Univoque bases of real numbers: local dimension,
Devil's staircase and isolated points

Derong Kong

Chongging University, P.R.China

Numeration-OWNS, June 23, 2020



Motivation

Given g € (1,2], for each x € I, := [0, -15] there exists a sequence

q—1
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X = Z? =: 14((d;))-
i=1

The sequence (d;) = did; ... is called a g-expansion of x.
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(d;) € {0,1} such that
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X = Z? =: 14((d;))-
i=1

The sequence (d;) = did; ... is called a g-expansion of x.

» For each k € N U {Ro} there exist g € (1,2] and x € I; such
that x has k different g-expansions (Erdds, Jo6 and Komornik
1990; Erdds, Horvath and Jo6 1991; Erdés and Jod 1992).

» Let g € (1,2). Then Lebesgue a.e. x € I; has a continuum of
g-expansions (Sidorov, 2003).



There is a great interest in unique g-expansions, due to their close
connections with open dynamical systems.
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Figure: The overlapping graphs of Tp : x — gx and T : x — gx — 1.



Univoque set

Let
U := {(x,9) : x has a unique g expansion} .

Then for each g € (1,2] the horizontal slice
Uy:={x€el:(x,q) €U}

is the set of x having a unique g-expansion.



q4

2 7
gKI} --------------- P
qGfp--------------+ \
U
1 ‘ > X
0 1

» Critical values g = HT\/E and ggr ~ 1.78723 (Erdés, Jod and
Komornik 1990; Glendinning and Sidorov 2001);
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» Critical values g = HT\/E and ggr ~ 1.78723 (Erdés, Jod and
Komornik 1990; Glendinning and Sidorov 2001);

» Topological structure (de Vries and Komornik 2009);

» Dimension results (Komornik, K. and Li 2017; Allaart and K.
2019).

What about the vertical slice of U?



Univoque bases

For x > 0 let

U(x):={q€(1,2]:(x,q) € U}.

» If x =0, then U(0) = (1,2] (trivial!).



Univoque bases

For x > 0 let

U(x):={q€(1,2]:(x,q) € U}.

» If x =0, then U(0) = (1,2] (trivial!).
» If x > 0, then the largest element of U(x) is

1
Jx i= min{2,1+}.
X

» If x € (0,1], then g, = 2.
» If x € (1,00), then g, =1+ % and in this case,

=1
X = - .
5
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For x = 1 the set U = U(1) was well-studied:
» L(U) =0 (Erdés, Jos and Komornik 1990) and dimpy U =1
(Daréczy and Katai 1995);

» U has a smallest member gg; ~ 1.78723 (Komornik and
Loreti, 1998), and is transcendental (Allouche and Cosnard
2000);

» U is a Cantor set (Komornik and Loreti 2007);
> Local dimension (Allaart and K. 2020).
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For a general x > 0 we know very little about U/ (x).
» For x € (0,1) we have L(U(x)) =0 and dimyU(x) =1
(Li, Tan and Wu 2014);

» For x € (0,1] the algebraic difference U (x) — U (x) contains
an interval (Dajani, Komornik, K. and Li 2018);

> The smallest element of U (x) (K. 2016; Allaart and K. 2020).



Variation principle
Theorem (K., Li, Li, Wang and Xu, 2020)
For any x > 0 and for any q € (1,q,] \U we have

lim dimpy (U (x) N (g — 6,9+ 6)) = limdimy (U, N (x — 5, x +9)).
0—0 =0

q
2'\ g =min{2,1+1}
U, (x,q)
U
U(x)
1 > X



Proof

The proof is based on the local bi-Holder continuity of the map
P, U(x) = Ux);, g+~ x1(9)x2(q) ...,

where U(x) is the set of all unique expansions of x for some

g€ U(x).



Proof

The proof is based on the local bi-Holder continuity of the map
P, U(x) = Ux);, g+~ x1(9)x2(q) ...,

where U(x) is the set of all unique expansions of x for some

g€ U(x).

We also need the local bi-Holder continuity of the projection map
i=1

where Uy is the set of all unique g-expansions.



- - | cylinder set U, [x, 7]



Proof conti

Let g € (1,49x] \U and x = 775(Px(g)). Then 3 § > 0 such that
(g—6,9+6)NU=0Q.
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Proof conti

Let g € (1,4:] \ U and x = 71,(Px(g)). Then 3 6 > 0 such that
(g —46,9+6)NU = @.This defines a nearly bijective map

¢: UXx)N(q—0,9+9) — U N(x—1n,x+7])
p = 7(Px(p))

Note that & — O implies 1, — 0.t is also nearly bi-Lipschitz:
Cilpr = po|™ < lg(p1) — ¢(p2)| < Colp1 — 2|75
This implies

lim dimy (U (x) N (g —0,9+0)) = lim dimp (Uy N (x — 17, x+17)).
6—0 n—0



Devil’s staircase

Recall that

U(x) = {(d;) : (d;) is the unique expansion of x in some base},
U, = {(d;) : (d;) is a unique g expansion of some point} .

Theorem (K., Li, Lii, Wang and Xu, 2020)

For any x > 0 we have

dimpy U(x) = dimy U,

where g = maxl/(x) = min {2,1+ 1}
Therefore, D : x — dimpy U(x) is a non-increasing Devil's
staircase on (0, 00).



Devil’s staircase

Recall that

U(x) = {(d;) : (d;) is the unique expansion of x in some base},

U, = {(d;) : (d;) is a unique g expansion of some point} .

Theorem (K., Li, Lii, Wang and Xu, 2020)

For any x > 0 we have
dimpy U(x) = dimy U,

where g = maxl/(x) = min {2,1+ 1}
Therefore, D : x — dimpy U(x) is a non-increasing Devil's
staircase on (0, 00).

In general, we are not able to calculate dimy U (x).
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Figure: The graph of D(x) = dimy U(x).



Proof

» U(x) C Ug,, and then dimy U(x) < dimpy Ug,;



Proof

» U(x) C Ug,, and then dimy U(x) < dimpy Ug,;

» For any s < dimy U, we can construct a subset I' C U(x)
close to ®y(gy) such that dimy T > s.



Critical values
Theorem (K., Li, Li, Wang and Xu, 2020)

The set U(x) has zero Lebesgue measure for any x > 0.
(i) Ifx € (0,1], then dimpyU(x) =1;

(i) Ifx € (1,xkL), then 0 < dimy U (x) < 1;

(iii) Ifx € [xkr, xG), then [U(x)| = Ry,

(iv) If x > xg, then U(x) = {q«}.

qA
2

qKL
qG
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Recall that & = U(1) has no isolated points and U/ is a Cantor
set.
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Isolated points

Recall that & = U(1) has no isolated points and U/ is a Cantor
set.What about U/(x)?

Let
Xiso := {x € (0,00) : U(x) contains isolated points} .

Theorem (K., Li, Li, Wang and Xu, 2020)

Xiso Is dense in (0,00). Furthermore, U(x) contains isolated points
for any x > 1.
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proof

Recall that U, = {(d;) : (d;) is the unique g-expansion}. Then
U, C U, for any p < g.Let

Vi={q€(1,2]:U, #U0,Vr>q}.

Then U CV and #(V\U) = N,.

Observe that

(12U = (40, 95).
For each (qo,q5) we have V N (qo,45) = {qn};—1 such that

<P <p<-<gy<gpu1<---, and g, ;.

So the map q — Uy is constant on each interval (g, §,11]-



Proof conti

In+1

Set Uy . :=Uy, ., \U,,. Then Uy s densein Uy, ,.

Lemma
For any
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X E U U np(U;nJrl)
n=1pe(qngn+1)

the set U(x) contains at least one isolated point.
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Proof conti

Set U*

In+1

i=Uy,,; \ Ug,. Then Uy is dense in Uy, ..

1
Lemma
For any

(o]
*
X E U U np(anJrl)
n=1p&(qnqn+1)
the set U(x) contains at least one isolated point.
» Using this lemma we can show that the union covers a dense
subset of (0,1);

» Furthermore, the union covers the whole interval (1, o)
(techniques from combinatorics on words).

Conjecture
U (x) contains isolated points <= x # 1.



Open questions

1. When is U(x) a closed set for x € (0,xg)?

2. What is the Hausdorff dimension of U (x) for x € (1, xx)?



Thank you!
And welcome to Chongging!
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