Rational numbers in $\times b$ -invariant sets

Ruofan Li

South China University of Technology

Joint work with Bing Li and Yufeng Wu One World Numeration Seminar, July 12, 2022

Let C be the classical middle-third Cantor set, which consists of real numbers in [0, 1] whose ternary expansions do not contain digit 1.

For any $n \ge 1$, we know that there are exactly 2^{n+1} rational numbers of the form $\frac{a}{3^n}$ in *C* with $a \in \mathbb{Z}$.

Rational numbers in Cantor set

$$\frac{1}{4} = \sum_{n=1}^{\infty} \frac{2}{3^{2n}} = \frac{2}{9} + \frac{2}{81} + \dots \in C.$$
$$\frac{3}{4} = \sum_{n=1}^{\infty} \frac{2}{3^{2n-1}} = \frac{2}{3} + \frac{2}{27} + \dots \in C.$$

Theorem (Wall, 1983)

$$C \cap \left\{ \frac{a}{2^n} \colon n \in \mathbb{N}, 0 < a < 2^n, \right\} = \left\{ \frac{1}{4}, \frac{3}{4} \right\}.$$

Theorem (Nagy, 2001)

Let $p \ge 5$ be a prime, then

$$C \cap \left\{ \frac{a}{p^n} \colon n \in \mathbb{N}, 0 < a < p^n, \right\}$$

is finite.

Let S be a finite set of primes, then the set of S-integers \mathbb{Z}_S is defined to be the set of rational numbers whose denominators can only be divided by primes in S. Equivalently,

$$\mathbb{Z}_{S} = \{ \alpha \in \mathbb{Q} \colon v_{p}(\alpha) < 0 \text{ implies } p \in S \},\$$

where $v_p(\alpha)$ is the unique integer such that $\alpha = p^{v_p(\alpha)} \frac{m}{n}$ for some $m, n \in \mathbb{Z}$ coprime with p.

Nagy's theorem can be rephrased as follows.

Theorem (Nagy, 2001)

Let $p \ge 5$ be a prime and $S = \{p\}$, then $C \cap \mathbb{Z}_S$ is finite.

When $S = \{2, 5\}$, we have the following result.

Theorem (Wall, 1990)

 $\mathbb{Z}_{\{2,5\}} \cap C$

consists of exactly 14 elements.

Let $b \ge 2$ be an integer and \mathcal{D} be a non-empty subset of $\{0, 1, \ldots, b-1\}$, the generalized Cantor set $C(b, \mathcal{D})$ is the set of real numbers in [0, 1] whose base *b* expansions only consist of digits in \mathcal{D} .

The classical middle-third Cantor set is $C = C(3, \{0, 2\})$.

Theorem (Bloshchitsyn, 2015)

Suppose $b \ge 3$ is an integer, $\mathcal{D} \subseteq \{0, 1, \dots, b-1\}$ has cardinality b-1 and p is a prime satisfying $p > b^2$. Then the set

 $\mathbb{Z}_{\{p\}} \cap C(b, \mathcal{D})$

is finite.

Theorem (Schleischitz, 2021)

Suppose $b \ge 3$ is an integer, $\mathcal{D} \subseteq \{0, 1, \dots, b-1\}$ be a non-empty set of cardinality at most b-1 and S is a finite set of primes not containing any divisor of b. Then the set

$$\mathbb{Z}_{S} \cap C(b, \mathcal{D})$$

is finite.

Theorem (Shparlinski, 2021)

Let $b \ge 2$ be an integer and $\mathcal{D} \subseteq \{0, 1, \dots, b-1\}$ be a non-empty set of cardinality at most b-1. Then there exists a constant $c_b > 0$, depending only on b, such that for any rational number $\frac{a}{d}$ in $C(b, \mathcal{D})$ with gcd(ab, d) = 1, we have

$$P(d) \ge c_b \sqrt{\log d \log \log d},$$

where P(d) denotes the largest prime divisor of d.

For any integer $b \geq 2$, the transformation $T_b \colon [0,1) \to [0,1)$ is defined by

$$T_b(x) = bx \pmod{1}.$$

We say that a set $A \subseteq [0,1)$ is T_b -invariant if $T_b(A) \subseteq A$.

All generalized Cantor sets C(b, D) are T_b -invariant.

Theorem (Li, L. and Wu)

Let $b \ge 2$ be an integer, S be a non-empty finite set of primes not containing any prime divisor of b, and A be a subset of [0,1). If A is not dense in [0,1] and $T_b(A \cap \mathbb{Q}) \subseteq A$, then A contains at most finitely many S-integers.

Theorem (Li, L. and Wu)

Let $b \ge 2$ be an integer and $A \subseteq [0,1)$ be a set satisfying $T_b(A \cap \mathbb{Q}) \subseteq A$. Suppose A is not dense in [0,1] and let $\varepsilon = \sup\{\operatorname{dist}(x,A) \colon x \in [0,1)\}$, where $\operatorname{dist}(x,A)$ denotes the distance between x and A. Then there exists an absolute constant K > 0, which can be effectively computed, such that for any rational number $\frac{a}{d}$ in A with $\operatorname{gcd}(ab, d) = 1$ and $\varepsilon d \ge 3$, we have

$$P(d) \geq egin{cases} K\sqrt{rac{1}{\log b}\log\left(2arepsilon d
ight)} & ext{if} \quad P(d) > b, \ K\sqrt{rac{1}{\log b}\log\left(2arepsilon d
ight)} & ext{if} \quad P(d) < b. \end{cases}$$

Theorem (Li, L. and Wu)

Let $b \ge 2$ be an integer and S be a non-empty finite set of primes not containing any prime divisor of b. For any $\varepsilon > 0$, there exists an effectively computable positive number D, such that for any $\frac{a}{d} \in \mathbb{Z}_S \cap [0,1)$ with (a,d) = 1 and d > D, the orbit of $\frac{a}{d}$ under T_b ,

$$\operatorname{Orb}_{\mathcal{T}_b}\left(\frac{a}{d}\right) := \left\{ \mathcal{T}_b^i\left(\frac{a}{d}\right) : i \ge 0 \right\},$$

is ε -dense in [0,1].

Now we use our ε -dense theorem to deduce the finiteness of *S*-integers in nondense T_b -invariant set *A*.

Since A is not dense in [0, 1], there exists $\varepsilon > 0$ such that A is not ε -dense in [0, 1].

Let
$$\frac{a}{d} \in A \cap \mathbb{Z}_S$$
 with $gcd(a, d) = 1$. Since $T_b(A \cap \mathbb{Q}) \subseteq A$, we have $\operatorname{Orb}_{T_b}\left(\frac{a}{d}\right) \subseteq A$, and so $\operatorname{Orb}_{T_b}\left(\frac{a}{d}\right)$ is also not ε -dense in [0, 1].

Therefore our ε -dense theorem implies that d < D for some positive number D. Clearly there are only finitely many rational numbers $\frac{a}{d} \in [0, 1)$ with d < D, hence A contains at most finitely many S-integers.

Since (b, d) = 1, there exists $k \in \mathbb{N}$ such that $b^k \equiv 1 \pmod{d}$. So $T_b^k\left(\frac{a}{d}\right) = \frac{ab^k}{d} \pmod{1} = \frac{a}{d}$, and hence

$$\operatorname{Orb}_{\mathcal{T}_b}\left(\frac{a}{d}\right) := \left\{ \mathcal{T}_b^i\left(\frac{a}{d}\right) : i \ge 0 \right\}$$

is a finite set.

The smallest such k is denoted by $\operatorname{ord}(\overline{b}, d)$. We use this notation because it is the order of $\overline{b} \pmod{d}$ in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^{\times}$.

We will find an integer $d_1 \mid d$ such that the value of d_1 is bounded and the following two sets are equal.

$$\begin{split} &A_1 = \left\{ T_b^i \left(\frac{a}{d}\right) : 0 \le i \le \operatorname{ord}(\overline{b}, d) - 1 \right\}, \\ &A_2 = \left\{ \frac{1}{d_0} T_b^i \left(\frac{a}{d_1}\right) + \frac{j}{d_0} : 0 \le i \le \operatorname{ord}(\overline{b}, d_1) - 1, 0 \le j \le d_0 - 1 \right\}, \end{split}$$

where $d_0 = \frac{d}{d_1}$. Note that A_2 is a union of $\frac{1}{2d_0}$ -dense sets. So for any $\varepsilon > 0$ and any d sufficiently large, the set A_1 is ε -dense.

$$\begin{split} A_1 &= \left\{ T_b^i \left(\frac{a}{d}\right) : 0 \leq i \leq \operatorname{ord}(\overline{b}, d) - 1 \right\}, \\ A_2 &= \left\{ \frac{1}{d_0} T_b^i \left(\frac{a}{d_1}\right) + \frac{j}{d_0} : 0 \leq i \leq \operatorname{ord}(\overline{b}, d_1) - 1, 0 \leq j \leq d_0 - 1 \right\}, \\ \text{where } d_0 &= \frac{d}{d_1}. \end{split}$$

We have $A_1 \subseteq A_2$ due to the following relation.

$$egin{aligned} & \left\{ ab^i \pmod{d} : 0 \leq i \leq \operatorname{ord}(\overline{b},d) - 1
ight\} \ & \subseteq \left\{ ab^i \pmod{d_1} + jd_1 : 0 \leq i \leq \operatorname{ord}(\overline{b},d_1) - 1, 0 \leq j \leq d_0 - 1
ight\}. \end{aligned}$$

Now to prove $A_1 = A_2$, it suffices to show that they have the same cardinality.

$$\begin{aligned} A_1 &= \left\{ T_b^i \left(\frac{a}{d} \right) : 0 \le i \le \operatorname{ord}(\overline{b}, d) - 1 \right\}, \\ A_2 &= \left\{ \frac{1}{d_0} T_b^i \left(\frac{a}{d_1} \right) + \frac{j}{d_0} : 0 \le i \le \operatorname{ord}(\overline{b}, d_1) - 1, 0 \le j \le d_0 - 1 \right\}. \end{aligned}$$

In other words, we need to show $\operatorname{ord}(\overline{b},d)=d_0\operatorname{ord}\left(\overline{b},d_1
ight).$

Lemma

Let $b \ge 2$ be an integer and p be a prime satisfies $p \nmid b$. Define

$$n_{p} = \begin{cases} \max\{3, v_{2}(b-1), v_{2}(b+1)\}, & \text{if } p = 2, \\ \max\{1, v_{p}(b^{p-1}-1)\}, & \text{if } p \neq 2, \end{cases}$$

Then for any integer $d = p^{e_p}$, we have

$$\operatorname{ord}(\overline{b},d) = p^{\max\{0,e_p-n_p\}} \operatorname{ord}\left(\overline{b},p^{\min\{e_p,n_p\}}\right)$$

The above equality is equivalent to

$$\operatorname{ord}(\overline{b}, p^{e_p}) = p^{e_p - n_p} \operatorname{ord}(\overline{b}, p^{n_p})$$
 for any $e_p > n_p$.

The difference between p = 2 and odd primes is due to the following classical result.

Lemma

For any $n \geq 3$, we have

$$(\mathbb{Z}/2^n\mathbb{Z})^{\times} \cong \langle \overline{-1} \rangle \times \langle \overline{5} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}.$$

For any odd prime p and $n \ge 1$, we have

 $(\mathbb{Z}/p^n\mathbb{Z})^{ imes}\cong \mathbb{Z}/(p-1)p^{n-1}\mathbb{Z}.$

$$n_2 = \max\{3, v_2(b-1), v_2(b+1)\}.$$

 $(\mathbb{Z}/2^n\mathbb{Z})^{\times} \cong \langle \overline{-1} \rangle \times \langle \overline{5} \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z} \text{ for } n \ge 3.$

We are going to show $\operatorname{ord}(\overline{b}, 2^e) = 2^{e-n_2} \operatorname{ord}(\overline{b}, 2^{n_2})$ for any $e > n_2$.

Since
$$e > n_2$$
, we have $b \not\equiv \pm 1 \pmod{2^e}$. So $\overline{b} \in \langle \overline{5} \rangle$ or $\langle \overline{-5} \rangle$ in $(\mathbb{Z}/2^e\mathbb{Z})^{\times}$. Let $\overline{g} = \overline{5}$ or $\overline{-5}$ such that $\overline{b} = \overline{g}^t$ for some $t \ge 1$.
In the groups $(\mathbb{Z}/2^{n_2+1}\mathbb{Z})^{\times}$, $(\mathbb{Z}/2^{n_2}\mathbb{Z})^{\times}$ and $(\mathbb{Z}/2^e\mathbb{Z})^{\times}$, we have

ord
$$(\overline{b}, 2^{n_2+1}) \operatorname{gcd}(t, 2^{n_2-1}) = 2^{n_2-1},$$

ord $(\overline{b}, 2^{n_2}) \operatorname{gcd}(t, 2^{n_2-2}) = 2^{n_2-2},$
ord $(\overline{b}, 2^e) \operatorname{gcd}(t, 2^{e-2}) = 2^{e-2}.$

$$\begin{aligned} & \operatorname{ord}(\overline{b}, 2^{n_2+1}) \operatorname{gcd}(t, 2^{n_2-1}) = 2^{n_2-1}, \\ & \operatorname{ord}(\overline{b}, 2^{n_2}) \operatorname{gcd}(t, 2^{n_2-2}) = 2^{n_2-2}, \\ & \operatorname{ord}(\overline{b}, 2^e) \operatorname{gcd}(t, 2^{e-2}) = 2^{e-2}. \end{aligned}$$

Since $b \neq 1 \pmod{2^{n_2+1}}$, we have $\operatorname{ord}(\overline{b}, 2^{n_2+1}) \neq 1$ and hence the first equation shows $v_2(t) \leq n_2 - 2$, which implies that $\operatorname{gcd}(t, 2^{n_2-2}) = \operatorname{gcd}(t, 2^{e-2})$. Then the second and third equations give $\operatorname{ord}(\overline{b}, 2^e) = 2^{e-n_2} \operatorname{ord}(\overline{b}, 2^{n_2})$. By the Chinese Reminder Theorem, we have a group isomorphism

$$egin{aligned} f:(\mathbb{Z}/d\mathbb{Z})^{ imes}&
ightarrow&\prod_{p\in S}(\mathbb{Z}/p^{e_p}\mathbb{Z})^{ imes}\ \overline{a}\pmod{d}&\mapsto(\overline{a}\pmod{p^{e_p}})_{p\in S} \end{aligned}$$

Therefore

$$\operatorname{ord}(\overline{b},d) = \operatorname{lcm}\{\operatorname{ord}(\overline{b},p^{e_p}) \colon p \in S\}.$$

Lemma

Let $b \ge 2$ be an integer and S be a non-empty finite set of primes not containing any prime divisor of b. Define

$$N_{
ho} = \max\{n_{
ho} - v_{
ho}(\operatorname{ord}(\overline{b}, p^{n_{
ho}})) + v_{
ho}(\operatorname{ord}(\overline{b}, q^{n_{q}})) \colon q \in S\}.$$

Then for any integer $d = \prod_{p \in S} p^{e_p}$, let $d_0 = \prod_{p \in S: e_p > N_p} p^{e_p - N_p}$ and $d_1 = \prod_{p \in S} p^{\min\{e_p, N_p\}}$, we have

$$\operatorname{ord}(\overline{b},d) = d_0 \operatorname{ord}\left(\overline{b},d_1\right).$$

Suppose $\frac{a}{d}$ in A with gcd(ab, d) = 1, and let S be the set of prime divisors of d. We have shown that $\operatorname{Orb}_{\mathcal{T}_b}(\frac{a}{d})$ contains a $\frac{d_1}{2d}$ -dense subset, so we must have $\frac{d_1}{2d} \ge \varepsilon$, where $\varepsilon = \sup\{\operatorname{dist}(x, A) \colon x \in [0, 1)\}$.

Since

$$d_1 = \prod_{p \in S} p^{\min\{e_p, N_p\}},$$

we have

$$2d\epsilon \leq d_1 \leq \prod_{p \in S} p^{N_p}.$$

$$n_p = \begin{cases} \max\{3, v_2(b-1), v_2(b+1)\}, & \text{ if } p = 2, \\ \max\{1, v_p(b^{p-1}-1)\}, & \text{ if } p \neq 2. \end{cases}$$

Note that

$$v_{
ho}(x) \leq rac{\log x}{\log p}$$
 for any integer $x > 0,$

SO

$$n_p \ll \frac{p \log b}{\log p}.$$

$$egin{aligned} n_p &\ll rac{p\log b}{\log p}.\ N_p &= \max\{n_p - v_p(\operatorname{ord}(\overline{b}, p^{n_p})) + v_p(\operatorname{ord}(\overline{b}, q^{n_q}))\colon q\in S\}. \end{aligned}$$

Note that $\operatorname{ord}(\overline{b}, q^{n_q})$ cannot be bigger than the order of $(\mathbb{Z}/q^{n_q}\mathbb{Z})^{\times}$, which equals $(q-1)q^{n_q-1}$, so

$$v_p(\operatorname{ord}(\overline{b},q^{n_q})) \leq rac{\log{(q-1)q^{n_q-1}}}{\log{p}} \leq rac{n_q\log{q}}{\log{p}} \ll rac{q\log{b}}{\log{p}}.$$

Let P be the largest element in S, then

$$N_p \ll \frac{\log b}{\log p} (p+P) \ll \frac{\log b}{\log p} P$$

$$2d\epsilon \leq \prod_{p \in S} p^{N_p}$$
 and $N_p \ll \frac{\log b}{\log p} P$

Then

$$\log 2d\epsilon \leq \sum_{p \in S} N_p \log p \ll (\log b) \sum_{p \in S} P = P \# S \log b.$$

The prime number theorem says that the cardinality of S satisfies $\#S \ll \frac{P}{\log P},$ hence

$$\log 2d\epsilon \ll \frac{P^2}{\log P}\log b.$$

The inequality in our theorem is deduced from above through some simple calculations.

Corollary

Let $b \ge 2$ be an integer, S be a non-empty finite set of primes not containing any prime divisor of b, and A be a subset of [0,1]. If A is not dense in [0,1] and $T_b(A) \subseteq A$, then \overline{A} , the closure of A, contains at most finitely many S-integers.

Proof.

Note that A is T_b -invariant implies \overline{A} is also T_b -invariant.

Corollary

Let $b \ge 2$ be an integer, $d \ge 2$ be another integer such that there exists at least one prime $p \mid d$ such that $p \nmid b$, and A be a subset of [0,1). If A is not dense in [0,1] and $T_b(A \cap \mathbb{Q}) \subseteq A$, then A contains at most finitely many rational numbers of the form $\frac{a}{d^n}$, $n \in \mathbb{N}$.

Proof.

Let \tilde{d} be the largest divisor of d satisfying $gcd(\tilde{d}, b) = 1$. We choose a big enough integer m such that

$$T_b^m\left(rac{a}{d^n}
ight)=rac{\widetilde{a}}{\widetilde{d}^n},$$

for some integer \tilde{a} . Now our theorem says that n is bounded.

Corollary

Let $b \ge 2$ be an integer, S be a non-empty finite set of primes not containing any prime divisor of b. Let $X \subseteq \mathbb{Z}_S \cap [0,1)$ be an infinite subset of S-integers. Then the set

$$\operatorname{Orb}_{\mathcal{T}_b}(X) \coloneqq \left\{ b^k x \; (\mathsf{mod1}) : x \in X, k \ge 0 \right\}$$

is dense in [0,1].

Proof.

 $X \subseteq \operatorname{Orb}_{\mathcal{T}_b}(X) = \bigcup_{k=0}^{\infty} \mathcal{T}_b^k X$ is \mathcal{T}_b -invariant. If $\operatorname{Orb}_{\mathcal{T}_b}(X)$ is not dense in [0, 1], then our theorem implies that $\operatorname{Orb}_{\mathcal{T}_b}(X)$ contains at most finitely many S-integers, which contradicts X is an infinite subset of S-integers.

Thank you