Some fractal problems in beta-expansions

Bing Li

South China University of Technology

One World Numeration Seminar

8 September, 2020

Outline

2 The distribution of orbits and some fractal problems

< 3 >

Greedy beta-expansions

Bing Li (SCUT)

Some fractal problems in beta-expansions

Numeration 3 / 35

→ < Ξ →</p>

Greedy β -transformations

- $\bullet \ \beta > 1$
- β -transformation $T_{\beta}: [0,1] \rightarrow [0,1]$

$$T_{\beta}(x) = \beta x - \lfloor \beta x \rfloor,$$

where $\lfloor \beta x \rfloor$ denotes the integer part of βx .

• Example: $\beta = \frac{1+\sqrt{5}}{2}$

• β -transformation dynamical system: $([0,1),T_{\beta})$

Bing Li (SCUT)

Greedy β -expansion

• digit set

$$\mathcal{A} = \begin{cases} \{0, 1, \dots, \beta - 1\} & \text{when } \beta \text{ is an integer} \\ \{0, 1, \dots, \lfloor \beta \rfloor \} & \text{otherwise.} \end{cases}$$

• digit function

$$\varepsilon_1(\cdot,\beta):[0,1]\to\mathcal{A} \text{ as } x\mapsto \lfloor\beta x
floor$$

•
$$\varepsilon_n(x,\beta) := \varepsilon_1(T_\beta^{n-1}x,\beta)$$

• greedy β -expansion (Rényi, 1957)

$$x = \frac{\varepsilon_1(x,\beta)}{\beta} + \frac{\varepsilon_2(x,\beta)}{\beta^2} + \dots + \frac{\varepsilon_n(x,\beta)}{\beta^n} + \dots$$

• notation:

$$\varepsilon(x,\beta) = (\varepsilon_1(x,\beta), \varepsilon_2(x,\beta), \dots, \varepsilon_n(x,\beta), \dots)$$

Convergence Rate Problem

 \bullet convergents of the $\beta\text{-expansion}$

$$\omega_n(x) := \omega_n(x,\beta) = \frac{\varepsilon_1(x,\beta)}{\beta} + \frac{\varepsilon_2(x,\beta)}{\beta^2} + \dots + \frac{\varepsilon_n(x,\beta)}{\beta^n}$$

• For any $x \in [0,1)$,

$$\omega_n(x) \to x \text{ as } n \to \infty.$$

• Natural question: What is the rate of convergence of $\omega_n(x)$?

Convergence Rate Problem

• convergents of the β -expansion

$$\omega_n(x) := \omega_n(x,\beta) = \frac{\varepsilon_1(x,\beta)}{\beta} + \frac{\varepsilon_2(x,\beta)}{\beta^2} + \dots + \frac{\varepsilon_n(x,\beta)}{\beta^n}$$

• For any $x \in [0,1)$,

$$\omega_n(x) \to x \text{ as } n \to \infty.$$

- Natural question: What is the rate of convergence of $\omega_n(x)$?
- Metric result(Fang, Wu and L., 2020, Math. Z.) For \mathcal{L} -almost all $x \in [0, 1)$,

$$\lim_{n \to \infty} \frac{1}{n} \log_{\beta}(x - \omega_n(x)) = -1.$$

That is, $x - \omega_n(x) \approx \beta^{-n}$ for Lebesgue-almost all $x \in [0, 1)$.

invariant measure

- (i) If β ∈ N, then the Lebesgue measure L is T_β-invariant.
 (ii) If β ∉ N, then L is not T_β-invariant.
- (Rényi, 1957) There exists a unique invariant measure μ_{β} which is equivalent to the Lebesgue measure. Moreover, for any $x \in [0, 1)$,

$$1 - \frac{1}{\beta} \le \frac{d\mu_{\beta}}{d\mathcal{L}}(x) \le \frac{1}{1 - \frac{1}{\beta}}$$

• (Gelfond, 1959 & Parry, 1960) For any $\beta > 1$, the density function formula

$$h_{\beta}(x) := \frac{d\mu_{\beta}}{d\mathcal{L}}(x) = \frac{1}{F(\beta)} \sum_{n \ge 0: x < T_{\beta}^{n} 1} \frac{1}{\beta^{n}} \quad \mathcal{L} - \text{a.e. } x \in [0, 1), \quad (1)$$

where $F(\beta) = \int_0^1 \sum_{n \ge 0: x < T_{\beta}^{n_1}} \frac{1}{\beta^n} dx$ is the normalising function.

admissible sequence

• admissible sequence/word

 $\Sigma_{\beta} = \{ \omega \in \mathcal{A}^{\mathbb{N}} : \ \exists \ x \in [0,1) \ \text{ such that } \ \varepsilon(x,\beta) = \omega \}$

 $\Sigma_{\beta}^{n}=\{\omega\in\mathcal{A}^{n}:\ \exists\ x\in[0,1)\ \text{ s.t. }\ \varepsilon_{i}(x,\beta)=\omega_{i}\ \text{for all }i=1,\cdots,n\}$

- β is an integer: $\Sigma_{\beta} = \mathcal{A}^{\mathbb{N}}$ (except countable points)
- Example: $\beta_0 = \frac{\sqrt{5}+1}{2}$

 $\Sigma_{\beta_0} = \{\omega \in \{0,1\}^{\mathbb{N}}: \text{ the word } 11 \text{ dosen't appear in } \omega\}$

 $\bullet\,$ number of admissible words of length n

$$\beta^n \le \sharp \Sigma_\beta^n \le \frac{\beta^{n+1}}{\beta - 1}$$

• $\beta_1 < \beta_2 \Longrightarrow \Sigma_{\beta_1} \subset \Sigma_{\beta_2}, \ \Sigma_{\beta_1}^n \subset \Sigma_{\beta_2}^n$

(日)

admissible sequence

the infinite expansion of the number 1

$$\varepsilon^*(1,\beta) = \begin{cases} \varepsilon(1,\beta) & \text{if there are infinite many} \\ \varepsilon_n(1,\beta) \neq 0 \text{ in } \varepsilon(1,\beta) \\ \left(\varepsilon_1(1,\beta), \cdots, \left(\varepsilon_n(1,\beta) - 1\right)\right)^\infty & \text{otherwise, where } \varepsilon_n(1,\beta) \text{ is the last non-zero element} \\ & \text{in } \varepsilon(1,\beta). \end{cases}$$

• (Parry, 1960) $\omega \in \Sigma_{\beta}$ if and only if

$$\sigma^k(\omega) \prec \varepsilon^*(1,\beta)$$
 for all $k \ge 0$,

where \prec means the lexicographical order.

Bing Li (SCUT)

Blanchard's classification (1989)

- C₁: ε(1, β) is finite (simple beta-number). That is, the orbit of 1 under T_β eventually goes to 0.
- (Parry, 1960) The set of simple beta-numbers is dense in $(1, +\infty)$.
- S_{β} is an SFT iff β is a simple beta-number.
- C_2 : $\varepsilon(1,\beta)$ is ultimately periodic (beta-number) but not finite, that is, $\varepsilon^*(1,\beta)$ is ultimately periodic but not purely periodic.
- C_3 : all string of 0's in $\varepsilon^*(1,\beta)$ are bounded but $\varepsilon(1,\beta)$ is not ultimately periodic.
- C_4 : $\varepsilon(1,\beta)$ does not contain some admissible word, but contains string of 0's with unbounded length.
- C_5 : $\varepsilon(1,\beta)$ contains all admissible words, that is, $O_\beta(1)$ is dense in [0,1].

a kind of classification of $\beta>1$

•
$$\ell_n(1,\beta) := \max\{k \ge 0 : \varepsilon_{n+1}^*(1,\beta) = \cdots = \varepsilon_{n+k}^*(1,\beta) = 0\}$$

• $\ell(1,\beta) = \limsup_{n \to \infty} \frac{\ell_n(1,\beta)}{n}$
• A kind of classification of $\beta > 1$:

$$\begin{split} A_0 &= \Big\{ \beta > 1 : \{\ell_n(1,\beta)\} \text{ is bounded } \Big\};\\ A_1 &= \Big\{ \beta > 1 : \{\ell_n(1,\beta)\} \text{ is unbounded and } \ell(1,\beta) = 0 \Big\};\\ A_2 &= \Big\{ \beta > 1 : \ell(1,\beta) > 0 \Big\}. \end{split}$$

Theorem (L. and Wu, 2008, JMAA) (1) $\beta \in A_0 \iff C\beta^{-n} \le |I_n(x)| \le \beta^{-n}$ for any $x \in [0,1]$ and $n \ge 1$, where *C* is a constant. (2) $\beta \in A_0 \cup A_1 \iff \lim_{n \to \infty} -\frac{\log |I_n(x)|}{n} = \log \beta$ for any $x \in [0,1]$.

Sizes of A_0, A_1, A_2

Theorem (L., Persson, Wang and Wu, 2014, Math. Z.) (1) $\mathcal{L}(A_0) = 0$ and $\dim_H(A_0) = 1$ (already known by Schmeling, 1997). (2) The set A_1 is of full Lebesgue measure. (3) $\mathcal{L}(A_2) = 0$ and $\dim_H(A_2) = 1$.

▲ 同 ▶ → 三 ▶

The distribution of orbits and some fractal problems

Bing Li (SCUT)

Some fractal problems in beta-expansions

Numeration 13 / 35

Exceptional set

Recall: For \mathcal{L} -almost all $x \in [0, 1)$,

$$\lim_{n \to \infty} \frac{1}{n} \log_{\beta}(x - \omega_n(x)) = -1.$$

Further question: Is there any point with other approximation orders ? If yes, how large is the set of such points. That is, what is the size of the set

$$\left\{x \in [0,1) : \lim_{n \to \infty} \frac{1}{\phi(n)} \log_{\beta}(x - \omega_n(x)) = -1\right\},\$$

where ϕ is a positive function defined on $\mathbb N$ satisfying $\phi(n) \to \infty$ as $n \to \infty$.

Denote $\eta = \liminf_{n \to \infty} \phi(n)/n$.

Proposition (Fang, Wu and L., 2020, Math. Z.)

Let $\beta>1$ be a real number. If $\eta>1,$ then the set

$$\left\{x \in [0,1) : \limsup_{n \to \infty} \frac{1}{\phi(n)} \log_{\beta}(x - \omega_n(x)) = -1\right\}$$

is at most countable.

< (日) × (日) × (1)

Dimensional result

Recall
$$\eta = \liminf_{n \to \infty} \phi(n)/n$$
.

Theorem (Fang, Wu and L., 2020, Math. Z.)

Let $\beta > 1$ be a real number. Additionally assume that ϕ is nondecreasing and denote

$$A_{\phi} := \left\{ x \in [0,1) : \liminf_{n \to \infty} \frac{1}{\phi(n)} \log_{\beta}(x - \omega_n(x)) = -1 \right\}.$$

Then

(i) If $0 \le \eta < 1$, then A_{ϕ} is empty and hence $\dim_H A_{\phi} = 0$. (ii) If $\eta \ge 1$, then $\dim_H A_{\phi} = 1/\eta$.

▲ □ ▶ ▲ 三 ▶ ▲

A special case: level set

Let $\beta > 1$ be a real number. For any $\alpha \in \mathbb{R}$, we define

$$A(\alpha) = \left\{ x \in [0,1) : \liminf_{n \to \infty} \frac{1}{n} \log_{\beta}(x - \omega_n(x)) = -\alpha \right\}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

A special case: level set

Let $\beta > 1$ be a real number. For any $\alpha \in \mathbb{R}$, we define

$$A(\alpha) = \left\{ x \in [0,1) : \liminf_{n \to \infty} \frac{1}{n} \log_{\beta}(x - \omega_n(x)) = -\alpha \right\}.$$

Corollary $\dim_{H} A(\alpha) = \begin{cases} \alpha^{-1}, & \text{if } \alpha \ge 1; \\ 0, & \text{otherwise.} \end{cases}$

Notice that

$$x - \omega_n(x) = \frac{T_\beta^n x}{\beta^n}$$

Bing Li (SCUT)

< □ > < □ > < □ > < □ > < □ > < □ >

Periodic orbits

• the orbit of $x \in [0,1)$ under β -transformation: $O_{\beta}(x) = \{T_{\beta}^n(x)\}_{n \ge 0}$

$$x \to T_{\beta}(x) \to T^2_{\beta}(x) \to \dots \to T^n_{\beta}(x) \to T^{n+1}_{\beta}(x) \to \dots$$

• eventually periodic $Per(\beta) = \{x \in [0,1) : O_{\beta}(x) \text{ is finite}\}.$

$$\operatorname{Per}(\beta) \subset \mathbb{Q}(\beta) \cap [0,1)$$

• (Schmidt, 1980)

 $\mathbb{Q}\cap [0,1)\subset \mathsf{Per}(\beta)\Longrightarrow \beta$ is either a Pisot number or Salem number

• (Bertrand 1977, Schmidt, 1980)

$$\beta$$
 is a Pisot number $\implies \mathsf{Per}(\beta) = \mathbb{Q}(\beta) \cap [0,1)$

• (Schmidt's conjecture, 1980)

 $\operatorname{Per}(\beta) = \mathbb{Q}(\beta) \cap [0,1) \Longrightarrow \beta$ is either a Pisot number or Salem number

Diophantine type problem

- dense orbit (L. and Chen, 2011) $D_{\beta} = \{x \in [0, 1] : \overline{O_{\beta}(x)} = [0, 1]\}$ D_{β} is dense, of full Lebesgue measure and second category D_{β}^{C} is dense, of full Hausdorff dimension and first category
- well approximable set (shrinking target problem)

 $W_y(T_\beta,\psi) = \{x \in [0,1) : |T_\beta^n(x) - y| < \psi(n) \text{ for infinitely many } n \in \mathbb{N}\}$

- (Coons, Hussain, Wang, 2016) $\mathcal{H}^{f}(W_{y}(T_{\beta}, \psi))$ is either zero or $\mathcal{H}^{f}([0, 1])$ depending on the convergence of certain series
- badly approximable set (avoiding a point)

$$A_y(T_\beta) = \{ x \in [0,1) : y \notin \overline{O_\beta(x)} \}$$

• (Färm, Persson, Schmeling, 2010) $A_y(T_\beta)$ is α -winning ($0 < \alpha < 1/64$) for Schmidt game, in particular, $\dim_{\mathrm{H}} A_y(T_\beta) = 1$.

Diophantine type problem

• Uniformly Diophantine approximation (Bugeaud and Liao, 2016)

< /□ > < Ξ

Recurrence problem

recurrent

$$\mathcal{L}\{x \in [0,1] : \liminf_{n \to \infty} |T_{\beta}^{n}(x) - x| = 0\} = 1$$

• quantitative recurrence

$$R(T_{\beta},\psi) := \left\{ x \in [0,1] : |T_{\beta}^n x - x| < \psi(n) \text{ for i.m. } n \in \mathbb{N} \right\}$$

metric result (Hussain, L., Simmons and Wang, preprint)

$$\mathcal{L}(R(T_{\beta},\psi)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{\infty} \psi(n) < \infty, \\ \\ 1 & \text{if } \sum_{n=1}^{\infty} \psi(n) = \infty. \end{cases}$$

dimensional result (Tan and Wang, 2011)

$$\dim_{\mathrm{H}} R(T_{\beta}, \psi) = \frac{1}{1+b} \text{ with } b = \liminf_{n \to \infty} \frac{-\log_{\beta} \psi(n)}{n}$$

Covering problem

covering set

 $E(x) = \{y \in [0,1) : |T_{\beta}^n(x) - y| < \psi(n) \text{ for infinitely many } n \in \mathbb{N}\}$

• (Hu and L., 2020, SPL) \mathcal{L} -almost every $x \in [0, 1)$,

$$\mathcal{L}(E(x)) = \begin{cases} 0 & \text{if } \sum_{n=1}^{\infty} \psi(n) < \infty, \\ \\ 1 & \text{if } \sum_{n=1}^{\infty} \psi(n) = \infty. \end{cases}$$

 $\dim_{\mathrm{H}} E(x) = \inf\{s > 0 : \sum_{n=1}^{\infty} \psi^{s}(n) < \infty\} = \limsup_{n \to \infty} \frac{\log n}{-\log \psi(n)}$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Numeration

Chaotic problem

- Li-Yorke chaos: $([0,1),T_{\beta})$, uncountable scrambled set
- scrambled set: $\forall x, y \in S$

$$\liminf_{n \to \infty} |T_{\beta}^{n}(x) - T_{\beta}^{n}(y)| = 0, \\ \limsup_{n \to \infty} |T_{\beta}^{n}(x) - T_{\beta}^{n}(y)| > 0$$

• (Liu, Huang, Li and Wang, 2018): there exists a scrambled set in [0, 1) whose Hausdorff dimension is 1.

Some other fractal problems

- frequency set
- level set for the lengths of cylinders
- multifractal (Birkhoff average)
- first return time/recurrence rate
- parameter space
- • • • •

Key proposition: exponentially mixing

Proposition (Philipp, 1967; Aaronson and Nakada, 2005)

There exist the constants $C_{\beta} > 0$ (only depending on β) and $\beta^{-1} \le \rho < 1$ such that

$$\left|\mu_{\beta}(E \cap T_{\beta}^{-(n+k)}F) - \mu_{\beta}(E)\mu_{\beta}(F)\right| \le C_{\beta}\rho^{n}\mu_{\beta}(F)$$

holds for any $E \in \mathcal{B}_k$, $F \in \mathcal{B}$ and $k, n \in \mathbb{N}$, where \mathcal{B}_k denotes the σ -algebra generated by the k-th cylinders of β -expansions and \mathcal{B} is the Borel σ -algebra on [0, 1).

Remark: In their paper, the constant ρ just satisfies $0 < \rho < 1$. However, using the result of Keller (i.e., Theorem 1, *Comm. Math. Phys.*, 1984), we can give a lower bound to ρ by following the original proofs of Aaronson and Nakada.

Bing Li (SCUT)

Key proposition: Approximation method for the β -shift (Persson and Schmeling, 2008; Tan and Wang, 2011)

• projection function $\pi_{\beta}: \mathcal{S}_{\beta} \longrightarrow [0, 1]$

$$\pi_{\beta}(\omega) = \sum_{i=1}^{\infty} \frac{\omega_i}{\beta^i}$$

• Let
$$1 < \beta' < \beta$$
 such that $S_{\beta'}$ is SFT.

- $H_{\beta}^{\beta'} := \pi_{\beta}(\Sigma_{\beta'})$ is a Cantor set of $\pi_{\beta}(\Sigma_{\beta}) = [0, 1)$.
- \bullet Define the function $h: H_{\beta}^{\beta'} \longrightarrow [0,1)$ as

$$h(x) = \pi_{\beta'}(\varepsilon(x,\beta)).$$

Proposition (Ban and L., 2014)

(i) For any $x \in H_{\beta}^{\beta'}$, we have $\varepsilon(h(x), \beta') = \varepsilon(x, \beta)$. (ii) The function h is bijective and strictly increasing on $H_{\beta}^{\beta'}$. (iii) The function h is continuous on $H_{\beta}^{\beta'}$. (iv) Let $\beta' \in A_0$ with $M = \sup\{\ell_n(1, \beta') : n \ge 1\}$. Then h is Hölder continuous on $H_{\beta}^{\beta'}$. More precisely,

$$|h(x) - h(y)| \le \beta'^{M+2} |x - y|^{\frac{\log \beta'}{\log \beta}}$$

for any $x, y \in H_{\beta}^{\beta'}$.

Key proposition: distribution of full cylinders

• cylinder of order n $((\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) \in \Sigma_{\beta}^n)$

$$I_n(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) = \{x \in [0, 1) : \varepsilon_k(x) = \varepsilon_k, 1 \le k \le n\}$$

• full cylinder

$$\left|I_n(w_1,\cdots,w_n)\right|=\beta^{-n}$$

- $I_n(w)$ is a full cylinder if and only if (w,w') is admissible for all $w'\in \Sigma^*_\beta$
- (Bugeaud and Wang, 2014) Every n + 1 consecutive cylinders of order n contains at least a full cylinder.
- (Li and L., 2018, JNT) finer structure of the distribution of full cylinders

Intermediate β **-expansions**

Bing Li (SCUT)

Some fractal problems in beta-expansions

Numeration 29 / 35

Intermediate β -transformations

Let $1 < \beta \leq 2$ and $0 \leq \alpha \leq 2 - \beta$. $T_{\beta,\alpha} : [0,1] \circlearrowleft$

$$T_{\beta,\alpha}(x) = \beta x + \alpha \pmod{1}$$

Figure: Plot of $T^+_{\beta,\alpha}$ for $\beta=(\sqrt{5}+1)/2$ and $\alpha=1-0.474\beta$

Bing Li (SCUT)

We refer to the set

$$\Delta := \left\{ (\beta, \alpha) \in \mathbb{R}^2 \colon \beta \in (1, 2) \text{ and } 0 \le \alpha \le 2 - \beta \right\}$$

as the parameter space for the set of intermediate β -transformations.

Fix $(\beta, \alpha) \in \Delta$ and let $p = p_{\beta, \alpha} := (1 - \alpha)/\beta$. The maps $T^{\mp}_{\beta, \alpha}$: $[0, 1] \circlearrowleft$ defined by

$$T^-_{\beta,\alpha}(p):=1 \quad \text{and} \quad T^-_{\beta,\alpha}(x):=\beta x+\alpha \bmod 1,$$

and

$$T^+_{\beta,\alpha}(p):=0 \quad \text{and} \quad T^+_{\beta,\alpha}(x):=\beta x+\alpha \bmod 1,$$

for all $x \in [0,1] \setminus \{p\}$, are, respective, called the lower and upper intermediate β -transformations.

Bing Li (SCUT)

Intermediate β -shifts

The $T^-_{\beta,\alpha}$ -expansion $\tau^-_{\beta,\alpha}(x)$, of a point x with respect to $T^-_{\beta,\alpha}$ is defined to be the infinite word $\omega^- = (\omega^-_1, \omega^-_2, \dots,) \in \{0, 1\}^{\mathbb{N}}$, where

$$\omega_n^- := \begin{cases} 0, & \quad \text{if } \ (T^-_{\beta,\alpha})^{n-1}(x) \leq p, \\ 1, & \quad \text{otherwise,} \end{cases}$$

for all $n \in \mathbb{N}$, where we recall that $p = (1 - \alpha)/\beta$.

Intermediate β -shifts

The $T^+_{\beta,\alpha}$ -expansion $\tau^+_{\beta,\alpha}(x)$, of a point x with respect to $T^+_{\beta,\alpha}$ is defined to be the infinite word $\omega^+ = (\omega^+_1, \omega^+_2, \dots,) \in \{0, 1\}^{\mathbb{N}}$, where

$$\omega_n^+ := \begin{cases} 0, & \quad \text{if } \ (T_{\beta,\alpha}^+)^{n-1}(x) < p, \\ 1, & \quad \text{otherwise,} \end{cases}$$

for all $n \in \mathbb{N}$, where we recall that $p = (1 - \alpha)/\beta$.

Intermediate β -shifts

The $T^+_{\beta,\alpha}$ -expansion $\tau^+_{\beta,\alpha}(x)$, of a point x with respect to $T^+_{\beta,\alpha}$ is defined to be the infinite word $\omega^+ = (\omega^+_1, \omega^+_2, \dots,) \in \{0, 1\}^{\mathbb{N}}$, where

$$\omega_n^+ := \begin{cases} 0, & \text{ if } (T_{\beta,\alpha}^+)^{n-1}(x) < p, \\ 1, & \text{ otherwise,} \end{cases}$$

for all $n \in \mathbb{N}$, where we recall that $p = (1 - \alpha)/\beta$.

The intermediate β -shift associated to a point $(\beta, \alpha) \in \Delta$ is defined to be the space $\Omega_{\beta,\alpha}$ given by

$$\Omega_{\beta,\alpha} = \tau_{\beta,\alpha}^-([0,1]) \cup \tau_{\beta,\alpha}^+([0,1]).$$

The upper and lower kneading invariants of $T^{\pm}_{\beta,\alpha}$ are defined to be the infinite words $\tau^{\pm}_{\beta,\alpha}(p)$, respectively.

Bing Li (SCUT)

Numeration 32 / 35

Theorem (Parry, 1960)

For $\beta \in (1,2)$, we have that

• the greedy β -shift is a subshift of finite type if and only if $\tau_{\beta,0}^-(p)$ is periodic and

• the lazy β -shift is a subshift of finite type if and only if $\tau^+_{\beta,2-\beta}(p)$ is periodic.

Theorem (L., Sahlsten and Samuel, 2016, DCDS) Let $(\beta, \alpha) \in \Delta$ with $\alpha \in (0, 2 - \beta)$ and let $p = (1 - \alpha)/\beta$. The intermediate β -shift $\Omega_{\beta,\alpha}$ is SFT if and only if both $\tau^{\pm}_{\beta,\alpha}(p)$ are periodic.

< (日) × (日) × (1)

Denseness

Theorem (L., Sahlsten, Samuel and Steiner, 2019, PAMS) The set of $(\beta, \alpha) \in \Delta$ such that the corresponding $\Omega_{\beta,\alpha}$ is SFT is dense in Δ .

Thanks for your attention!

Image: A mathematical states and a mathem