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Abstract:

Complex continued fractions (CFs) represent a complex number using a descending fraction with Gaussian integer coefficients. The
associated dynamical system is exact (Nakada 1981) with a piecewise-analytic invariant measure (Hensley 2006). Certain higher-
dimensional CFs, including CFs over quaternions, octonions, as well as the non-commutative Heisenberg group can be understood in a
unified way using the Iwasawa CF framework (L-Vandehey 2022). Under some natural and robust assumptions, ergodicity of the
associated systems can then be derived from a connection to hyperbolic geodesic flow, but stronger mixing results and information about
the invariant measure remain elusive. Here, we study lwasawa CFs under a more delicate serendipity assumption that yields the finite
range condition, allowing us to extend the Nakada-Hensley results to certain lwasawa CFs over the quaternions, octonions, and in R3.

This is joint work with Joseph Vandehey, University of Texas at Tyler.
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Real continued fractions (CFs)

Regular CFs represent x € R, as a descending fraction with coefficients in N: 05|
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Digits of x € [0,1] are extracted using the Gauss map T(x) = % — EJ

» Invariant probability measure (logZ 1+ x))_l,

» Ergodicity, exactness: straightforward because of full cylinders,

> Factor of geodesic flow on modular surface H?/SL(2,Z).
Many real CF variants exist, including:

> Backwards CFs: numerator -1, interval [-1,0], with measure (1 — x)~!

» Nearest-integer CFs: with interval [- 7, ¥5]

» a-CFs:interval [-a, 1 — a]
The latter were shown to be exact with positive inversion (Nakada-Steiner 2000)
and ergodic with negative inversion (LV 2022).

Digit Frequency

1 0.415
2 0.17
3 0.093




Complex continued fractions

Complex CFs represent x € C as a descending fraction with coefficients in Z[f]:
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Digits of x € [— %,%] are extracted using the map
u 1 1
AN T(z) => -]
i ; » First discovered by A. Hurwitz in 1887,
/ Bt » Cylinders not full, but has the finite range property,
( )= » (Nakada, 1981) Exact, with a unique piecewise-Lipschitz
AN # invariant measure; using direct measure theory and
},/ cylinder analysis,
N Wi » (Hensley, 2006) Exact, with a unique piecewise-analytic
I ey ‘ invariant measure; using the transfer operator.
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l\wasawa CFs in R4

Iwasawa CFs generalize the above examples, with the following data:
> A space is X = R?, viewing C as R?, quaternions as R*, or octonions as R8.
> A discrete group of digits Z < Isom(R%). Often, we will have Z ¢ R%.

0(x)
|x|2”

» An inversion of the form ((x) = with O € 0(d) of order-two. Includes z - i

An lwasawa continued fraction is then an expression of the form

Kiltoa; = (agoteayo-otoay)(0),

where each a; € 2\ {id}, or a (possibly formal) limit of such expressions.

An Iwasawa CF algorithm then consists of
» a fundamental domain K < B(0,1) for Z,

> induced nearest-integer mapping [-]x: R? — Z characterized by x € [x] (K),
> Induced CF mapping T (x) = [t(x)]x* («(x)) and CF digits a; = [L(Ti_lx)]K.

Theorem (LV 2022 arXiv) Under mild assumptions, x = K2, a;. e ¥
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Non-Euclidean Iwasawa CFs

More generally, Iwasawa CFs also include CFs on boundaries of hyperbolic spaces
(that is, rank-one symmetric spaces of non-compact type)

whose isometry groups SU(n + 1,1, #) have an Iwasawa decomposition KAN
and whose parabolic boundary at infinity is the Iwasawa group N.

These include Heisenberg CFs defined with data:
»>Space Heis = C X R with group law (z,t) * (z',t') = (z+ z',t + t' + 2Im(z Z2")).
> Heisenberg integers Z = Z[i] X Z used as digits.

-z —t
» Koranyi inversion t(z, t) = .
y @0 = e e

> Compatible metric induced by Koranyi gauge |(z,t)|* = |z]* + t2.
» Left-invariant Haar measure is Lebesgue measure.

Heisenberg CFs are convergent (LV 2015) and have a Diophantine
interpretation compatible with hyperbolic geometry (V 2016, LV 2020).




Ergodicity & invariant measures

Proofs of ergodicity appear to fall into two approaches, which are easier in

» Cylinder analysis, followed by either measure theory or operator theory.
In higher dimension, one needs to track more complicated shapes.

» Connection to geodesic flow (Series and others).
The method was considered “intrinsically two-dimensional” (Adler-Flatto).

Theorem (LV 2022) Suppose an Iwasawa CF is discrete, proper and complete.
Then it is a factor of a speedup of geodesic flow on its modular manifold.
Thus, it is ergodic with an invariant measure absolutely continuous to Lebesgue.

Discreteness: the modular group (Z,1) € SU(n+ 1,1, #£) is discrete.
Properness:  the closure of the tile K is contained in the open ball B(0,1).
Completeness: Stabz ;y() = Z, i.e. no hidden symmetries exist such as

,L,Jr 1], 1]
T =T T

Note: the measure is infinite for some Rosen CFs (Grochenig-Haas 1996).




Exactness and smoothness

Focusing on especially well-behaved systems, we now proved:

Theorem (LV 2023) The CF system associated to the Hurwitz integers within the quaternions is
exact, CF-mixing, satisfies a Kuzmin-type theorem, and has a unigue invariant measure

equivalent to Lebesgue measure, whose density is bounded and piecewise-analytic with finitely
many pieces.

More generally, the underlying theorem includes the following examples, with K the Dirichlet
region at 0 and an inversion compatible with the lattice inthatx € Z - 0(x):

»Real CFs with integer digits » Quaternionic CFs with Gausenstein integers
»Complex CFs with Gaussian integer digits Z][1] »Octonionic CFs with Cayley integers
»Complex CFs with Eisenstein integer digits Z [1+ﬁnl >3D CFs W!th the cubic lattice ) )
2 »3D CFs with the hexagonal prism lattice
»3D CFs with rhombic dodecahedral lattice

»Quaternionic CFs with Hurwitz integers
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(A) For each digit a with O non-empty, T, : €, — K 15 a one-to-one, continn-
ous map with continuous first order partial derivatives and det DT, 2 0.

(B) The finite range property is satisfied. That is, there exist a finite number of
positive-measure subsets U7, DG, 0 U of K such that for each nonempty
', we have that T, = U7; for some j. This equality may hold up to

IMEASUTE ZET0,
rO O I I I e O S We shall denote by F the partition of K generated by the [7;'s, and refer

to elements of F as cells,
(T Rényi's condition is satisfed: there is a uniform constant L = 1 such that

for all strings s, if T, = U; for some j, then

The proof combines three ingredients:

Hu.«l-} wiz) £ L lé’;fr RES) (2.1}
xeli; zell;
> Understand the Cylinder stru Ctur‘e’ (D) C}'lin{lm-:}flniflcu'lilli,'tlﬁ]u-ilnk to 0 in dismeter as the npumber of digits in-
. .. creases. That is, letting
proving the finite-ra nge property and _
. gy . . .y (m) == s liam 7,
providing a certain finite partition of K. -
we have limy, e a{m) = 0.
H ’ _ H {E) Each IV; containg a full cylinder.
>Ve rlfy Nakada S bIaCk bOX assump_tlons’_ (F) There i.i a constant iy = 0 such that for every finite digit sequence s with
making use of conformality of the inversion. n = |s| and all z,y € C, we have
Obtain exactness, unique Lipschitz-continuous wa (T2} — wia(T™y)] £ RAA(C ) (T, T™y)
invariant measure’ CF_miXing’ and a Kuzmin_type (G 'I']wré\ (u: a H;]l!—i"ﬂ.llt Rz = 0 such that for every s with n = |s| and all
xoy € Oy we have
result. diz,y) < Rod(T™z, T"y).

(H) Let Lo, = {s : [8) = mand O, i5 not contained in acell F € F} and

» Extend Hensley’s argument, filling in some details R T ET Wabave Uity =
and showing that the transfer operator becomes —
compact when viewed on the appropriate product

D,

of complex Banach spaces. B, T

Conclude that the measure is piecewise-analytic. =+ =i
K
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Serendipity & finite range

A fibered system is finite range if the collection of
normalized cylinders {T"IC, } is finite.

Fix an Iwasawa CF algorithm and take E = U,, T"0K.

The algorithm is serendipitous if the union stabilizes after
finitely many iterations and furthermore the complement
K \ E has finitely many connected components.

Lemma: If K is bounded by finitely many hyperplanes and
spheres, then finite range is equivalent to serendipity.

Corollary (serendipity is fragile): Unless « is a root of a
quadratic equation, a-CFs in R and C are not finite-range.
Proof: In R, serendipity is equivalent to dK having a finite
orbit. In C, we can view real a-CFs as a subsystem along the
imaginary axis, and make an argument about arcs.
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Proving serendipity and finite range

To prove serendipity, we show that certain families of hyperplanes and spheres are
invariant under relevant transformations: inversions and translations that revisit K.

The invariant measure is then piecewise-analytic on the complement of the system!




A couple of open guestions

» Classify serendipitous systems; are there any non-commutative serendipitous systems?

»Study exactness in improper serendipitous systems.

»Can any of the invariant measures be computed explicitly?
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Thank you for listening!

Mason Experimental Geometry Lab Geometry Labs United arxivist.com
undergrad/graduate/postdoc/faculty research start your own geometry lab get research updates

Please contact me at
alukyane@gmu.edu with
support Ukraine guestions or comments!
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