Intersections of Cantor Sets Derived from Complex Radix Expansions

Neil MacVicar Queen's University

February 18, 2025 One World Numeration Let C be the middle third Cantor set. The set C is the attractor of

$$f_0(x) = x/3$$
 and $f_2(x) = (x+2)/3$.

- C satisfies $f_0(C) \cup f_2(C) = C$.
- *C* is compact and non-empty.
- For every x, y, $|f_j(x) f_j(y)| = 3^{-1}|x y|$ for j = 0, 2.

C is self-similar.

Definition

A subset of a complete metric space is *self-similar* if it is the attractor of a finite collection of similarities.

Consider $\alpha \in (0,1)$, such that $C \cap (C + \alpha) \neq \emptyset$.

For example, $\alpha = 2/3$. Then

$$C \cap (C + 2/3) = C/3 + 2/3.$$

Question

For which α is $C \cap (C + \alpha)$ self-similar?

Definition

A sequence $(a_j)_{j=1}^{\infty}$ of integers is strongly eventually periodic (SEP) if there exists a finite sequence $(b_\ell)_{\ell=1}^p$ and a nonnegative sequence $(c_\ell)_{\ell=1}^p$, where p is a positive integer, such that

$$(a_j)_{j=1}^{\infty} = (b_\ell)_{\ell=1}^p \overline{(b_\ell + c_\ell)_{\ell=1}^p},$$

where $\overline{(d_\ell)_{\ell=1}^p}$ denotes the infinite repetition of the finite sequence $(d_\ell)_{\ell=1}^p$.

Example

Let
$$(a_j) = (3, 4, 7, 9, 7, 9, ...)$$
. Here $p = 2$, $(b_\ell) = (3, 4)$, and $(c_\ell) = (4, 5)$.

Self-Sim./SEP Relationship

Observation $C \cap (C + \alpha)$ is non-empty iff $\alpha = \sum_{j=1}^{\infty} \alpha_j 3^{-j}$, with $\alpha_j \in \{0, \pm 2\}$. Theorem (G-T. Deng, X-G. He, Z-X. Wen, 2008) Suppose $\alpha \in (0, 1)$. The set $C \cap (C + \alpha)$ is self-similar iff $(2 - |\alpha_j|)_{i=1}^{\infty}$ is SEP.

Remark

Those α which have multiple expansions can be shown to result in non-self-similar intersections.

Example

If
$$\alpha = 2/3 = 2/3 + 0/9 + 0/27 + \cdots$$
, then $(2 - |\alpha_j|) = (0, 2, 2, \ldots).$

This sequence is SEP with $p = 1, b_1 = 0, c_1 = 2$.

Restricted Digit Sets

C can also be viewed as $\left\{\sum_{j=1}^{\infty} d_j r^{-j} : d \in D\right\}$, where r = 3 and $D = \{0, 2\}$.

In greater generality, $r \in \mathbb{N}_{\geq 3}$ and $D \subset \{0, 1, \dots, r-1\}$.

Extensions of "self-similar iff SEP" for these and other subsets of [0,1] can be found in

- D. Kong, W. Li, M. Dekking. Intersections of homogeneous Cantor sets and β-expansions. *Nonlinearity*, 23:2815-2834, 2010.
- W. Li, Y. Yao, Y. Hang. Self-similar structure on intersection of homogeneous symmetric Cantor sets. *Math. Nachr.*, 284:298-316, 2011.
- S. Pedersen, J. D. Philips. On intersections of Cantor sets: self-similarity. *Commun. Math. Anal.*, 16:1-30, 2014.

Question

What about higher dimensions?

Example

Consider the pair b = -3 + i, $D = \{0, 4, 8\}$. We can define

$$T_{b,D} := \bigg\{ \sum_{j=1}^{\infty} d_j b^{-j} : d_j \in D \bigg\}.$$

This is the attractor of the similarities $f_0(z) = b^{-1}z$, $f_4(z) = b^{-1}(z+4)$, and $f_8(z) = b^{-1}(z+8)$.

When is $T_{b,D} \cap (T_{b,D} + \alpha)$ self-similar for $\alpha \in \mathbb{C}$?

Radix Expansions

Theorem (I. Katai & J. Szabo, 1974) Let b = -n + i and $z \in \mathbb{C}$. Then

$$z = d_{\ell}b^{\ell} + d_{\ell-1}b^{\ell-1} + \cdots + d_0 + \sum_{k=1}^{\infty} d_{-k}b^{-k},$$

for some $d_j \in \{0, 1, \dots, |b|^2 - 1\}$, $j \in \mathbb{Z}$.

Example

Let b = -4 + i.

$$\frac{7+4i}{13} = \sum_{j=1}^{\infty} 10b^{-2j}$$

AND

$$\frac{7+4i}{13} = b + 7 + \sum_{j=1}^{\infty} 10b^{-2j+1}$$

Fundamental Tile

Let b = -3 + i and $D = \{0, 1, \dots, 8, 9\}$

Matrix Form

Definition

A matrix $B \in M_n(\mathbb{R})$ is called an *expanding matrix* if all its eigenvalues have modulus greater than 1.

$$\mathbb{C} \rightarrow \mathbb{Z}^2$$

$$b = -3 + i \rightarrow B = \begin{bmatrix} -3 & -1 \\ 1 & -3 \end{bmatrix}$$

$$\{0, 1, \dots, 9\} \rightarrow \{0, e_1, 2e_1, \dots, 9e_1\}, e_1 = (1, 0)^T.$$

Given an expanding matrix B, $f(x) = B^{-1}(x + d)$ is a contraction on \mathbb{R}^n .

Generalized SEP

Definition

A sequence $(A_j)_{j=1}^{\infty}$ of nonempty subsets of \mathbb{Z}^n is called *strongly* eventually periodic (SEP) if there exist two finite sequences of sets $(B_\ell)_{\ell=1}^p$ and $(C_\ell)_{\ell=1}^p$, where p is a positive integer, such that

$$(A_j)_{j=1}^{\infty} = (B_\ell)_{\ell=1}^p \overline{(B_\ell + C_\ell)_{\ell=1}^p},$$

where $B + C = \{b + c : b \in B, c \in C\}.$

Example

Let $(A_j) = (\{0,4\},\{1,5\},\overline{\{0,4,8\},\{1,3,5,7\}})$. Here p = 2, $B_\ell = (\{0,4\},\{1,5\})$, and $C_\ell = (\{0,4\},\{0,2\})$.

Theorem (N. M., 2024)

Suppose an expanding matrix $B \in M_n(\mathbb{Z})$ and finite $D \subset \mathbb{Z}^n$ are chosen such that expansions $\sum_{j=1}^{\infty} B^{-j} e_j$ with $e_j \in (D - D)$ are unique.

The set $T_{B,D} \cap (T_{B,D} + \alpha)$ is the attractor of an IFS of the form $\{B^{-p}x + v_i\}_{i=1}^N$, where v_i is an element of \mathbb{R}^n for i = 1, 2, ..., N and p is a positive integer, if and only if the sequence

$$(((D \cap (D + \alpha_j)) - \beta_j)_{j=1}^\infty)$$

is SEP for some sequence $(\beta_j)_{j=1}^{\infty} \in (D-D)^{\mathbb{N}}$.

Illustrative Example

Example Let b = -3 + i and $D = \{0, 4, 8\}$. Choose $\alpha = -4b^{-1} - 8b^{-2} + \sum_{i=1}^{\infty} 8b^{-(2j+2)}$. This yields $(D \cap (D + \alpha_i)) = (\{0, 4\}, \{0\}, \{0, 4, 8\}, \{8\}).$ Note that $\{0, 4, 8\} = \{0, 4\} + \{0, 4\}, \{8\} = \{0\} + \{8\}.$ $T_{b,D} \cap (T_{b,D} + \alpha) = \{0,4\}b^{-1} + \{0\}b^{-2} + \{0,4,8\}b^{-3} + \{8\}b^{-4} + \cdots$ $b^{-2}(T_{b,D}\cap(T_{b,D}+\alpha)) = \{0\}b^{-1}+\{0\}b^{-2}+\{0,4\}b^{-3}+\{0\}b^{-4}+\cdots$ The similarities are $f(z) = b^{-2}(z+d)$ where $d \in \{4b + 4b^{-1} + 8b^{-2}, 4b^{-1} + 8b^{-2}, 4b + 8b^{-2}, 8b^{-2}\}.$

Neighbours of Tiles

Definition

We call a nonzero Gaussian integer g a neighbour of $T_{b,D}$ if

$$T_{b,D}\cap (T_{b,D}+g)\neq \emptyset.$$

Suppose

$$\sum_{j=1}^{\infty} e_j b^{-j} = \sum_{j=1}^{\infty} e_j^{\prime} b^{-j}.$$

Then

$$(e_1 - e_1^{'}) + \sum_{j=1}^{\infty} e_{j+1}b^{-j} = \sum_{j=1}^{\infty} e_{j+1}^{'}b^{-j}.$$

If $e_j \in (D-D)$, then $(e_1 - e_1^{'})$ is a neighbour of $\mathcal{T}_{b,(D-D)}$.

Conclusion

If D is chosen such that the difference of differences of D are not neighbours of $T_{b,(D-D)}$, then expansions in (b, D - D) are unique.

For (-3 + i), the real neighbours of the tile generated by $(-3 + i, \{0, \pm 1, \dots, \pm 9\})$ (checked via algorithm) are $\{\pm 1, \pm 2, \pm 3\}$.

Theorem (N. M., 2024)

For integers $n \ge 5$, a neighbour s of the tile generated by $(-n+i, \{0, \pm 1, \dots, \pm n^2\})$ satisfies $|\operatorname{Re}(s) - n \operatorname{Im}(s)| < 3$.

 K. Scheicher, J. M. Thuswaldner. Neighbours of self-affine tiles in lattice tilings. In *Fractals In Graz 2001*, pages 241-262. Birkhäuser Basel, 2003.

Special Case

Theorem (N. M., 2024)

Fix an integer $n \ge 2$ and let b := -n + i. Suppose $D = \{0, m\}$ where $2 \le m \le n^2$ and that α has a unique radix expansion in base (b, D - D). Let $\gamma := \sum_{j=1}^{\infty} \gamma_j b^{-j}$ where $\gamma_j := \min(D \cap (D + \alpha_j))$.

If $C(\alpha)$ is self-similar and is the attractor of an IFS containing a similarity of the form $f(x) = \lambda x + (1 - \lambda)\gamma$, $0 < |\lambda| < 1$, then $(m - |\alpha_j|)_{j=1}^{\infty}$ is SEP.

Conversely, if $(m - |\alpha_j|)_{j=1}^{\infty}$ is SEP then $C(\alpha)$ is self-similar.

Hausdorff Dimension

Let (b, m, α) satisfy the previous theorem and let $(m - |\alpha_j|)_{j=1}^{\infty} = (a_\ell)_{\ell=1}^p \overline{(a_\ell + u_\ell)_{\ell=1}^p}.$

The set $T_{b,\{0,m\}} \cap (T_{b,\{0,m\}} + \alpha)$ is the attractor of the collection of maps

$$f(x) = b^{-p}(x + \sum_{\ell=1}^{p} (y_{\ell}b^{p-\ell} + z_{\ell}b^{-\ell}) - \gamma) + \gamma$$

where for each ℓ , $y_\ell, z_\ell \in \{0, m\}$ such that $y_\ell \leq a_\ell$ and $z_\ell \leq u_\ell$.

Those maps satisfy the strong separation condition, $f_i(A) \cap f_j(A) = \emptyset$ for $i \neq j$. Therefore

$$\dim_{H}(T_{b,\{0,m\}} \cap (T_{b,\{0,m\}} + \alpha)) = \frac{\log(2) \sum_{\ell=1}^{p} (a_{\ell} + u_{\ell})}{mp \log(|b|)}.$$

Thank you for your attention!