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Abstract:

Complex continued fractions (CFs) represent a complex number using a descending fraction with Gaussian integer coefficients. The
associated dynamical system is exact (Nakada 1981) with a piecewise-analytic invariant measure (Hensley 2006). Certain higher-
dimensional CFs, including CFs over quaternions, octonions, as well as the non-commutative Heisenberg group can be understood in a
unified way using the Iwasawa CF framework (L-Vandehey 2022). Under some natural and robust assumptions, ergodicity of the
associated systems can then be derived from a connection to hyperbolic geodesic flow, but stronger mixing results and information about
the invariant measure remain elusive. Here, we study Iwasawa CFs under a more delicate serendipity assumption that yields the finite
range condition, allowing us to extend the Nakada-Hensley results to certain Iwasawa CFs over the quaternions, octonions, and in R3.

This is joint work with Joseph Vandehey, University of Texas at Tyler.



Real continued fractions (CFs)
Regular CFs represent 𝑥 ∈ ℝା as a descending fraction with coefficients in ℕ:

Digits of 𝑥 ∈ [0,1] are extracted using the Gauss map 𝑇 𝑥 =
ଵ

௫
 −

ଵ

௫
:

 Invariant probability measure log 2 1 + 𝑥
ିଵ

,

 Ergodicity, exactness: straightforward because of full cylinders,
 Factor of geodesic flow on modular surface ℍଶ/𝑆𝐿(2, ℤ).

Many real CF variants exist, including:
 Backwards CFs: numerator -1, interval [-1,0], with measure 1 − 𝑥 ିଵ

 Nearest-integer CFs: with interval [- ½, ½]
 𝛼-CFs: interval [-𝛼, 1 − 𝛼]

The latter were shown to be exact with positive inversion (Nakada-Steiner 2000)
and ergodic with negative inversion (LV 2022).

Digit Frequency
1 0.415
2 0.17
3 0.093
… …
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Complex continued fractions
Complex CFs represent 𝑥 ∈ ℂ as a descending fraction with coefficients in ℤ[𝕚]:

Digits of 𝑥 ∈ −
ଵ

ଶ
,

ଵ

ଶ
are extracted using the map

𝑇 𝑧 =
ଵ

௭
 −

ଵ

௭
.

 First discovered by A. Hurwitz in 1887,
 Cylinders not full, but has the finite range property,
 (Nakada, 1981) Exact, with a unique piecewise-Lipschitz 

invariant measure; using direct measure theory and 
cylinder analysis,

 (Hensley, 2006) Exact, with a unique piecewise-analytic 
invariant measure; using the transfer operator.
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Iwasawa CFs in 
Iwasawa CFs generalize the above examples, with the following data:
A space is 𝑋 = ℝௗ, viewing ℂ as ℝଶ, quaternions as ℝସ, or octonions as ℝ଼.

A discrete group of digits 𝒵 ⊂ Isom ℝௗ . Often, we will have 𝒵 ⊂ ℝௗ.

An inversion of the form 𝜄 𝑥 =
𝒪(௫)

௫ మ , with 𝒪 ∈ 𝑂(𝑑) of order-two. Includes 𝑧 ↦
ଵ

௭
.

An Iwasawa continued fraction is then an expression of the form

𝒦௜ୀ଴
௡ 𝑎௜ = 𝑎଴ ∘ 𝜄 ∘ 𝑎ଵ ∘ ⋯ ∘ 𝜄 ∘ 𝑎௡ 0 ,

where each 𝑎௜ ∈ 𝒵\ 𝑖𝑑 , or a (possibly formal) limit of such expressions. 

An Iwasawa CF algorithm then consists of
a fundamental domain 𝐾 ⊂ 𝐵(0,1) for 𝒵,
 induced nearest-integer mapping ⋅ ௄: ℝௗ → 𝒵 characterized by 𝑥 ∈ 𝑥 ௄ 𝐾 ,

 Induced CF mapping 𝑇 𝑥 = 𝜄 𝑥 ௄
ିଵ 𝜄 𝑥 and CF digits 𝑎௜ = 𝜄 𝑇௜ିଵ𝑥

௄
.

Theorem (LV 2022 arXiv) Under mild assumptions, 𝑥 = 𝒦௜ୀଵ
ஶ 𝑎௜.
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Non-Euclidean Iwasawa CFs
More generally, Iwasawa CFs also include CFs on boundaries of hyperbolic spaces 
(that is, rank-one symmetric spaces of non-compact type)
whose isometry groups 𝑆𝑈(𝑛 + 1,1, 𝓀) have an Iwasawa decomposition KAN
and whose parabolic boundary at infinity is the Iwasawa group N.

These include Heisenberg CFs defined with data:
Space Heis = ℂ × ℝ with group law 𝑧, 𝑡 ∗ 𝑧ᇱ, 𝑡ᇱ = (𝑧 + 𝑧ᇱ, 𝑡 + 𝑡ᇱ + 2Im 𝑧 𝑧ᇱ ).
Heisenberg integers 𝒵 = ℤ 𝕚 × ℤ used as digits.

Koranyi inversion 𝜄 𝑧, 𝑡 =
ି௭

௭ మା𝕚 ௧
,

ି௧

௭ రା௧మ .

Compatible metric induced by Koranyi gauge (𝑧, 𝑡) ସ = 𝑧 ସ + 𝑡ଶ.
Left-invariant Haar measure is Lebesgue measure.

Heisenberg CFs are convergent (LV 2015) and have a Diophantine 
interpretation compatible with hyperbolic geometry (V 2016, LV 2020).
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Proofs of ergodicity appear to fall into two approaches, which are easier in ℝ:
Cylinder analysis, followed by either measure theory or operator theory.

In higher dimension, one needs to track more complicated shapes.
Connection to geodesic flow (Series and others).

The method was considered “intrinsically two-dimensional” (Adler-Flatto).

Theorem (LV 2022) Suppose an Iwasawa CF is discrete, proper and complete.
Then it is a factor of a speedup of geodesic flow on its modular manifold. 
Thus, it is ergodic with an invariant measure absolutely continuous to Lebesgue.

Discreteness:   the modular group 𝒵, 𝜄 ⊂ 𝑆𝑈(𝑛 + 1, 1, 𝓀) is discrete.
Properness:      the closure of the tile 𝐾 is contained in the open ball B(0,1).
Completeness: Stab 𝒵,ఐ ∞ = 𝒵, i.e. no hidden symmetries exist such as

Note: the measure is infinite for some Rosen CFs (Gröchenig-Haas 1996).

Ergodicity & invariant measures
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Exactness and smoothness
Focusing on especially well-behaved systems, we now proved:

Theorem (LV 2023) The CF system associated to the Hurwitz integers within the quaternions is 
exact, CF-mixing, satisfies a Kuzmin-type theorem, and has a unique invariant measure 
equivalent to Lebesgue measure, whose density is bounded and piecewise-analytic with finitely 
many pieces.

More generally, the underlying theorem includes the following examples, with 𝐾 the Dirichlet
region at 0 and an inversion compatible with the lattice in that x ∈ 𝒵 → 𝒪 𝑥 :
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Real CFs with integer digits
Complex CFs with Gaussian integer digits ℤ[𝕚]

Complex CFs with Eisenstein integer digits ℤ ଵା ଷ𝕚

ଶ

Quaternionic CFs with Hurwitz integers

Quaternionic CFs with Gausenstein integers
Octonionic CFs with Cayley integers
3D CFs with the cubic lattice
3D CFs with the hexagonal prism lattice
3D CFs with rhombic dodecahedral lattice



Proof methods
The proof combines three ingredients:

Understand the cylinder structure,
proving the finite-range property and 
providing a certain finite partition of K.

Verify Nakada’s black-box assumptions,
making use of conformality of the inversion.
Obtain exactness, unique Lipschitz-continuous 
invariant measure, CF-mixing, and a Kuzmin-type 
result.

Extend Hensley’s argument, filling in some details 
and showing that the transfer operator becomes 
compact when viewed on the appropriate product 
of complex Banach spaces.
Conclude that the measure is piecewise-analytic.
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Serendipity & finite range
A fibered system is finite range if the collection of 
normalized cylinders {𝑇|௪|𝐶௪} is finite.

Fix an Iwasawa CF algorithm and take E = ⋃ 𝑇௡𝜕𝐾௡ . 
The algorithm is serendipitous if the union stabilizes after 
finitely many iterations and furthermore the complement 
𝐾 ∖ 𝐸 has finitely many connected components.

Lemma: If K is bounded by finitely many hyperplanes and 
spheres, then finite range is equivalent to serendipity.

Corollary (serendipity is fragile): Unless 𝛼 is a root of a 
quadratic equation, 𝛼-CFs in ℝ and ℂ are not finite-range.
Proof: In ℝ, serendipity is equivalent to 𝜕𝐾 having a finite 
orbit. In ℂ, we can view real 𝛼-CFs as a subsystem along the 
imaginary axis, and make an argument about arcs.
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Proving serendipity and finite range
To prove serendipity, we show that certain families of hyperplanes and spheres are 
invariant under relevant transformations: inversions and translations that revisit 𝐾.

The invariant measure is then piecewise-analytic on the complement of the system!
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A couple of open questions
Classify serendipitous systems; are there any non-commutative serendipitous systems?

Study exactness in improper serendipitous systems.

Can any of the invariant measures be computed explicitly?
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Thank you for listening!
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