Continued fractions with two non integer digits

Niels Langeveld

May 30, 2020

(extensive) list of things one could study

3 natural extensions

The set up

Let $\alpha_1, \alpha_2 \in \mathbb{R}_{>0}$ and write them as $\alpha_1 = pz$ and $\alpha_2 = \frac{1}{z}$ such that $\alpha_1 \alpha_2 = p$, note that $p \in (0, 1]$ and $z \in (0, \frac{1}{\sqrt{p}})$ to assure $\alpha_1 < \alpha_2$. We make (α_1, α_2) -expansions of the form

$$x = \frac{1}{d_1 + \frac{1}{d_2 + \cdots}}$$

with $d_1, d_2, \ldots \in \{\alpha_1, \alpha_2\}^{\mathbb{N}}$. For such x we write $x = [0; d_1, d_2, \ldots]$. Let $\mathcal{R}_{\alpha_1, \alpha_2} = \{x \in \mathbb{R} : x = [0; d_1, d_2, \ldots], d_i \in \{\alpha_1, \alpha_2\}$ for all $i \in \mathbb{N}\}$

The set up

Let $\alpha_1, \alpha_2 \in \mathbb{R}_{>0}$ and write them as $\alpha_1 = pz$ and $\alpha_2 = \frac{1}{z}$ such that $\alpha_1 \alpha_2 = p$, note that $p \in (0, 1]$ and $z \in (0, \frac{1}{\sqrt{p}})$ to assure $\alpha_1 < \alpha_2$. We make (α_1, α_2) -expansions of the form

$$x = \frac{1}{d_1 + \frac{1}{d_2 + \cdots}}$$

with $d_1, d_2, \ldots \in \{\alpha_1, \alpha_2\}^{\mathbb{N}}$. For such x we write $x = [0; d_1, d_2, \ldots]$. Let $\mathcal{R}_{\alpha_1, \alpha_2} = \{x \in \mathbb{R} : x = [0; d_1, d_2, \ldots], d_i \in \{\alpha_1, \alpha_2\}$ for all $i \in \mathbb{N}\}$

The set up

Let $\alpha_1, \alpha_2 \in \mathbb{R}_{>0}$ and write them as $\alpha_1 = pz$ and $\alpha_2 = \frac{1}{z}$ such that $\alpha_1 \alpha_2 = p$, note that $p \in (0, 1]$ and $z \in (0, \frac{1}{\sqrt{p}})$ to assure $\alpha_1 < \alpha_2$. We make (α_1, α_2) -expansions of the form

$$x = \frac{1}{d_1 + \frac{1}{d_2 + \cdots}}$$

with $d_1, d_2, \ldots \in \{\alpha_1, \alpha_2\}^{\mathbb{N}}$. For such x we write $x = [0; d_1, d_2, \ldots]$. Let $\mathcal{R}_{\alpha_1, \alpha_2} = \{x \in \mathbb{R} : x = [0; d_1, d_2, \ldots], d_i \in \{\alpha_1, \alpha_2\}$ for all $i \in \mathbb{N}\}$

Theorem (Dmytrenko, Kyurchev, Prats'ovytyi 2009)

- if p < ¹/₂ there exists an interval on which (Lebesgue) almost all points have uncountably many (α₁, α₂)-expansions.
- if $p = \frac{1}{2}$ there exists an interval on which (Lebesgue) almost all points have a unique (α_1, α_2) -expansions.
- if p > ¹/₂ there exists no interval on which (Lebesgue) almost all points an (α₁, α₂)-expansions.

Let
$$\Omega_z = [a, b]$$
 with $a = \frac{1}{2}z(\sqrt{p^2 + 4p} - p)$ and
 $b = \frac{1}{2}z^{-1}p^{-1}\left(\sqrt{p^2 + 4p} - p\right)$. We define $T_{p,z} : \Omega_z \to \Omega_z$ as
 $T_{p,z} = \begin{cases} \frac{1}{x} - \alpha_2 \text{ for } x \in [a, (a + z^{-1})^{-1}]\\ \frac{1}{x} - \alpha_1 \text{ for } x \in ((b + pz)^{-1}, b] \end{cases}$

Let $d_1(x) = \alpha_2$ for $x \in [a, (a + z^{-1})^{-1}]$ and $d_1(x) = \alpha_1$ for $x \in ((b + pz)^{-1}, b]$. Furthermore, define $d_n(x) = d_1(T_z^{n-1}(x))$ for $n \ge 2$. Then for $x \in \Omega_z$ we have

$$x = \frac{1}{d_1(x) + T_z(x)}$$

= $\frac{1}{d_1(x) + \frac{1}{d_2(x) + T_z^2(x)}}$
:
= $\frac{1}{d_1 + \frac{\ddots}{d_1 + T_z^n(x)}}$

Let
$$\Omega_z = [a, b]$$
 with $a = \frac{1}{2}z(\sqrt{p^2 + 4p} - p)$ and
 $b = \frac{1}{2}z^{-1}p^{-1}\left(\sqrt{p^2 + 4p} - p\right)$. We define $T_{p,z} : \Omega_z \to \Omega_z$ as
 $T_{p,z} = \begin{cases} \frac{1}{x} - \alpha_2 \text{ for } x \in [a, (a + z^{-1})^{-1}]\\ \frac{1}{x} - \alpha_1 \text{ for } x \in ((b + pz)^{-1}, b] \end{cases}$

Let $d_1(x) = \alpha_2$ for $x \in [a, (a + z^{-1})^{-1}]$ and $d_1(x) = \alpha_1$ for $x \in ((b + pz)^{-1}, b]$. Furthermore, define $d_n(x) = d_1(T_z^{n-1}(x))$ for $n \ge 2$. Then for $x \in \Omega_z$ we have

$$x = \frac{1}{d_{1}(x) + T_{z}(x)}$$

$$= \frac{1}{d_{1}(x) + \frac{1}{d_{2}(x) + T_{z}^{2}(x)}}$$

$$\vdots$$

$$= \frac{1}{d_{1} + \frac{\ddots}{d_{n}(x) + T_{z}^{n}(x)}}$$

Let
$$\Omega_z = [a, b]$$
 with $a = \frac{1}{2}z(\sqrt{p^2 + 4p} - p)$ and
 $b = \frac{1}{2}z^{-1}p^{-1}\left(\sqrt{p^2 + 4p} - p\right)$. We define $T_{p,z} : \Omega_z \to \Omega_z$ as
 $T_{p,z} = \begin{cases} \frac{1}{x} - \alpha_2 \text{ for } x \in [a, (a + z^{-1})^{-1}]\\ \frac{1}{x} - \alpha_1 \text{ for } x \in ((b + pz)^{-1}, b] \end{cases}$
Let $d_1(x) = \alpha_2$ for $x \in [a, (a + z^{-1})^{-1}]$ and $d_1(x) = \alpha_1$ for
 $x \in ((b + pz)^{-1}, b]$. Furthermore, define $d_n(x) = d_1\left(T_z^{n-1}(x)\right)$
for $n \ge 2$. Then for $x \in \Omega_z$ we have

$$x = \frac{1}{d_1(x) + T_z(x)}$$

$$= \frac{1}{d_1(x) + \frac{1}{d_2(x) + T_z^2(x)}}$$

$$\vdots$$

$$= \frac{1}{d_1 + \frac{\ddots}{d_n(x) + T_z^n(x)}}$$

Continued fractions with two non integer digi-

Explanation using pictures

Figure: The three different cases where z = 1 and $p = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ from left to right.

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p>rac{1}{2},$ the Hausdorff dimension of $\mathcal{R}_{lpha_1,lpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p>rac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{lpha_1,lpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p>rac{1}{2},$ the Hausdorff dimension of $\mathcal{R}_{lpha_1,lpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p>rac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{lpha_1,lpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p>rac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{lpha_1,lpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p > \frac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{\alpha_1,\alpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p > \frac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{\alpha_1,\alpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p > \frac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{\alpha_1,\alpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p > \frac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{\alpha_1,\alpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

- explore for which parameters you can make the natural extension of the system
- what about admissibility
- Diophantine approximation
- entropy
- for $p < \frac{1}{2}$, set of unique expansions
- for $p > \frac{1}{2}$, the Hausdorff dimension of $\mathcal{R}_{\alpha_1,\alpha_2}$
- sums of such sets
- are all systems ergodic
- regions in parameterspace where the attractor of the dynamical system is smaller than the interval its define on for greedy expansions
- relations with other expansions

Making a non-invertible system into an invertible one by adding dimensions. Advantages

- In many cases it is easier to guess the invariant density for the natural extension (in our case we can show that $\mu(A) \int_A \frac{1}{(1+xy)^2} dxdy$ is invariant)
- From this it is simple to find the invariant density for the original system (by projecting down to the original dimension)
- One can get also other information from the natural extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system. In our case the 2-dimensional map is given by

Making a non-invertible system into an invertible one by adding dimensions. Advantages

- In many cases it is easier to guess the invariant density for the natural extension (in our case we can show that $\mu(A) \int_A \frac{1}{(1+xy)^2} dxdy$ is invariant)
- From this it is simple to find the invariant density for the original system (by projecting down to the original dimension)
- One can get also other information from the natural extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system.In our case the 2-dimensional map is given by

$$\mathcal{T}_{\rho,z}(x,y) = (\mathcal{T}_{\rho,z}(x), \frac{1}{d(x)+y})$$

Making a non-invertible system into an invertible one by adding dimensions. Advantages

- In many cases it is easier to guess the invariant density for the natural extension (in our case we can show that $\mu(A) \int_A \frac{1}{(1+xy)^2} dxdy$ is invariant)
- From this it is simple to find the invariant density for the original system (by projecting down to the original dimension)
- One can get also other information from the natural extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system.In our case the 2-dimensional map is given by

$$\mathcal{T}_{\rho,z}(x,y) = (\mathcal{T}_{\rho,z}(x), \frac{1}{d(x)+y})$$

Making a non-invertible system into an invertible one by adding dimensions. Advantages

- In many cases it is easier to guess the invariant density for the natural extension (in our case we can show that $\mu(A) \int_A \frac{1}{(1+xy)^2} dxdy$ is invariant)
- From this it is simple to find the invariant density for the original system (by projecting down to the original dimension)
- One can get also other information from the natural extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system.In our case the 2-dimensional map is given by

$$\mathcal{T}_{p,z}(x,y) = (\mathcal{T}_{p,z}(x), \frac{1}{d(x)+y})$$

Making a non-invertible system into an invertible one by adding dimensions. Advantages

- In many cases it is easier to guess the invariant density for the natural extension (in our case we can show that $\mu(A) \int_A \frac{1}{(1+xy)^2} dxdy$ is invariant)
- From this it is simple to find the invariant density for the original system (by projecting down to the original dimension)
- One can get also other information from the natural extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system. In our case the 2-dimensional map is given by

$$\mathcal{T}_{p,z}(x,y) = (T_{p,z}(x), \frac{1}{d(x)+y})$$

Making a non-invertible system into an invertible one by adding dimensions. Advantages

- In many cases it is easier to guess the invariant density for the natural extension (in our case we can show that $\mu(A) \int_A \frac{1}{(1+xy)^2} dxdy$ is invariant)
- From this it is simple to find the invariant density for the original system (by projecting down to the original dimension)
- One can get also other information from the natural extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system. In our case the 2-dimensional map is given by

$$\mathcal{T}_{p,z}(x,y) = (\mathcal{T}_{p,z}(x), \frac{1}{d(x)+y})$$

Picture of parameterspace

May 30, 2020 9 / 25

Picture of parameterspace

Movietime

Picture of parameterspace

$$p = 1/5 \,\, {
m and} \,\, z = \sqrt{2 + \sqrt{rac{7}{3}}}$$

Figure: The natural extension for $p = \frac{1}{5}$ and $z = \sqrt{2 + \sqrt{\frac{7}{3}}}$

similar expansions and admissibility

Solving $(a + z^{-1})^{-1} = a + z^{-1} - pz$ gives that for $p < \sqrt{5} - 2$ we find $z = \frac{1}{\sqrt{p+1} - \sqrt{p^2 + 4p}}$ and ensures that α_1 is never followed

by α_1 in any α_1, α_2 -expansion on the corresponding interval (note that the left hand side is the discontinuity point and the right hand side its image under the branch $\frac{1}{x} - \alpha_1$).

In general one can show the following

Let $\mathcal{O}_{p,z}(c)$ be the quasigreedy expansion of $c = (a + z^{-1})^{-1}$. The set of all possible sequences then is given by

 $\{x \in \{\alpha_1, \alpha_2\}^{\mathbb{N}} : \sigma^n(x) \le \alpha_2 \alpha_2 \alpha_1 \text{ or } \sigma^n(x) \ge \mathcal{O}_{\rho, z}(c) \text{ for all } \in \mathbb{N}\}.$

The set of possible expansions for the discontinuity is given by

 $\mathcal{Q} = \{x \in \{0,1\}^{\mathbb{N}} : \sigma^n(x) \le \alpha_2 \alpha_2 \alpha_1 \text{ or } \sigma^n(x) \ge x \text{ for all } n \in \mathbb{N}\}.$

similar expansions and admissibility

Solving $(a + z^{-1})^{-1} = a + z^{-1} - pz$ gives that for $p < \sqrt{5} - 2$ we find $z = \frac{1}{\sqrt{p+1} - \sqrt{p^2 + 4p}}$ and ensures that α_1 is never followed

by α_1 in any α_1, α_2 -expansion on the corresponding interval (note that the left hand side is the discontinuity point and the right hand side its image under the branch $\frac{1}{x} - \alpha_1$). In general one can show the following Let $\mathcal{O}_{p,z}(c)$ be the quasigreedy expansion of $c = (a + z^{-1})^{-1}$. The set of all possible sequences then is given by

$$\{x \in \{\alpha_1, \alpha_2\}^{\mathbb{N}} : \sigma^n(x) \le \alpha_2 \alpha_2 \alpha_1 \text{ or } \sigma^n(x) \ge \mathcal{O}_{\rho, z}(c) \text{ for all } \in \mathbb{N}\}.$$

The set of possible expansions for the discontinuity is given by

 $\mathcal{Q} = \{x \in \{0,1\}^{\mathbb{N}} : \sigma^n(x) \leq lpha_2 lpha_2 lpha_1 ext{ or } \sigma^n(x) \geq x ext{ for all } n \in \mathbb{N} \}.$

similar expansions and admissibility

Solving $(a + z^{-1})^{-1} = a + z^{-1} - pz$ gives that for $p < \sqrt{5} - 2$ we find $z = \frac{1}{\sqrt{p+1} - \sqrt{p^2 + 4p}}$ and ensures that α_1 is never followed

by α_1 in any α_1, α_2 -expansion on the corresponding interval (note that the left hand side is the discontinuity point and the right hand side its image under the branch $\frac{1}{x} - \alpha_1$). In general one can show the following Let $\mathcal{O}_{p,z}(c)$ be the quasigreedy expansion of $c = (a + z^{-1})^{-1}$. The set of all possible sequences then is given by

$$\{x \in \{\alpha_1, \alpha_2\}^{\mathbb{N}} : \sigma^n(x) \le \alpha_2 \alpha_2 \alpha_1 \text{ or } \sigma^n(x) \ge \mathcal{O}_{\rho, z}(c) \text{ for all } \in \mathbb{N}\}.$$

The set of possible expansions for the discontinuity is given by

 $\mathcal{Q} = \{ x \in \{0,1\}^{\mathbb{N}} : \sigma^n(x) \le \alpha_2 \alpha_2 \alpha_1 \text{ or } \sigma^n(x) \ge x \text{ for all } n \in \mathbb{N} \}.$

Picture of parameterspace

Picture of parameterspace

smaller attractors $(p = \frac{1}{10})$

Vlay 30, 2020 17 / 2

smaller attractors $(p = \frac{1}{100})$

smaller attractors (z = 2)

smaller attractors (z = 3)

May 30, 2020 20 /

entropy

▲ 同 ▶ ▲ 王

entropy

/lay 30, 2020 22 /

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

entropy

some of the problems

- admissibility (are there more 'lines' on which the symbolic space remains the same)
- the attractors
- sums of cantor sets
- unique expansions

Thank you for your time