q+ δ)) = lim
η→0

dimH(Uq∩ (x− η, x+ η)).
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Devil’s staircase

Recall that

U(x) = {(di) : (di) is the unique expansion of x in some base} ,
Uq = {(di) : (di) is a unique q expansion of some point} .

Theorem (K., Li, Lü, Wang and Xu, 2020)

For any x > 0 we have

dimH U(x) = dimH Uqx ,

where qx = maxU (x) = min
{

2, 1 + 1
x

}
.

Therefore, D : x 7→ dimH U(x) is a non-increasing Devil’s
staircase on (0, ∞).

In general, we are not able to calculate dimH U (x).
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Figure: The graph of D(x) = dimH U(x).
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I U(x) ⊆ Uqx , and then dimH U(x) ≤ dimH Uqx ;

I For any s < dimH Uqx we can construct a subset Γ ⊂ U(x)
close to Φx(qx) such that dimH Γ ≥ s.
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Critical values

Theorem (K., Li, Lü, Wang and Xu, 2020)

The set U (x) has zero Lebesgue measure for any x > 0.
(i) If x ∈ (0, 1], then dimH U (x) = 1;

(ii) If x ∈ (1, xKL), then 0 < dimH U (x) < 1;
(iii) If x ∈ [xKL, xG), then |U (x)| = ℵ0;

(iv) If x ≥ xG, then U (x) = {qx}.
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Isolated points

Recall that U = U (1) has no isolated points and U is a Cantor
set.

What about U (x)?

Let

Xiso := {x ∈ (0, ∞) : U (x) contains isolated points} .

Theorem (K., Li, Lü, Wang and Xu, 2020)

Xiso is dense in (0, ∞). Furthermore, U (x) contains isolated points
for any x > 1.



Isolated points

Recall that U = U (1) has no isolated points and U is a Cantor
set.What about U (x)?

Let

Xiso := {x ∈ (0, ∞) : U (x) contains isolated points} .
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proof

Recall that Uq = {(di) : (di) is the unique q-expansion}. Then
Up ⊆ Uq for any p < q.

Let

V :=
{

q ∈ (1, 2] : Ur 6= Uq ∀ r > q
}

.

Then U ⊂ V and #(V \ U ) = ℵ0.

Observe that
(1, 2] \ U =

⋃
(q0, q∗0).

For each (q0, q∗0) we have V ∩ (q0, q∗0) = {qn}∞
n=1 such that

q0 < q1 < q2 < · · · < qn < qn+1 < · · · , and qn ↗ q∗0 .

So the map q 7→ Uq is constant on each interval (qn, qn+1].
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Proof conti

Set U∗qn+1
:= Uqn+1 \Uqn . Then U∗qn+1

is dense in Uqn+1 .

Lemma
For any

x ∈
∞⋃

n=1

⋃
p∈(qn,qn+1)

πp(U∗qn+1
)

the set U (x) contains at least one isolated point.

I Using this lemma we can show that the union covers a dense
subset of (0, 1);

I Furthermore, the union covers the whole interval (1, ∞)
(techniques from combinatorics on words).

Conjecture

U (x) contains isolated points ⇐⇒ x 6= 1.
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Open questions

1. When is U (x) a closed set for x ∈ (0, xG)?

2. What is the Hausdorff dimension of U (x) for x ∈ (1, xKL)?



Thank you!
And welcome to Chongqing!
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