Univoque bases of real numbers: local dimension, Devil's staircase and isolated points

Derong Kong

Chongqing University, P.R.China

Numeration-OWNS, June 23, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

Given $q \in (1,2]$, for each $x \in I_q := [0, \frac{1}{q-1}]$ there exists a sequence $(d_i) \in \{0,1\}^{\mathbb{N}}$ such that

$$x = \sum_{i=1}^{\infty} \frac{d_i}{q^i} =: \pi_q((d_i)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The sequence $(d_i) = d_1 d_2 \dots$ is called a *q*-expansion of *x*.

Motivation

Given $q \in (1,2]$, for each $x \in I_q := [0, \frac{1}{q-1}]$ there exists a sequence $(d_i) \in \{0,1\}^{\mathbb{N}}$ such that

$$x = \sum_{i=1}^{\infty} \frac{d_i}{q^i} =: \pi_q((d_i)).$$

The sequence $(d_i) = d_1 d_2 \dots$ is called a *q*-expansion of *x*.

- For each k ∈ ℕ ∪ {ℵ₀} there exist q ∈ (1,2] and x ∈ I_q such that x has k different q-expansions (Erdős, Joó and Komornik 1990; Erdős, Horváth and Joó 1991; Erdős and Joó 1992).
- Let q ∈ (1,2). Then Lebesgue a.e. x ∈ I_q has a continuum of q-expansions (Sidorov, 2003).

There is a great interest in unique *q*-expansions, due to their close connections with open dynamical systems.

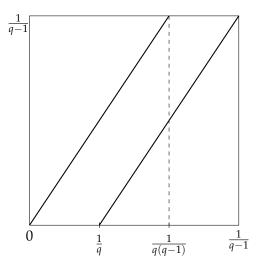


Figure: The overlapping graphs of $T_0: x \mapsto qx$ and $T_1: x \mapsto qx - 1$.

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Univoque set

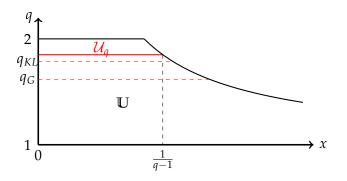
Let

 $\mathbb{U}:=\left\{(x,q):x \text{ has a unique } q \text{ expansion}\right\}.$ Then for each $q\in(1,2]$ the horizontal slice

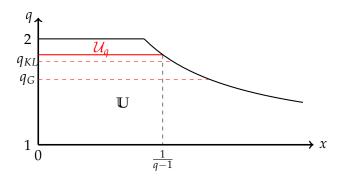
$$\mathcal{U}_q := \big\{ x \in I_q : (x,q) \in \mathbb{U} \big\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is the set of x having a unique q-expansion.

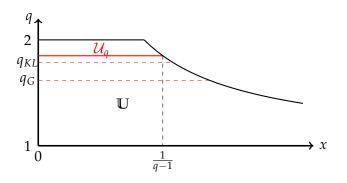


• Critical values $q_G = \frac{1+\sqrt{5}}{2}$ and $q_{KL} \approx 1.78723$ (Erdős, Joó and Komornik 1990; Glendinning and Sidorov 2001);

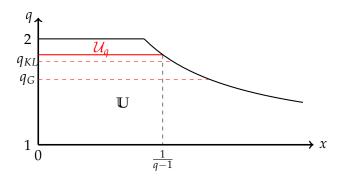


▶ Critical values $q_G = \frac{1+\sqrt{5}}{2}$ and $q_{KL} \approx 1.78723$ (Erdős, Joó and Komornik 1990; Glendinning and Sidorov 2001);

Topological structure (de Vries and Komornik 2009);



- ▶ Critical values $q_G = \frac{1+\sqrt{5}}{2}$ and $q_{KL} \approx 1.78723$ (Erdős, Joó and Komornik 1990; Glendinning and Sidorov 2001);
- Topological structure (de Vries and Komornik 2009);
- Dimension results (Komornik, K. and Li 2017; Allaart and K. 2019).



- ▶ Critical values $q_G = \frac{1+\sqrt{5}}{2}$ and $q_{KL} \approx 1.78723$ (Erdős, Joó and Komornik 1990; Glendinning and Sidorov 2001);
- Topological structure (de Vries and Komornik 2009);
- Dimension results (Komornik, K. and Li 2017; Allaart and K. 2019).

What about the vertical slice of \mathbb{U} ?

Univoque bases

For $x \ge 0$ let

$$\mathcal{U}(x) := \{q \in (1,2] : (x,q) \in \mathbb{U}\}.$$

• If
$$x = 0$$
, then $\mathcal{U}(0) = (1, 2]$ (trivial!).

Univoque bases

For $x \ge 0$ let

$$\mathcal{U}(x) := \{q \in (1,2] : (x,q) \in \mathbb{U}\}.$$

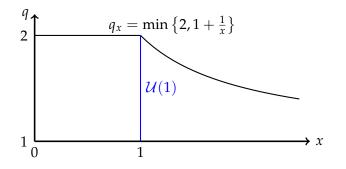
- If x = 0, then U(0) = (1, 2] (trivial!).
- If x > 0, then the largest element of $\mathcal{U}(x)$ is

$$q_x := \min\left\{2, 1+\frac{1}{x}\right\}.$$

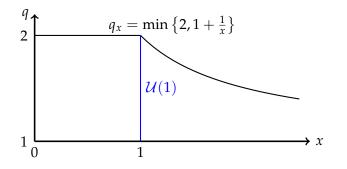
▶ If
$$x \in (0, 1]$$
, then $q_x = 2$.
▶ If $x \in (1, \infty)$, then $q_x = 1 + \frac{1}{x}$, and in this case,

$$x = \sum_{i=1}^{\infty} \frac{1}{q_x^i}.$$

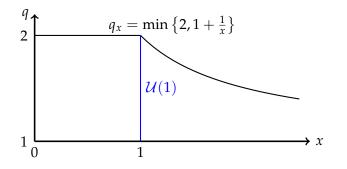
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



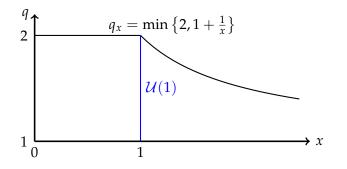
• $\mathcal{L}(\mathcal{U}) = 0$ (Erdős, Joó and Komornik 1990) and dim_H $\mathcal{U} = 1$ (Daróczy and Kátai 1995);



- £(U) = 0 (Erdős, Joó and Komornik 1990) and dim_HU = 1
 (Daróczy and Kátai 1995);
- *U* has a smallest member *q_{KL}* ≈ 1.78723 (Komornik and Loreti, 1998), and is transcendental (Allouche and Cosnard 2000);



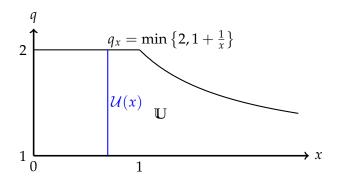
- ► $\mathcal{L}(\mathcal{U}) = 0$ (Erdős, Joó and Komornik 1990) and dim_H $\mathcal{U} = 1$ (Daróczy and Kátai 1995);
- ► U has a smallest member q_{KL} ≈ 1.78723 (Komornik and Loreti, 1998), and is transcendental (Allouche and Cosnard 2000);
- $\overline{\mathcal{U}}$ is a Cantor set (Komornik and Loreti 2007);



- ▶ $\mathcal{L}(\mathcal{U}) = 0$ (Erdős, Joó and Komornik 1990) and dim_H $\mathcal{U} = 1$ (Daróczy and Kátai 1995);
- ► U has a smallest member q_{KL} ≈ 1.78723 (Komornik and Loreti, 1998), and is transcendental (Allouche and Cosnard 2000);

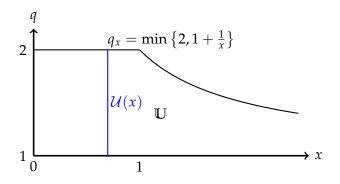
白 医 《 國 医 《 国 医 《 国 医 二 国

- $\overline{\mathcal{U}}$ is a Cantor set (Komornik and Loreti 2007);
- Local dimension (Allaart and K. 2020).



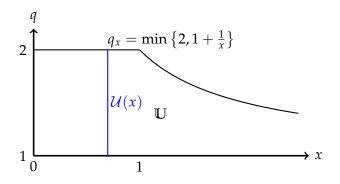
For a general x > 0 we know very little about $\mathcal{U}(x)$.

For $x \in (0,1)$ we have $\mathcal{L}(\mathcal{U}(x)) = 0$ and $\dim_H \mathcal{U}(x) = 1$ (Lü, Tan and Wu 2014);



For a general x > 0 we know very little about $\mathcal{U}(x)$.

- ▶ For $x \in (0,1)$ we have $\mathcal{L}(\mathcal{U}(x)) = 0$ and $\dim_H \mathcal{U}(x) = 1$ (Lü, Tan and Wu 2014);
- For x ∈ (0, 1] the algebraic difference U(x) − U(x) contains an interval (Dajani, Komornik, K. and Li 2018);



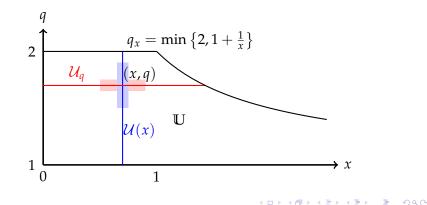
For a general x > 0 we know very little about $\mathcal{U}(x)$.

- For $x \in (0,1)$ we have $\mathcal{L}(\mathcal{U}(x)) = 0$ and $\dim_H \mathcal{U}(x) = 1$ (Lü, Tan and Wu 2014);
- For x ∈ (0, 1] the algebraic difference U(x) − U(x) contains an interval (Dajani, Komornik, K. and Li 2018);
- The smallest element of $\mathcal{U}(x)$ (K. 2016; Allaart and K. 2020).

Variation principle

Theorem (K., Li, Lü, Wang and Xu, 2020) For any x > 0 and for any $q \in (1, q_x] \setminus \overline{\mathcal{U}}$ we have

 $\lim_{\delta\to 0}\dim_H(\mathcal{U}(x)\cap (q-\delta,q+\delta))=\lim_{\delta\to 0}\dim_H(\mathcal{U}_q\cap (x-\delta,x+\delta)).$



Proof

The proof is based on the local bi-Hölder continuity of the map

$$\Phi_x: \mathcal{U}(x) \to \mathbf{U}(x); \quad q \mapsto x_1(q)x_2(q)\dots,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $\mathbf{U}(x)$ is the set of all unique expansions of x for some $q \in \mathcal{U}(x)$.

Proof

The proof is based on the local bi-Hölder continuity of the map

$$\Phi_x: \mathcal{U}(x) \to \mathbf{U}(x); \quad q \mapsto x_1(q)x_2(q)\dots,$$

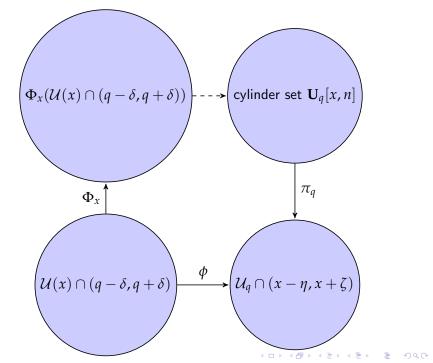
where $\mathbf{U}(x)$ is the set of all unique expansions of x for some $q \in \mathcal{U}(x)$.

We also need the local bi-Hölder continuity of the projection map

$$\pi_q: \mathbf{U}_q o \mathcal{U}_q; \quad (d_i) \mapsto \sum_{i=1}^\infty \frac{d_i}{q^i},$$

(日) (日) (日) (日) (日) (日) (日) (日)

where \mathbf{U}_q is the set of all unique *q*-expansions.



Let
$$q \in (1, q_x] \setminus \mathcal{U}$$
 and $x = \pi_q(\Phi_x(q))$. Then $\exists \delta > 0$ such that $(q - \delta, q + \delta) \cap \overline{\mathcal{U}} = \emptyset$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Let $q \in (1, q_x] \setminus \overline{\mathcal{U}}$ and $x = \pi_q(\Phi_x(q))$. Then $\exists \delta > 0$ such that $(q - \delta, q + \delta) \cap \overline{\mathcal{U}} = \emptyset$. This defines a nearly bijective map

$$\begin{array}{rcl} \phi: & \mathcal{U}(x) \cap (q-\delta,q+\delta) & \to & \mathcal{U}_q \cap (x-\eta,x+\zeta) \\ & p & \mapsto & \pi_q(\Phi_x(p)). \end{array}$$

Note that $\delta \to 0$ implies $\eta, \zeta \to 0$.

Let $q \in (1, q_x] \setminus \overline{\mathcal{U}}$ and $x = \pi_q(\Phi_x(q))$. Then $\exists \delta > 0$ such that $(q - \delta, q + \delta) \cap \overline{\mathcal{U}} = \emptyset$. This defines a nearly bijective map

$$\begin{array}{rcl} \phi: & \mathcal{U}(x) \cap (q-\delta,q+\delta) & \to & \mathcal{U}_q \cap (x-\eta,x+\zeta) \\ & p & \mapsto & \pi_q(\Phi_x(p)). \end{array}$$

Note that $\delta \to 0$ implies $\eta, \zeta \to 0$. It is also nearly bi-Lipschitz:

$$|C_1|p_1 - p_2|^{1+\varepsilon} \le |\phi(p_1) - \phi(p_2)| \le C_2|p_1 - p_2|^{1-\varepsilon}$$

Let $q \in (1, q_x] \setminus \overline{\mathcal{U}}$ and $x = \pi_q(\Phi_x(q))$. Then $\exists \delta > 0$ such that $(q - \delta, q + \delta) \cap \overline{\mathcal{U}} = \emptyset$. This defines a nearly bijective map

$$\begin{array}{rcl} \phi: & \mathcal{U}(x) \cap (q-\delta,q+\delta) & \to & \mathcal{U}_q \cap (x-\eta,x+\zeta) \\ & p & \mapsto & \pi_q(\Phi_x(p)). \end{array}$$

Note that $\delta \to 0$ implies $\eta, \zeta \to 0.$ It is also nearly bi-Lipschitz:

$$|C_1|p_1 - p_2|^{1+\varepsilon} \le |\phi(p_1) - \phi(p_2)| \le C_2|p_1 - p_2|^{1-\varepsilon}$$

This implies

$$\lim_{\delta\to 0}\dim_H(\mathcal{U}(x)\cap (q-\delta,q+\delta))=\lim_{\eta\to 0}\dim_H(\mathcal{U}_q\cap (x-\eta,x+\eta)).$$

Devil's staircase

Recall that

 $\mathbf{U}(x) = \{(d_i) : (d_i) \text{ is the unique expansion of } x \text{ in some base}\}, \\ \mathbf{U}_q = \{(d_i) : (d_i) \text{ is a unique } q \text{ expansion of some point}\}.$

Theorem (K., Li, Lü, Wang and Xu, 2020) For any x > 0 we have

$$\dim_H \mathbf{U}(x) = \dim_H \mathbf{U}_{q_x},$$

where $q_x = \max \mathcal{U}(x) = \min \{2, 1 + \frac{1}{x}\}$. Therefore, $D: x \mapsto \dim_H \mathbf{U}(x)$ is a non-increasing Devil's staircase on $(0, \infty)$.

Devil's staircase

Recall that

 $\mathbf{U}(x) = \{(d_i) : (d_i) \text{ is the unique expansion of } x \text{ in some base}\}, \\ \mathbf{U}_q = \{(d_i) : (d_i) \text{ is a unique } q \text{ expansion of some point}\}.$

Theorem (K., Li, Lü, Wang and Xu, 2020) For any x > 0 we have

$$\dim_H \mathbf{U}(x) = \dim_H \mathbf{U}_{q_x},$$

where $q_x = \max \mathcal{U}(x) = \min \{2, 1 + \frac{1}{x}\}$. Therefore, $D: x \mapsto \dim_H \mathbf{U}(x)$ is a non-increasing Devil's staircase on $(0, \infty)$.

In general, we are not able to calculate $\dim_H \mathcal{U}(x)$.

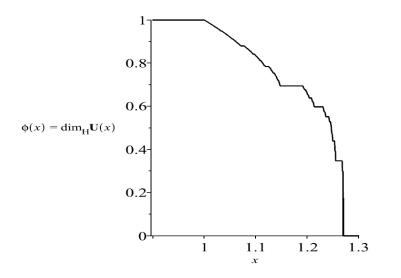
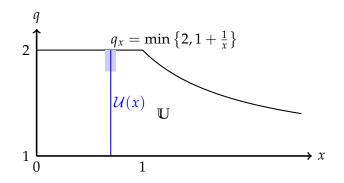


Figure: The graph of $D(x) = \dim_H \mathbf{U}(x)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

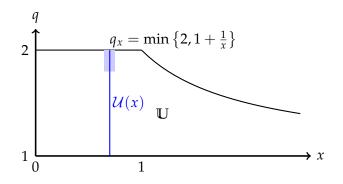
Proof



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▶ $\mathbf{U}(x) \subseteq \mathbf{U}_{q_x}$, and then $\dim_H \mathbf{U}(x) \leq \dim_H \mathbf{U}_{q_x}$;

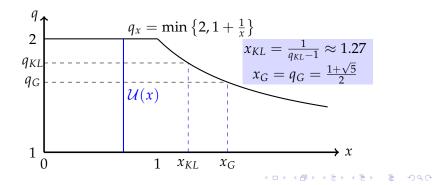
Proof



- ▶ $\mathbf{U}(x) \subseteq \mathbf{U}_{q_x}$, and then $\dim_H \mathbf{U}(x) \leq \dim_H \mathbf{U}_{q_x}$;
- For any s < dim_H U_{qx} we can construct a subset Γ ⊂ U(x) close to Φ_x(q_x) such that dim_H Γ ≥ s.

Critical values

Theorem (K., Li, Lü, Wang and Xu, 2020) The set $\mathcal{U}(x)$ has zero Lebesgue measure for any x > 0. (i) If $x \in (0,1]$, then $\dim_H \mathcal{U}(x) = 1$; (ii) If $x \in (1, x_{KL})$, then $0 < \dim_H \mathcal{U}(x) < 1$; (iii) If $x \in [x_{KL}, x_G)$, then $|\mathcal{U}(x)| = \aleph_0$; (iv) If $x \ge x_G$, then $\mathcal{U}(x) = \{q_x\}$.



Isolated points

Recall that $\mathcal{U}=\mathcal{U}(1)$ has no isolated points and $\overline{\mathcal{U}}$ is a Cantor set.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Isolated points

Recall that $\mathcal{U} = \mathcal{U}(1)$ has no isolated points and $\overline{\mathcal{U}}$ is a Cantor set. What about $\mathcal{U}(x)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Isolated points

Recall that $\mathcal{U} = \mathcal{U}(1)$ has no isolated points and $\overline{\mathcal{U}}$ is a Cantor set. What about $\mathcal{U}(x)$?

Let

 $X_{iso} := \{x \in (0, \infty) : \mathcal{U}(x) \text{ contains isolated points} \}.$

Theorem (K., Li, Lü, Wang and Xu, 2020) X_{iso} is dense in $(0, \infty)$. Furthermore, $\mathcal{U}(x)$ contains isolated points for any x > 1.

proof

Recall that $\mathbf{U}_q = \{(d_i) : (d_i) \text{ is the unique } q\text{-expansion}\}$. Then $\mathbf{U}_p \subseteq \mathbf{U}_q$ for any p < q.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

proof

Recall that $U_q = \{(d_i) : (d_i) \text{ is the unique } q\text{-expansion}\}$. Then $U_p \subseteq U_q$ for any p < q.Let

$$\mathcal{V} := \left\{ q \in (1,2] : \mathbf{U}_r \neq \mathbf{U}_q \ \forall \ r > q \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then $\mathcal{U} \subset \mathcal{V}$ and $\#(\mathcal{V} \setminus \mathcal{U}) = \aleph_0$.

proof

Recall that $\mathbf{U}_q = \{(d_i) : (d_i) \text{ is the unique } q\text{-expansion}\}$. Then $\mathbf{U}_p \subseteq \mathbf{U}_q$ for any p < q.Let

$$\mathcal{V} := \left\{ q \in (1,2] : \mathbf{U}_r \neq \mathbf{U}_q \ \forall \ r > q \right\}.$$

Then $\mathcal{U} \subset \mathcal{V}$ and $\#(\mathcal{V} \setminus \mathcal{U}) = \aleph_0$.

Observe that

$$(1,2]\setminus \overline{\mathcal{U}}=\bigcup(q_0,q_0^*).$$

For each (q_0,q_0^*) we have $\mathcal{V}\cap(q_0,q_0^*)=\{q_n\}_{n=1}^\infty$ such that

$$q_0 < q_1 < q_2 < \cdots < q_n < q_{n+1} < \cdots$$
, and $q_n \nearrow q_0^*$.

So the map $q \mapsto \mathbf{U}_q$ is constant on each interval $(q_n, q_{n+1}]$.

Set $\mathbf{U}_{q_{n+1}}^* := \mathbf{U}_{q_{n+1}} \setminus \mathbf{U}_{q_n}$. Then $\mathbf{U}_{q_{n+1}}^*$ is dense in $\mathbf{U}_{q_{n+1}}$. Lemma For any

$$x \in \bigcup_{n=1} \bigcup_{p \in (q_n, q_{n+1})} \pi_p(\mathbf{U}_{q_{n+1}}^*)$$

the set $\mathcal{U}(x)$ contains at least one isolated point.

Set $\mathbf{U}_{q_{n+1}}^* := \mathbf{U}_{q_{n+1}} \setminus \mathbf{U}_{q_n}$. Then $\mathbf{U}_{q_{n+1}}^*$ is dense in $\mathbf{U}_{q_{n+1}}$. Lemma For any

$$x \in \bigcup_{n=1} \bigcup_{p \in (q_n, q_{n+1})} \pi_p(\mathbf{U}_{q_{n+1}}^*)$$

the set $\mathcal{U}(x)$ contains at least one isolated point.

 Using this lemma we can show that the union covers a dense subset of (0, 1);

Set $\mathbf{U}_{q_{n+1}}^* := \mathbf{U}_{q_{n+1}} \setminus \mathbf{U}_{q_n}$. Then $\mathbf{U}_{q_{n+1}}^*$ is dense in $\mathbf{U}_{q_{n+1}}$. Lemma For any

$$x \in \bigcup_{n=1} \bigcup_{p \in (q_n, q_{n+1})} \pi_p(\mathbf{U}_{q_{n+1}}^*)$$

the set $\mathcal{U}(x)$ contains at least one isolated point.

 Using this lemma we can show that the union covers a dense subset of (0,1);

► Furthermore, the union covers the whole interval (1,∞) (techniques from combinatorics on words).

Set $\mathbf{U}_{q_{n+1}}^* := \mathbf{U}_{q_{n+1}} \setminus \mathbf{U}_{q_n}$. Then $\mathbf{U}_{q_{n+1}}^*$ is dense in $\mathbf{U}_{q_{n+1}}$. Lemma For any

$$x \in \bigcup_{n=1} \bigcup_{p \in (q_n, q_{n+1})} \pi_p(\mathbf{U}_{q_{n+1}}^*)$$

the set $\mathcal{U}(x)$ contains at least one isolated point.

 Using this lemma we can show that the union covers a dense subset of (0, 1);

► Furthermore, the union covers the whole interval (1,∞) (techniques from combinatorics on words).

Conjecture U(x) contains isolated points $\iff x \neq 1$.

Open questions

- 1. When is $\mathcal{U}(x)$ a closed set for $x \in (0, x_G)$?
- 2. What is the Hausdorff dimension of $\mathcal{U}(x)$ for $x \in (1, x_{KL})$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you! And welcome to Chongqing!

