Critical values for the β-transformation with a hole at 0

Derong Kong

Chongqing University

One World Numeration Seminar, March 7, 2023.

Given $\beta \in(1,2]$ let

$$
T_{\beta}:[0,1) \rightarrow[0,1) ; \quad x \mapsto \beta x \quad(\bmod 1) .
$$

For $t \in[0,1)$ we define the survivor set by

$$
K_{\beta}(t):=\left\{x \in[0,1): T_{\beta}^{n}(x) \notin(0, t) \text { for all } n \geq 0\right\} .
$$

Background

- Urbański $(1986,1987)$ considered the case for $\beta=2$, and gave the Hausdorff dimension of $K_{2}(t)$. He showed that $\eta_{2}: t \mapsto \operatorname{dim}_{H} K_{2}(t)$ is a non-increasing Devil's staircase, and studied its bifurcation set

$$
B_{2}:=\left\{t \in[0,1): \eta_{2}(t-\varepsilon) \neq \eta_{2}(t+\varepsilon) \forall \varepsilon>0\right\} .
$$

In particular, he showed that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \operatorname{dim}_{H}\left(B_{2} \cap(t-\varepsilon, t+\varepsilon)\right)=\operatorname{dim}_{H} K_{2}(t) \quad \forall t \in B_{2} .
$$

- Carminati and Tiozzo (2017) studied the local Hölder exponent of η_{2}, and proved that

$$
\liminf _{s \rightarrow t} \frac{\log \left|\eta_{2}(s)-\eta_{2}(t)\right|}{\log |s-t|}=\eta_{2}(t) \quad \Longleftrightarrow \quad t \in B_{2}
$$

- Glendinning and Sidorov (2015) considered an arbitrary hole $(a, b) \subset(0,1)$, and showed that

$$
K_{2}(a, b)=\left\{x \in[0,1): T_{2}^{n}(x) \notin(a, b) \forall n \geq 0\right\}
$$

has positive Hausdorff dimension if $b-a<0.175092$.

- Clark (2016) partially extended the work of Glendinning and Sidorov to $K_{\beta}(a, b)$ for $\beta \in(1,2]$.
- Kalle, K., Langeveld and Li (2020) showed that

$$
\operatorname{dim}_{H} K_{\beta}(t)=\frac{h\left(\mathbf{K}_{\beta}(t)\right)}{\log \beta}
$$

where

$$
\mathbf{K}_{\beta}(t):=\left\{\left(d_{i}\right) \in\{0,1\}^{\mathbb{N}}: b(t, \beta) \preccurlyeq \sigma^{n}\left(\left(d_{i}\right)\right) \preccurlyeq a(1, \beta) \quad \forall n \geq 0\right\} .
$$

Furthermore, the dimension function $\eta_{\beta}: t \mapsto \operatorname{dim}_{H} K_{\beta}(t)$ is a Devil's staircase.

Figure: The graph of the dimension function $\eta_{\beta}: t \mapsto \operatorname{dim}_{H} K_{\beta}(t)$ with $\beta_{1}=\frac{1+\sqrt{5}}{2}$ (Left) and $\beta_{2} \approx 1.83929$ the tribonacci number (Right).

Then it is interesting to determine the critical hole $(0, \tau(\beta))$, where

$$
\begin{aligned}
\tau(\beta): & =\min \left\{t \in[0,1): \operatorname{dim}_{H} K_{\beta}(t)=0\right\} \\
& =\sup \left\{t \in[0,1): \operatorname{dim}_{H} K_{\beta}(t)>0\right\} .
\end{aligned}
$$

In the above graph, we have $\tau\left(\beta_{1}\right)=1-\frac{1}{\beta_{1}} \approx 0.382$ and $\tau\left(\beta_{2}\right)=1-\frac{1}{\beta_{2}} \approx 0.456$. The key is that
$\mathbf{K}_{\beta_{1}}\left(\tau\left(\beta_{1}\right)\right)=\left\{\left(d_{i}\right): 010^{\infty} \preccurlyeq \sigma^{n}\left(\left(d_{i}\right)\right) \preccurlyeq(10)^{\infty} \forall n\right\}=\left\{(01)^{\infty},(10)^{\infty}\right\}$.
$\mathbf{K}_{\beta_{2}}\left(\tau\left(\beta_{2}\right)\right)=\left\{\left(d_{i}\right): 0110^{\infty} \preccurlyeq \sigma^{n}\left(\left(d_{i}\right)\right) \preccurlyeq(110)^{\infty} \forall n\right\}=\left\{\sigma^{n}\left((011)^{\infty}\right)\right\}_{n=0}^{2}$.

Proposition (Kalle, K., Langeveld and Li, 2020)

For any $\beta \in(1,2]$ we have

$$
\tau(\beta) \leq 1-\frac{1}{\beta},
$$

and the equality holds for β in an uncountable set of zero Hausdorff dimension.

Question: can we determine $\tau(\beta)$ for all $\beta \in(1,2]$?
In this talk we will answer this question completely.

Farey words, Lyndon words and substitutions

To describe the critical values $\tau(\beta)$ we need the Farey words:

$$
\begin{aligned}
& F_{0}=(0,1) ; \\
& F_{1}=(0,01,1) ; \\
& F_{2}=(0,001,01,011,1) ; \\
& F_{3}=(0,0001,001,00101,01,01011,011,0111,1)
\end{aligned}
$$

Let

$$
\Omega_{F}^{*}:=\bigcup_{n=1}^{\infty} F_{n} \backslash F_{0} .
$$

Then each Farey word in Ω_{F}^{*} has length ≥ 2.
Remark: the Farey words correspond to the Farey tree of rational numbers in $[0,1]$.

Let Ω_{L}^{*} be the set of Lyndon words $\mathbf{s}=s_{1} \ldots s_{m} \in\{0,1\}^{*}$ with $m \geq 2$ such that

$$
s_{i+1} \ldots s_{m} \succ s_{1} \ldots s_{m-i} \quad \forall 0<i<m
$$

Then

$$
\Omega_{F}^{*} \subset \Omega_{L}^{*} .
$$

Remark

- any $\mathbf{s}=s_{1} \ldots s_{m} \in \Omega_{L}^{*}$ begins with $s_{1}=0$ and ends with $s_{m}=1$.
- $\Omega_{F}^{*} \varsubsetneqq \Omega_{L}^{*}$. For example, $\mathbf{s}=00111 \in \Omega_{L}^{*} \backslash \Omega_{F}^{*}$.

For a word $w=w_{1} \ldots w_{m} \in\{0,1\}^{*}$ let $\mathbb{L}(w)$ and $\mathbb{S}(w)$ be the lexicographically largest and smallest words among

$$
w_{1} \ldots w_{m}, \quad w_{2} \ldots w_{m} w_{1}, \quad w_{3} \ldots w_{m} w_{1} w_{2}, \quad \ldots, \quad w_{m} w_{1} \ldots w_{m-1}
$$

Then

$$
\mathbb{S}(\mathbf{s})=\mathbf{s} \quad \forall \mathbf{s} \in \Omega_{L}^{*} .
$$

Given $\mathbf{s}=s_{1} \ldots s_{m}, \mathbf{r}=r_{1} \ldots r_{\ell}$, we define the substitution by

$$
\mathbf{s} \bullet \mathbf{r}:=c_{1} \ldots c_{\ell m}
$$

where

$$
c_{1} \ldots c_{m}=\left\{\begin{array}{lll}
\mathbf{s}^{-} & \text {if } & r_{1}=0 \\
\mathbb{L}(\mathbf{s})^{+} & \text {if } & r_{1}=1
\end{array}\right.
$$

and for $1 \leq j<\ell$,

$$
c_{j m+1} \ldots c_{(j+1) m}= \begin{cases}\mathbb{L}(\mathbf{s}) & \text { if } \quad r_{j} r_{j+1}=00 \\ \mathbb{L}(\mathbf{s})^{+} & \text {if } \quad r_{j} r_{j+1}=01 \\ \mathbf{s}^{-} & \text {if } \quad r_{j} r_{j+1}=10 \\ \mathbf{s} & \text { if } \quad r_{j} r_{j+1}=11\end{cases}
$$

Example
Let $\mathbf{s}=01, \mathbf{r}=001 \in \Omega_{F}^{*}$. Then $\mathbb{L}(\mathbf{s})=10, \mathbb{L}(\mathbf{r})=100$. So,

$$
\begin{aligned}
& \mathbf{s} \bullet \mathbf{r}=\mathbf{s}^{-} \mathbb{L}(\mathbf{s}) \mathbb{L}(\mathbf{s})^{+}=001011 \in \Omega_{L}^{*} \backslash \Omega_{F}^{*}, \\
& \mathbf{r} \bullet \mathbf{s}=\mathbf{r}^{-} \mathbb{L}(\mathbf{r})^{+}=000101(\neq \mathbf{s} \bullet \mathbf{r}) .
\end{aligned}
$$

A dynamical view of the substitution $\mathbf{s} \bullet \mathbf{r}$

Example. Let $\mathbf{r}=01011, \mathbf{t}=10010$. Then

$$
\begin{aligned}
& \mathbf{s} \bullet \mathbf{r}=\mathbf{s} \bullet 01011=\mathbf{s}^{-} \mathbb{L}(\mathbf{s})^{+} \mathbf{s}^{-} \mathbb{L}(\mathbf{s})^{+} \mathbf{s} \\
& \mathbf{s} \bullet \mathbf{t}=\mathbf{s} \bullet 10010=\mathbb{L}(\mathbf{s})^{+} \mathbf{s}^{-} \mathbb{L}(\mathbf{s}) \mathbb{L}(\mathbf{s})^{+} \mathbf{s}^{-}
\end{aligned}
$$

Proposition (Allaart and K., 2022)

$\left(\Omega_{L}^{*}, \bullet\right)$ forms a non-Abelian semi-group.
Let

$$
\Lambda:=\bigcup_{k=1}^{\infty}\left\{\mathbf{S}=\mathbf{s}_{1} \bullet \mathbf{s}_{2} \bullet \cdots \bullet \mathbf{s}_{k}: \quad \mathbf{s}_{i} \in \Omega_{F}^{*} \text { for any } 1 \leq i \leq k\right\}
$$

Then

$$
\Omega_{F}^{*} \varsubsetneqq \wedge \varsubsetneqq \Omega_{L}^{*} .
$$

The set Λ will be our basic bricks for the critical values $\tau(\beta)$.

Basic intervals and critical values

For a word $\mathbf{S} \in \Lambda$ we call the closed interval $\boldsymbol{I}^{\mathbf{S}}=\left[\beta_{\ell}, \beta_{*}\right] \subset(1,2]$ a basic interval generated by \mathbf{S}, if

$$
\left(\mathbb{L}(\mathbf{S})^{\infty}\right)_{\beta_{\ell}}=1 \quad \text { and } \quad\left(\mathbb{L}(\mathbf{S})^{+} \mathbf{S}^{-} \mathbb{L}(\mathbf{S})^{\infty}\right)_{\beta_{*}}=\left(\mathbf{S} \bullet 10^{\infty}\right)_{\beta_{*}}=1 .
$$

Theorem (Allaart and K., 2022)
For any $\mathbf{S} \in \Lambda$ we have

$$
\tau(\beta)=\left(\mathbf{S}^{-} \mathbb{L}(\mathbf{S})^{\infty}\right)_{\beta}=\left(\mathbf{S} \bullet 0^{\infty}\right)_{\beta} \quad \forall \beta \in I^{\mathbf{S}} .
$$

Example. Take $\mathbf{s}=000101=001 \bullet 01 \in \Lambda$. Then the basic interval $I^{000101}=\left[\beta_{\ell}, \beta_{*}\right] \approx[1.5385,1.5526]$ satisfies

$$
\left((101000)^{\infty}\right)_{\beta_{\ell}}=1 \text { and }\left(101001000100(101000)^{\infty}\right)_{\beta_{*}}=1
$$

And $\tau(\beta)=\left(000100(101000)^{\infty}\right)_{\beta}$ for all $\beta \in I^{000101}$.

Sketch of the proof

Take $\beta \in\left[\beta_{\ell}, \beta_{*}\right]$ and $t^{*}=\left(\mathbf{S}^{-} \mathbb{L}(\mathbf{S})^{\infty}\right)_{\beta}$. Then

$$
\begin{gathered}
\operatorname{dim}_{H} K_{\beta}\left(t^{*}\right)=\frac{h\left(\mathbf{K}_{\beta}\left(t^{*}\right)\right)}{\log \beta}, \text { where } \\
\mathbf{K}_{\beta}\left(t^{*}\right):=\left\{\left(d_{i}\right): b\left(t^{*}, \beta\right) \preccurlyeq \sigma^{n}\left(\left(d_{i}\right)\right) \preccurlyeq a(1, \beta) \forall n \geq 0\right\} \\
\subset\left\{\left(d_{i}\right): \mathbf{S}^{-} \mathbb{L}(\mathbf{S})^{\infty} \preccurlyeq \sigma^{n}\left(\left(d_{i}\right)\right) \preccurlyeq \mathbb{L}(\mathbf{S})^{+} \mathbf{S}^{-} \mathbb{L}(\mathbf{S})^{\infty} \forall n \geq 0\right\} \\
=\left\{\left(d_{i}\right): \mathbf{S} \bullet 0^{\infty} \preccurlyeq \sigma^{n}\left(\left(d_{i}\right)\right) \preccurlyeq \mathbf{S} \bullet 10^{\infty} \forall n \geq 0\right\}=: \Gamma(\mathbf{S}) .
\end{gathered}
$$

We can prove that $\Gamma(\mathbf{S})$ is at most countable for any $\mathbf{S} \in \Lambda$ (This needs more effort! It is also the reason why we define the set Λ by the substitution \bullet.). From this we obtain $\tau(\beta) \leq t^{*}$.

On the other hand, let

$$
t_{N}:=\left(\mathbf{S}^{-} \mathbb{L}(\mathbf{S})^{N} w\right)_{\beta} \quad \text { for some word } w \text { depending on } \mathbf{S} .
$$

Then we can show that $t_{N} \nearrow t^{*}$ as $N \rightarrow \infty$, and $\operatorname{dim}_{H} K_{\beta}\left(t_{N}\right)>0$ for all $N \geq 1$. So, $\tau(\beta) \geq t^{*}$.

Geometrical structure of basic intervals

For each word $\mathbf{S} \in \Lambda$ the closed interval $J^{\mathbf{S}}=\left[\beta_{\ell}, \beta_{r}\right] \subset(1,2]$ is called a Lyndon interval generated by \mathbf{S}, if

$$
\left(\mathbb{L}(\mathbf{S})^{\infty}\right)_{\beta_{\ell}}=1 \quad \text { and } \quad\left(\mathbb{L}(\mathbf{S})^{+} \mathbf{S}^{\infty}\right)_{\beta_{r}}=\left(\mathbf{S} \bullet 1^{\infty}\right)_{\beta_{r}}=1 .
$$

If in particular $\mathbf{S} \in \Omega_{F}^{*}$, we call $J^{\mathbf{S}}$ a Farey interval.
Proposition (Kalle, K., Langeveld and Li, 2020)
All of these Farey intervals $J^{\mathbf{S}}, \mathbf{S} \in \Omega_{F}^{*}$ are pairwise disjoint, and the bifurcation set

$$
E:=(1,2] \backslash \bigcup_{s \in \Omega_{F}^{*}} J^{s}
$$

has zero packing dimension. Furthermore, $\tau(\beta)=1-1 / \beta$ for $\beta \in E$.

Relative bifurcation sets

Proposition (Allaart and K., 2022)
For any $\mathbf{S} \in \Lambda$ the Lyndon intervals $J^{\text {Sor }}, \mathbf{r} \in \Omega_{F}^{*}$ are pairwise disjoint subsets of $J^{\mathbf{S}} \backslash I^{\mathbf{S}}$, and the relative bifurcation set

$$
E^{\mathrm{S}}:=\left(J^{\mathbf{S}} \backslash I^{\mathbf{S}}\right) \backslash \bigcup_{r \in \Omega_{F}^{*}} J^{\text {Sor }}
$$

is uncountable and has zero box-counting dimension. Furthermore,

$$
\tau(\beta)=\left(\mathbf{S} \bullet\left(0 \delta_{2} \delta_{3} \ldots\right)\right)_{\beta} \quad \forall \beta \in E^{\mathbf{S}},
$$

where $\left(\delta_{2} \delta_{3} \ldots\right)$ satisfies $\left(\mathbf{S} \bullet\left(1 \delta_{2} \delta_{3} \ldots\right)\right)_{\beta}=1$.

Tree structure

Figure: The tree structure of the Lyndon intervals $J^{S}, S=\mathbf{s}^{1} \ldots s^{k}, k \in \mathbb{N}$ with each $s^{i} \in \Omega_{F}^{*}$. The root is $(1,2]$, it has countably infinitely many offsprings (pairwise disjoint subsets) $J^{s_{i}^{1}}, i \in \mathbb{Z}$. The bifurcation set $E=(1,2] \backslash \bigcup_{i \in \mathbb{Z}} J^{s_{i}^{1}}$. Furthermore, each offspring $J^{s_{i}^{1}}$ also has countably infinitely many offsprings $J^{s_{i}^{1} \bullet \boldsymbol{s}_{j}^{2}}, j \in \mathbb{Z}$, and the relative bifurcation set $E^{\mathbf{s}_{i}^{1}}=\left(J^{\mathbf{s}_{i}^{1}} \backslash I^{\mathbf{s}_{i}^{1}}\right) \backslash \bigcup_{j \in \mathbb{Z}} J^{s_{i}^{1} \bullet \boldsymbol{s}_{j}^{2}}$, where $I^{s_{i}^{1}}$ is a basic interval. The infinite bifurcation set is then given by $E_{\infty}=\bigcap_{k=0}^{\infty} \bigcup_{s_{1}, \ldots, s^{k} \in \Omega_{F}^{*}} J^{s^{1} \bullet \cdots \cdot s^{k}}$.

The tree structure of Lyndon intervals $J^{\mathbf{S}}, \mathbf{S} \in \Lambda$ gives rise to the infinite bifurcation set

$$
\begin{equation*}
E_{\infty}:=\bigcap_{k=1}^{\infty} \bigcup_{\mathbf{S} \in \Lambda(k)} J^{s}, \tag{1}
\end{equation*}
$$

where $\Lambda(k):=\left\{\mathbf{S}=\mathbf{s}_{1} \bullet \cdots \bullet \mathbf{s}_{k}: \mathbf{s}_{i} \in \Omega_{F}^{*} \forall 1 \leq i \leq k\right\}$.

Proposition (Allaart and K., 2022)

E_{∞} is an uncountable set with zero Hausdorff dimension. Furthermore, for any $\beta \in E_{\infty}$ there exists a unique sequence $\left(\mathbf{s}_{k}\right) \subset \Omega_{F}^{*}$ such that

$$
\{\beta\}=\bigcap_{n=1}^{\infty} J^{s_{1} \cdot \mathbf{s}_{2} \bullet \cdots \cdot \mathbf{s}_{n}},
$$

and then $\tau(\beta)=\lim _{n \rightarrow \infty}\left(\mathbf{s} \bullet \mathbf{s}_{2} \bullet \cdots \bullet \mathbf{s}_{n} 0^{\infty}\right)_{\beta}$.
Now we have the partition:

$$
(1,2]=E \cup E_{\infty} \cup \bigcup_{\mathbf{S} \in \Lambda} E^{\mathbf{S}} \cup \bigcup_{\mathbf{S} \in \Lambda} I^{\mathbf{s}}
$$

Main Result

Theorem (Allaart and K., 2022)
(i) The function $\tau: \beta \mapsto \tau(\beta)$ is left continuous on $(1,2]$ with right-hand limits everywhere (càdlàg), and as a result has only countably many discontinuities;
(ii) τ has no downward jumps;
(iii) There is an open set $O \subset(1,2]$, whose complement $(1,2] \backslash O$ has zero Hausdorff dimension, such that τ is real-analytic, convex and strictly decreasing on each connected component of O.

Figure: The graph of the critical value function $\tau(\beta)$ for $\beta \in(1,2]$. We see that $\tau(\beta) \leq 1-1 / \beta$ for all $\beta \in(1,2$], and the function τ is strictly decreasing in each basic interval I^{5}.

Proposition (Allaart and K., 2022)

Given $\mathbf{s}=s_{1} \ldots s_{m}=0 \mathbf{c} 1 \in \Omega_{F}^{*}$, let $\beta \in(1,2]$ such that

$$
\left(\theta_{1} \mathbf{c} \theta_{2} \theta_{3} \mathbf{c} \theta_{4} \ldots \theta_{2 k+1} \mathbf{c} \theta_{2 k+2} \ldots\right)_{\beta}=1
$$

where $\left(\theta_{i}\right)_{i=0}^{\infty}=01101001 \ldots$ is the Thue-Morse sequence. Then $\beta \in E_{\infty} \cap J^{\mathrm{s}}$ is transcendental, and

$$
\tau(\beta)=\frac{2 \sum_{j=2}^{m} s_{j} \beta^{m-j}+\beta^{m-1}-\beta^{m}}{\beta^{m}-1}
$$

Key idea.
Consider $\mathbf{S}_{k}=\mathbf{s}_{1} \bullet \mathbf{s}_{2} \bullet \cdots \bullet \mathbf{s}_{k}$ with $\mathbf{s}_{1}=\mathbf{s}$ and $\mathbf{s}_{i}=01 \in \Omega_{F}^{*}$ for all $i \geq 2$. Then $\beta \in J^{\mathbf{S}_{k}}$ for all $k \geq 1$. Furthermore, $\mathbb{L}\left(\mathbf{S}_{k}\right) \rightarrow \theta_{1} \mathbf{c} \theta_{2} \theta_{3} \mathbf{c} \theta_{4} \ldots$ and $\mathbf{S}_{k} \rightarrow \overline{\theta_{1}} \mathbf{c} \overline{\theta_{2}} \overline{\theta_{3}} \mathbf{c} \overline{\theta_{4}} \cdots$ as $k \rightarrow \infty$.

Conjecture: each $\beta \in E_{\infty}$ is transcendental.

Future work

- Extend this work to $\beta>2$.
- Consider a hole $(a, a+t)$ for $a \in[0,1)$ and $t \in[0,1-a)$. Here a is fixed.
- Consider a random hole $\left(0, t_{n}\right), n \geq 0$, so the survivor set is given by

$$
K_{\beta}\left(\left(t_{n}\right)\right):=\left\{x \in[0,1): T_{\beta}^{n}(x) \notin\left(0, t_{n}\right) \forall n \geq 0\right\} .
$$

Thank you!

