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The set up

Let α1, α2 ∈ R>0 and write them as α1 = pz and α2 = 1
z such

that α1α2 = p, note that p ∈ (0, 1] and z ∈ (0, 1√
p ) to assure

α1 < α2. We make (α1, α2)-expansions of the form

x =
1

d1 +
1

d2 +
.. .

with d1, d2, . . . ∈ {α1, α2}N. For such x we write
x = [0; d1, d2, . . .]. Let
Rα1,α2 = {x ∈ R : x = [0; d1, d2, . . .], di ∈ {α1, α2} for all i ∈ N}
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Theorem (Dmytrenko, Kyurchev, Prats’ovytyi 2009)

if p < 1
2 there exists an interval on which (Lebesgue) almost

all points have uncountably many (α1, α2)-expansions.

if p = 1
2 there exists an interval on which (Lebesgue) almost

all points have a unique (α1, α2)-expansions.

if p > 1
2 there exists no interval on which (Lebesgue) almost

all points an (α1, α2)-expansions.
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Let Ωz = [a, b] with a = 1
2z(
√

p2 + 4p − p) and

b = 1
2z
−1p−1

(√
p2 + 4p − p

)
.We define Tp.z : Ωz → Ωz as

Tp,z =

{
1
x − α2 for x ∈

[
a, (a + z−1)−1

]
1
x − α1 for x ∈

(
(b + pz)−1, b

]
Let d1(x) = α2 for x ∈

[
a, (a + z−1)−1

]
and d1(x) = α1 for

x ∈
(
(b + pz)−1, b

]
. Furthermore, define dn(x) = d1

(
T n−1
z (x)

)
for n ≥ 2. Then for x ∈ Ωz we have

x =
1

d1(x) + Tz(x)

=
1

d1(x) +
1

d2(x) + T 2
z (x)

...

=
1

d1 +

.. .

dn(x) + T n
z (x)
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Explanation using pictures

1
6(
√

13− 1) 1
2(
√

13− 1)

1
2(
√

13− 1)
.......................................................................................................................................................

............................................................................................................................................................................

1
2

2
3

1

1......................................................................................................................................................

........................................................................................................................................................................................

1
3(
√

7− 1) 1
2(
√

7− 1)

1
2(
√

7− 1)
........................................................................................................................................................

...................................................................................................................................................................

Figure: The three different cases where z = 1 and p = 1
3 ,

1
2 ,

2
3 from left

to right.
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Things of what you could study

explore for which parameters you can make the natural
extension of the system

what about admissibility

Diophantine approximation

entropy

for p < 1
2 , set of unique expansions

for p > 1
2 , the Hausdorff dimension of Rα1,α2

sums of such sets

are all systems ergodic

regions in parameterspace where the attractor of the
dynamical system is smaller than the interval its define on
for greedy expansions

relations with other expansions
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Natural extensions
Making a non-invertible system into an invertible one by adding
dimensions. Advantages

In many cases it is easier to guess the invariant density for
the natural extension (in our case we can show that
µ(A)

∫
A

1
(1+xy)2

dxdy is invariant)

From this it is simple to find the invariant density for the
original system (by projecting down to the original
dimension)

One can get also other information from the natural
extension (often related to Diophantine approximation)

Challenge: to find the right domain for the system.In our case the
2-dimensional map is given by

Tp,z(x , y) = (Tp,z(x),
1

d(x) + y
)
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Picture of parameterspace
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Movietime
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Picture of parameterspace

Continued fractions with two non integer digits May 30, 2020 12 / 25



p = 1/5 and z =

√
2 +

√
7
3

√
1
30(9 +

√
21)

√
1
10(87− 17

√
21)

1
5

√
1
2(39−

√
21)

∆α1

∆α2 ............................................................................................
.......................

....
Tp,z

Tp,z(∆α1)

Tp,z(∆α2)

Figure: The natural extension for p = 1
5 and z =

√
2 +

√
7
3
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similar expansions and admissibility

Solving (a + z−1)−1 = a + z−1 − pz gives that for p <
√

5− 2
we find z = 1√

p+1−
√

p2+4p
and ensures that α1 is never followed

by α1 in any α1, α2-expansion on the corresponding interval
(note that the left hand side is the discontinuity point and the
right hand side its image under the branch 1

x − α1).
In general one can show the following
Let Op,z(c) be the quasigreedy expansion of c = (a + z−1)−1.
The set of all possible sequences then is given by

{x ∈ {α1, α2}N : σn(x) ≤ α2α2α1 or σn(x) ≥ Op,z(c) for all ∈ N}.

The set of possible expansions for the discontinuity is given by

Q = {x ∈ {0, 1}N : σn(x) ≤ α2α2α1 or σn(x) ≥ x for all n ∈ N}.
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Picture of parameterspace
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Picture of parameterspace
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smaller attractors (p = 1
10)

Continued fractions with two non integer digits May 30, 2020 17 / 25



smaller attractors (p = 1
100)
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smaller attractors (z = 2)
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smaller attractors (z = 3)
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entropy
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entropy
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entropy
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some of the problems

admissibility (are there more ’lines’ on which the symbolic
space remains the same)

the attractors

sums of cantor sets

unique expansions
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Thank you for your time
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