On a question of Douglass and Ono

Florian Luca

One World Numeration Seminar, November 12, 2024

Kate Douglass

Ken Ono

Uniform distribution

Definition

A sequence $(a_n)_{n\geq 1}\subset [0,1]$ is said to be *uniformly distributed* (UD) if

$$\lim_{X \to \infty} \frac{\#\{n \le X : a_n \in (\alpha, \beta)\}}{X} = \beta - \alpha \quad \text{for all} \quad 0 \le \alpha < \beta \le 1.$$

For a real number x write

$$x = \lfloor x \rfloor + \{x\},$$
 where $\lfloor x \rfloor \in \mathbb{Z}$ and $\{x\} \in [0,1)$.

Definition

A sequence of real numbers is uniformly distributed modulo 1 (UD mod 1), if the sequence of fractional parts $\{a_n\} \in [0,1)$ is UD.

Example

If $\tau \in \mathbb{R} \setminus \mathbb{Q}$, then $n\tau$ is UD mod 1.

Example

Question

What is the proportion of Fibonacci numbers that start with the digit 2?

Recall that the Fibonacci numbers $(F_n)_{n\geq 0}$ form the sequence starting with $F_0=0,\ F_1=1$ and of recurrence

$$F_{n+2} = F_{n+1} + F_n$$
 for all $n \ge 0$.

We write the Binet formula

$$F_n=rac{1}{\sqrt{5}}(\phi^n-\psi^n), \quad ext{where} \quad (\phi,\psi):=\left(rac{1+\sqrt{5}}{2},rac{1-\sqrt{5}}{2}
ight).$$

The condition is

$$2 \cdot 10^m \le F_n < 3 \cdot 10^m$$
.

We take logs and use the Binet formula to get

$$\log(2\cdot 10^m) \leq \log\left(\frac{\phi^n}{\sqrt{5}}\left(1-\left(\frac{\psi}{\phi}\right)^n\right)\right) < \log(3\cdot 10^m).$$

This is

$$\log 2 + m \log 10 \le n \log \phi - \log \sqrt{5} + \log \left(1 - \left(\frac{-1}{\phi^2}\right)^n\right) < \log 3 + m \log 10$$

Dividing by log 10 and rearranging we get

$$\frac{\log 2}{\log 10} + \frac{\log \sqrt{5}}{\log 10} + o(1) \le n \left(\frac{\log \phi}{\log 10}\right) - m \le \frac{\log 3}{\log 10} + \frac{\log \sqrt{5}}{\log 10} + o(1).$$

$$\frac{\log 2}{\log 10} := 0.30103\ldots, \quad \frac{\log 3}{\log 10} := 0.477121\ldots, \quad \frac{\log \sqrt{5}}{\log 10} := 0.34948$$

The above inequality means that

$$\alpha + o(1) \le \{n\tau\} \le \beta + o(1)$$

where

$$\alpha = \frac{\log 2}{\log 10} + \frac{\log \sqrt{5}}{\log 10}, \quad \beta = \frac{\log 3}{\log 10} + \frac{\log \sqrt{5}}{\log 10}, \quad \tau = \frac{\log \phi}{\log 10}.$$

Since our $\boldsymbol{\tau}$ is irrational, the example shows that the proportion is

$$\beta - \alpha = \frac{\log 3}{\log 10} - \frac{\log 2}{\log 10} = \log_{10} \left(1 + \frac{1}{2}\right).$$

Benford's law

Definition

We say that a sequence of integers $(a_n)_{n\geq 1}$ satisfies the Benford law in base $b\geq 2$ if for every string of digits f written in base b, we have

$$\lim_{\substack{X \to \infty}} \frac{\#\{n \le X : a_n \text{ in base } b \text{ starts with } f\}}{X}$$

$$= \log_b(f+1) - \log_b f \mod 1,$$

where on the right we interpret f as an integer in base b (that is, if $f = f_0 f_1 \dots f_{l-1}$ has t digits in $\{0, 1 \dots, b-1\}$ with $f_0 \neq 0$, then

$$f = f_0 b^{t-1} + f_1 b^{t-2} + \cdots + b_{t-1}.$$

A criterion of Anderson, Rolen, Stoehr

The following criterion appears in a paper of **2011**.

Definition

We say that an integer sequence $(a_n)_{n\geq 1}$ is good if

$$a(n) \sim b(n)e^{c(n)}$$
 as $n \to \infty$,

where the following conditions are satisfied:

- (i) There exists some integer $h \ge 1$ such that c(n) is h-differentiable and $c^{(h)}(n) \to 0$ monotonically for large n.
- (ii) We have that

$$\lim_{n\to+\infty} n|c^{(h)}(n)|=+\infty.$$

(iii) We have that

$$\lim_{n \to +\infty} \frac{D^{(h)} \log b(n)}{c^{(h)}(n)} = 0 \quad (D^{(h)} \quad \text{is the h derivative}).$$

Their main result is the following:

Theorem

Good integer sequences abide by Benford's law in any integer base $b \ge 2$.

Example

Let

$$p(n) = \#\{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k \ge 1 : \lambda_1 + \cdots + \lambda_k = n\}$$

be the partition function of n. For example, p(3) = 3 since

$$3, 2+1, 1+1+1.$$

It is known that

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{2n/3}}$$
 as $n \to +\infty$.

Then

$$b(n) := \frac{1}{4n\sqrt{3}}$$
 and $c(n) := \pi\sqrt{2n/3}$.

We take h = 1 and observe that

$$c'(n)=\frac{\pi}{\sqrt{6n}}$$

tends to zero monotonically, so (i). Also,

$$nc'(n) = \pi \sqrt{n/6} \to +\infty$$
 as $n \to +\infty$,

so (ii). Furthermore,

$$rac{D'\log b(n)}{c'(n)}=rac{-1/n}{\pi/\sqrt{6n}}=-rac{1}{\pi\sqrt{n/6}}
ightarrow 0\quad (n
ightarrow+\infty)\quad ext{so, (iii)}.$$

So, we proved the following result.

Theorem

The partition function p(n) abides Benford's law in any integer base b > 2.

There are many other partition functions. One of them is the plane partition function.

Example

We take

$$\mathsf{PL}(n) = \#\{(\pi_{i,j}) : \pi_{i,j} \in \mathbb{N}, \ \pi_{i,j} \ge \pi_{i,j+1}, \ \pi_{i+1,j} \ge \pi_{i,j}, \ \sum_{i,j} \pi_{i,j} = n\}$$

For n = 3, we have

3,
$$2+1$$
, $1+1+1$, $\frac{2}{1}$, $\frac{1}{1}$, $\frac{1}{1}$, so $PL(3)=6$.

It is known that

$$\mathsf{PL}(n) \sim \frac{(2^{25}A^7)^{1/36}e^c}{\sqrt{12\pi}n^{25/36}} \exp\left(\sqrt[3]{\frac{27An^2}{4}}\right) \quad \text{as} \quad n \to +\infty,$$

where

$$A = \zeta(3) \sim 1.202056..., \quad c = \zeta'(-1) = -0.16542...$$

Douglass, Ono proved in **2024** that $(PL(n))_{n\geq 1}$ abides Benford's law in any integer base $b\geq 2$ and set forward the following effectivity question.

Question

Find N(b, f) such that there is $n \le N(b, f)$ with PL(n) starting with the string f in base b.

The rest of the talk is devoted to this task.

The case of the partition function

Let $t := \lfloor \log f / \log b \rfloor + 1$ be the number of digits of the string f in base b.

Theorem

For the partition function p(n) one can take

$$N(b, f) = \exp\left(2 \cdot 10^{25} (t + 12) (\log b)^2\right).$$

What do we need?

We need three ingredients:

- (i) An estimate with explicit error term for the partition function.
- (ii) The Erdős, Koksma, Turán inequality which gives an upper bound for the discrepancy of a sequence of real numbers modulo 1.
- (iii) A linear in logarithms of algebraic numbers with algebraic coefficients due to Philippon, Waldschmidt.

For (i) we use the following result of Lehmer.

Lemma

Let $\mu(n) := \frac{\pi}{6}\sqrt{24n-1}$. Then the inequality

$$\left| p(n) - \frac{\sqrt{3}}{12n} e^{\mu(n)} \right| < \frac{\sqrt{3}}{12n^{3/2}} e^{\mu(n)}$$

holds for all positive integers n.

Discrepancy

For (ii), we need some further notation and terminology. The discrepancy of a sequence $(b_m)_{m=1}^N$ of real numbers (not necessarily distinct) is defined as

$$D_N := \sup_{0 \le \gamma \le 1} \left| \frac{\#\{m \le N : \{b_m\} < \gamma\}}{N} - \gamma \right|.$$

From the above definition, we see that the inequality

$$\#\{m \le N : \alpha \le \{b_m\} < \beta\} \ge (\beta - \alpha)N - 2ND_N$$
 (1)

holds for all $0 \le \alpha < \beta \le 1$.

Lemma

We have

$$D_N \leq \frac{6}{H} + \frac{4}{\pi N} \sum_{h \leq H} \frac{1}{h} \left| \sum_{n=1}^N e^{2\pi i h b_n} \right|,$$

where ||x|| is the distance to the nearest integer and $H \le N$ is an arbitrary positive integer.

The proof of the theorem

We write

$$f:=b_0b^{t-1}+b_1b^{t-2}+\cdots+b_{t-1},$$

where $b_0, \ldots, b_{t-1} \in \{0, 1, \ldots, b-1\}, \ b_0 \neq 0$. We set

$$\lambda := \frac{f+0.5}{b^t} = b_0 + \frac{b_1}{t} + \cdots + \frac{b_{t-2}}{b^{t-2}} + \frac{b_{t-1}+0.5}{b^{t-1}}.$$

Any real number M such that for some integer m > t we have

$$|M - b^m \lambda| < \frac{b^m}{b^{t+2}} \tag{2}$$

has the property that its first t digits in base b are $b_0, b_1, \ldots, b_{t-1}$. So, we want to infer that we can take M = p(n) for an n at most as large as N(b, f).

By Lehmer's lemma, the equation holds for M = p(n) provided that the following two inequalities

$$\left| p(n) - \frac{\sqrt{3}}{12n} e^{\mu(n)} \right| < \frac{\sqrt{3}}{12nb^{t+5}} e^{\mu(n)},$$
 (3)

and

$$\left|\frac{\sqrt{3}}{12n}e^{\mu(n)}-b^m\lambda\right|<\frac{b^m}{b^{t+5}}\tag{4}$$

hold. For the first one it suffices that

$$n > b^{2t+10}$$
. (5)

We look at the second one.

This can be rewritten as

$$\left| \left(\frac{\sqrt{3}}{12n} e^{\mu(n)} \right) (b^m \lambda)^{-1} - 1 \right| < \frac{1}{\lambda b^{t+5}}. \tag{6}$$

It is implied by

$$\left|-m\log b + \frac{\pi}{6}\sqrt{24n-1} + \log\left(\frac{\sqrt{3}}{12n\lambda}\right)\right| < \frac{1}{2b^{t+6}}.$$
 (7)

We evaluate the above in *n*'s of a certain form, namely

$$n := n_j^2, \quad n_j = b^T + j, \quad j = 0, 1, \dots, N,$$
 (8)

where

T is an integer such that $b^T > N^2$.

We can take

$$T := |2\log N/\log b| + 1.$$

We also assume that (5) is satisfied for n := N.

We put

$$f(x) := \sqrt{1-x}.$$

By Taylor's formula one gets

$$\sqrt{24n_j^2-1} = \sqrt{24}n_j + \eta_j, \quad ext{where} \quad |\eta_j| < rac{1}{2\sqrt{12}N^2}.$$

By the triangular inequality, we then have

$$\begin{vmatrix} -m_{j} \log b + \frac{\pi}{6} \sqrt{24n_{j}^{2} - 1} + \log \left(\frac{\sqrt{3}}{12n_{j}^{2}\lambda} \right) \end{vmatrix}$$

$$< \left| -m_{j} \log b + \sqrt{\frac{2}{3}} \pi n_{j} + \log \left(\frac{\sqrt{3}}{12n_{j}^{2}\lambda} \right) \right|$$

$$+ \frac{\pi}{12\sqrt{12}N^{2}}.$$

One calculates that it is enough that

$$\left|-m_j+\frac{\sqrt{\frac{2}{3}\pi n_j+\log\left(\frac{\sqrt{3}}{12n_j\lambda}\right)}}{\log b}\right|<\frac{1}{b^{t+7}}.$$

So, we take the sequence of general term

$$b_{n_j} := c_b n_j + rac{\log\left(rac{\sqrt{3}}{12n_j^2\lambda}
ight)}{\log b} \quad ext{where} \quad c_b := rac{\sqrt{rac{2}{3}}\pi}{\log b},$$

and we need to show that there is

$$n_j\in(b^{2t+10},N(b,f)),$$

such that $\{b_n\} \in I$, where

$$I:=\left(0,\frac{1}{b^{t+7}}\right).$$

It turns out that the conditions

$$D_N < 1/(4b^{t+7})$$
 and $N > 2b^{3t+17}$

are sufficient.

So, it suffices that

$$D_N < \frac{1}{b^{t+9}} \le \frac{1}{4b^{t+7}}.$$

But

$$D_{N} \leq \frac{6}{H} + \frac{2}{N} \sum_{m=1}^{H} \sum_{h \leq H} \frac{1}{h} \left| \sum_{j=1}^{N} e^{2\pi i h b_{n_{j}}} \right|.$$
 (9)

Since

$$b_{n_j} - b_{n_0} = c_b(n_j - n_0) - \frac{2\log(n_j/n_0)}{\log b} = c_b j - \left(\frac{2}{\log b}\right) \log\left(1 + \frac{j}{b^T}\right).$$

and the second term is small, so one estimates that

$$2\pi \textit{ih}(\textit{b}_{\textit{n}_{\textit{j}}}-\textit{b}_{\textit{n}_{\textit{0}}}) = 2\pi \textit{ihc}_{\textit{b}}\textit{j} + \zeta_{\textit{h},\textit{j}}, \quad \text{where} \quad |\zeta_{\textit{h},\textit{j}}| < \frac{4\pi \textit{H}}{(\log \textit{b})\textit{N}} < \frac{6\pi \textit{H}}{\textit{N}}.$$

Hence,

$$e^{2\pi i h(b_{n_j}-b_{n_0})}=e^{2\pi i h c_b j}e^{\zeta_{h,j}}=e^{2\pi i h c_b j}(1+\eta_{h,j})=e^{2\pi i h c_b j}+\eta_{h,j}',$$

where

$$|\eta'_{h,j}| = |\eta_{h,j}| < \frac{12\pi H}{N}.$$

So, in the exponential sum we get

$$\left| \sum_{j=1}^{N} e^{2\pi i h b_{n_{j}}} \right| = \left| \sum_{j=1}^{N} e^{2\pi i h (b_{n_{j}} - b_{n_{0}})} \right|$$

$$= \left| \sum_{j=1}^{N} \left(e^{2\pi i h c_{b} j} + \eta'_{h,j} \right) \right|$$

$$\leq \left| \sum_{j=1}^{N} e^{2\pi i h c_{b} j} \right| + \left| \sum_{j=1}^{N} \eta'_{h,j} \right|$$

$$\leq \left| \frac{e^{2\pi i N h c_{b}} - 1}{e^{2\pi i h c_{b}} - 1} \right| + 12\pi H. \tag{10}$$

The first term on the right–hand side in the last line of (22) is in absolute value at most

$$\frac{1}{|\sin(\pi h c_b)|} = \frac{1}{|\sin(\pi || h c_b||)} \le \frac{1}{2||h c_b||}.$$
 (11)

We get

$$D_N \leq \frac{6}{H} + \frac{\log H + 1}{\min_{1 \leq h \leq H} \|hc_b\|} + \frac{48H(1 + \log H)}{N}.$$

Denoting by ℓ_h the closest integer to hc_b , we get that

$$\|hc_b\| = \left|\ell_h - \frac{\sqrt{\frac{2}{3}}\pi h}{\log b}\right| = \frac{1}{\log b}\left|\ell_h \log b - \sqrt{\frac{2}{3}}\pi h\right|.$$

Writing $\pi = (-i^2)\pi = -i\log(-1)$, where $i^2 = -1$, we get that the right–hand side above is

$$\left| -\ell_h \log b + \left(-i\sqrt{\frac{2}{3}}h \right) \log(-1) \right|. \tag{12}$$

The above expression is non-zero by the Gelfond–Schneider theorem. It is a linear form in logarithms of algebraic numbers with algebraic coefficients and we need a lower estimate on it.

We use a linear form in logarithms of Phillipon, Waldschmidt of 1988.

After calculations, we choose

$$H := \left[\exp \left(\frac{\log N}{4.7 \cdot 10^{24} \log b} \right) \right].$$

Then

$$D_N \le \frac{6N + H \exp(4.6 \cdot 10^{24} \log b \log H)}{HN} < \frac{7}{H}.$$

We need that $D_N \leq 1/b^{t+9}$. So, we need that

$$\frac{7}{H} \leq \frac{1}{b^{t+9}},$$

which gives

$$7b^{t+9} < H$$
.

which implies that one has to choose N to be at least

$$\exp(4.7 \cdot 10^{24} (t+12) (\log b)^2)$$

Next our n_j were of the form $b^T + j$ for $j \le N$ and $b^T > N^2$. So, it suffices to take

$$T := \left\lfloor \frac{2 \log N}{\log b} \right\rfloor + 1 = 1 + 9.4 \cdot 10^{24} (t + 12) \log b.$$

With this choice for T, and since our n's were

$$n_j^2 \leq (2b^T)^2 \leq b^{2T+2},$$

we can take

$$N(b, f) := \exp(2 \cdot 10^{25} (t + 12) (\log b)^2),$$

as promised.

The plane partition function

One of the key elements from the previous proof fails so we get a better result.

Theorem

For the plane partition function PL(n) one can take

$$N_{PL}(b, f) = b^{51t+688}$$
.

This part will appear in *Annals of Combinatorics*.

Let's follow along the previous proof. The following result is from a paper of Ono, Pujahari, Rollen of **2022**.

Lemma

Let
$$A := \zeta(3) \approx 1.202056...$$
, $c := \zeta'(-1) \approx -0.16542...$, $\mu(n) := 3 \cdot (A/4)^{1/3} n^{2/3}$.

Then the inequality

$$\left| \text{PL}(n) - \frac{B}{n^{25/36}} e^{\mu(n)} \right| < \frac{100B}{n^{25/36 + 2/3}} e^{\mu(n)}$$

holds for all $n \ge 105$, where

$$B:=\frac{2^{25/26}e^cA^{7/26}}{\sqrt{12\pi}}.$$

We set up the same machine. We write

$$f = b_0 b^{t-1} + b_1 b^{t-2} + \cdots + b_{t-1},$$

where $b_0, \ldots, b_{t-1} \in \{0, 1, \ldots, b-1\}, \ b_0 \neq 0$. We set

$$\lambda := \frac{f+0.5}{b^{t-1}} = b_0 + \frac{b_1}{b} + \cdots + \frac{b_{t-2}}{b^{t-2}} + \frac{b_{t-1}+0.5}{b^{t-1}}.$$

Any real number M such that for some integer m > t we have

$$|M - b^m \lambda| < \frac{b^m}{b^{t+2}} \tag{13}$$

has the property that its first t digits in base b are $b_0, b_1, \ldots, b_{t-1}$. So, we want to infer that we can take M = PL(n) for an n at most as large as $N_{PL}(b, f)$.

For us, this happens if

$$\left| \frac{B}{n^{25/36}} e^{\mu(n)} - b^m \lambda \right| < \frac{b^m}{b^{t+5}}$$
 (14)

and

$$n > b^{2t+20}$$
. (15)

The first relation above is implied by

$$\left| -m + \frac{3 \cdot 2^{-2/3} A^{1/3} n^{2/3} - (25/36) \log n + \log(B/\lambda)}{\log b} \right| < \frac{1}{b^{t+7}}.$$
(16)

Again we specialize in numbers of a certain form.

Namely, we take $1 \le H < N$ with H an integer depending on N to be determined later,

$$p \in [2H, 3H]$$

to be prime, q := q(p) to be the smallest prime q > p and

$$n_{p,j} := q^3 b^{3T} + p j b^T$$
 for $j = 0, ..., N,$ (17)

where T is an integer such that $b^T > N^2$.

We can take again $T := \lfloor 2 \log N / \log b \rfloor + 1$.

Notice that $n_{p,j}$ are distinct for distinct pairs (p,j). Indeed, if

$$n_{p,j}=n_{p',j'},$$

then

$$q^3b^{3T} + pjb^T = q'^3b^{3T} + p'j'b^T.$$

If q = q', then also p = p' and the above relation gives us j = j'. So, we may assume that $q \neq q'$ and to fix ideas that q > q'. We then get

$$\begin{array}{lcl} 2\cdot (2H)^2b^{3T} & \leq & (p^2+p'^2)b^{3T} < (q^2+qq'+q'^2)b^{3T} \\ & < & (q^3-q'^3)b^{3T} = (p'j'-pj)b^T < p'j'b^T < 3HNb^T, \end{array}$$

which is of course absurd since $b^T > N^2$.

We take

$$a_{n_{p,j}} := \frac{3 \cdot 2^{-2/3} A^{1/3} n_{p,j}^{2/3} - (25/36) \log n_{p,j} + \log(B/\lambda)}{\log b}.$$
 (18)

By (16), we need to find N such as to guarantee that there is $j \in [1, N]$ such that

$$n_i > b^{2t+20}$$

and

$$\{a_{n_{p,j}}\}<\frac{1}{b^{t+7}}.$$
 (19)

Lemma

The estimate

$$a_{n_{p,j}} - a_{n_{p,0}} = rac{2^{1/3} A^{1/3} jp}{q \log b} + \zeta_{p,j}, \qquad ext{where} \qquad |\zeta_{p,j}| < rac{2}{N^2}$$

holds for all j = 1, ..., N and $p \in [2H, 3H]$ provided $N > \max\{H, 10\}$.

The proof follows from Taylor's formula, as in the case of the partition function.

Lemma

Put $c_b := 2^{1/3} A^{1/3} / \log b$. We then have

$$e^{2\pi i h(a_{n_{p,j}}-a_{n_{p,0}})}=e^{2\pi i h c_b j p/q}+\eta_{p,j,h}, \quad \textit{with} \quad |\eta_{p,j,h}|<rac{8\pi}{N}$$

for all $p \in [2H, 3H]$, $h \in [1, H]$ and $j \in [1, N]$ provided $N > \max\{H, 30\}$.

So, for fixed $p \in [2H, 3H]$, we take the sequence of general term $a_{n_{p,j}}$ given by (18) for $j = 1, \ldots, N$ and we want to show that for some p and $j \leq N$ such that $n_{p,j}$ satisfies (15) we have $\{a_{n_{p,j}}\} \in J$, where

$$J=\left(0,\frac{1}{b^{t+7}}\right).$$

Assume that

$$D_{p,N} \leq 1/(4b^{t+7}).$$

Then, by (1), the number of $j \leq N$ for which $\{a_{n_{p,j}}\} \in J$ is at least

$$\#JN - 2ND_{p,N} \ge \frac{N}{b^{t+7}} - \frac{N}{2b^{t+7}} \ge \frac{N}{2b^{t+7}}.$$
 (20)

and this is large enough for

$$N > b^{3t+38}$$

So, we go again to the estimate:

$$D_{p,N} \le \frac{6}{H} + \frac{4}{\pi N} \sum_{h=1}^{H} \frac{1}{h} \left| \sum_{j=1}^{N} e^{2\pi i h a_{n_{p,j}}} \right|. \tag{21}$$

With our choices we manipulate the inner sum as

$$\left| \sum_{j=1}^{N} e^{2\pi i h a_{n_{p,j}}} \right| = \left| \sum_{j=1}^{N} e^{2\pi i h (a_{n_{p,j}} - a_{n_{p,0}})} \right| \\
= \left| \sum_{j=1}^{N} \left(e^{2\pi i h c_{b} j p / q} + \eta_{p,j,h} \right) \right| \\
\leq \left| \sum_{j=1}^{N} e^{2\pi h c_{b} j p / q} \right| + \left| \sum_{j=1}^{N} \eta_{p,j,h} \right| \\
\leq \left| \frac{e^{2\pi N h c_{b} p / q} - 1}{e^{2\pi h c_{b} p / q} - 1} \right| + 8\pi. \tag{22}$$

The above argument assumes that c_bhp/q is not an integer. But if

$$c_b h p/q = m_{b,h,p,q}$$

is an integer, then $m_{b,h,p,q}$ is smaller that

$$c_b h < (1.34/\log b)p < 6H.$$

Thus,

$$c_b = m_{b,h,p,q}q/(hp)$$

is a rational number whose numerator is a divisor of

$$m_{b,p,q,h}q < 6Hq < 6H(2p) \le 36H^2 < (2H)^3$$

for $H \ge 5$ and a multiple of q since $q > p \ge 2H > h$. In the above, we used Bertrand's postulate to conclude that $q < 2p \le 6H$. Thus, the unlikely case when c_bhp/q ends up being an integer, which in particular implies that c_b is rational, can happen for at most two values of q which must be prime factors larger than 2H of the numerator of c_b in reduced form.

Lemma

The inequality

$$D_{p,N} \le \frac{6}{H} + \frac{32(\log H + 1)}{N} + \sum_{h=1}^{H} \frac{1}{h \|hc_b p/q\|}.$$
 (23)

holds for all $p \in [2H, 3H]$ with at most two exceptions provided 5 < H < N and N > 30.

Lemma

There are at most two values of $p \in [2H, 3H]$ such that there exists $h \in [1, H]$ with the property that

$$||hc_bp/q|| < \frac{1}{162H^6}.$$
 (24)

Assume $m_h \neq 0$ and $m_h - c_b h p / q \neq 0$. We then have

$$m_h < c_b h p/q + 1/(162H^6) < 1.94H + 1/162 < 2H$$

(since in fact $c_b < 1.94$). Further,

$$0 < \left| \frac{m_h q}{h p} - c_b \right| < \frac{q}{162 h p H^6} < \frac{1}{81 H^6} = \frac{1}{3(3H^2)^3}.$$
 (25)

Note that $hp < 3H^2$ so writing $m_h q/(hp) = P/Q$ the inequality

$$0<\left|\frac{P}{Q}-c_b\right|<\frac{1}{3Q^3}$$

is satisfied. We show that there is at most one p for which the above inequality is satisfied for some h. Indeed, assume that $p' \neq p \in [2H, 3H]$ is such that the above inequality is also satisfied with $P'/Q' = m_{h'}q'/(h'p')$ for some $h' \in \{1, \ldots, H\}$. Noting that Q, $Q' \in [2H, 3H^2]$, it follows that $Q < Q'^2$ and $Q' < Q^2$. In particular, $2QQ' < \min\{2Q^3, 2Q'^3\}$. Thus, we get

$$\left| rac{PQ' - P'Q}{QQ'}
ight| = \left| rac{P'}{Q'} - rac{P}{Q}
ight| \le \left| rac{P'}{Q'} - c_b
ight| + \left| rac{P}{Q} - c_b
ight| < rac{2}{3QQ'}.$$

So, the last two lemmas show that with at most four exceptions in $p \in [2H, 3H]$ such that inequality (24) holds for some $h \in \{1, ..., H\}$.

Next, note that there are $\pi(3H) - \pi(2H)$ primes in [2H, 3H]. Here, $\pi(x)$ is the number of primes $p \le x$. Using estimates from Rosser, Schoenfeld **1962** we have that

$$\pi(3H) - \pi(2H) > \frac{3H}{\log(3H)} - \frac{5H}{2\log(2H)}$$
 $(H > 60).$

The above function exceeds 4 for all $H \ge 73$. Thus, if $H \ge 73$, there are at least five primes in [2H, 3H] and in particular there exists a prime $p \in [2H, 3H]$ such that inequality (23) holds and additionally

$$||c_bhp/q|| \geq \frac{1}{162H^6}$$

holds for all h = 1, ..., H.

This gives

$$D_{p,N}<\frac{6}{H}+\frac{12H^7}{N}$$

for $H \ge 73$. We choose $H := \lfloor N^{1/8} \rfloor$, and we get

$$D_{p,N} = \frac{6N + 12H^8}{NH} \le \frac{18}{H} < \frac{19}{H+1} < \frac{19}{N^{1/8}}.$$

Of course, we want $N \ge \max\{b^8, 73^8\}$. Since $b \ge 2$, it suffices that $N \ge b^{50}$. We need that

$$\frac{19}{N^{1/8}} \le \frac{1}{b^{t+9}}.$$

This works when $N > b^{8t+106}$.

Recall that our n's are of the form

$$n_j = q^3 b^{3T} + p j b^T$$
 for $j = 1, \dots, N$.

We want $b^T > N^2$, so we take T = 16t + 213. Then

$$q < 2p \le 6H \le 6N^{1/8} = 6b^{t+13.25} < b^{t+16}$$

and then

$$n < 2q^3b^{3T} < 2b^{3t+48+48t+639} \le b^{51t+688}$$
.

MERCI BEAUCOUP!