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I Matching for deterministic interval maps

I Random matching for random interval maps

I Examples: random continued fractions, β-transformations and
signed binary representations with minimal weight
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Deterministic context

A piecewise smooth interval map T has strong matching, or
synchronisation, if for any discontinuity point c of T or T ′ there
exist M,N ∈ N such that

TM (c−) = TN (c+) and (TM )′(c−) = (TN )′(c+),

for c+ = limx↓c x and c− = limx↑c x.

M,N are called matching exponents.
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Some results for specific families:

I The family of shift β-transformations {Tα(x) = βx+ α
mod 1}α shows matching λ-a.e. parameter α but only for
specific values of β.

I The family of symmetric doubling maps
{Sη(x) = 2x− dη}η does not present matching on a set of
full Hausdorff dimension.

I The α-continued fraction maps {Tα} have matching on a
full Lebesgue set, and the difference of the matching
exponents determines the behaviour of the entropy.

I For specific maps, matching causes the associated invariant
densities to be piecewise smooth (or constant).
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Consequence of strong matching on the structure of the density
function:

Thm. ’19 [Bruin, Carminati, Marmi, Profeti]

For a piecewise affine eventually expanding interval map T with
strong matching, the density of its absolutely continuous invariant
probability measure is constant on elements of the prematching
partition, ⋃

c

(M−1⋃
i=1

T i(c−) ∪
N−1⋃
i=1

T i(c+)

)
.
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Random context

Random maps describe systems that evolve in discrete time in
which at each time step one of a number of transformations is
chosen according to an i.i.d. process and applied.

Let {Tj : I → I}j∈Ω be a collection of interval maps, for Ω ⊆ N
the index set. Let σ : ΩN → ΩN be the left shift on one-sided
sequences. The pseudo-skew product or random map
R : ΩN × I → ΩN × I is defined by

R(ω, x) = (σ(ω), Tω1(x)).
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Measures for pseudo-skew products:

Let p = (pj)j∈Ω be a positive probability vector representing the
probabilities we apply the map Tj . Let mp be the p-Bernoulli
measure on ΩN and µp be an absolutely continuous wrt λ measure
on I such that for each measurable set B

µp(B) =
∑
j∈Ω

pjµp(T−1
j (B)).

Then mp × µp is an invariant probability measure for R. We call
µp a stationary measure for R.

M. Maggioni 7 / 28



Matching for random systems

Matching

We make assumptions on R to guarantee the existence of mp×µp.

1. There exists a finite or countable interval partition {Ii}i, such
that each Tj |Ii is C1 and monotone.

2. R is expanding on average, i.e., for each x ∈ I∑
j∈Ω

pj
|T ′j(x)|

< 1.

3. For each j ∈ Ω the map

x 7→

{ pj
|T ′j(x)| if x 6= c,

0 otherwise,

is of bounded variation for c ∈ C, the set of critical points.
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Random matching

A random map R has random matching if for every c ∈ C there
exists an M = Mc ∈ N and a set

Yc ⊆
{
T kω (c−) : ω ∈ ΩN, 1 ≤ k ≤M

}
∩
{
T kω (c+) : ω ∈ ΩN, 1 ≤ k ≤M

}
such that for every ω ∈ ΩN there exist k = kc(ω), ` = `c(ω) ≤M

with T kω (c−), T `ω(c+) ∈ Yc.

Idea: any random orbit of the left/right limit of any critical point c
passes through the set Yc at the latest at time M .
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Strong random matching

A random map R has strong random matching if it has random
matching and if for each c ∈ C and y ∈ Yc the following holds. For

Ω(y)− =
{
u ∈

M⋃
k=1

Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωkc(ω) and Tu(c−) = y
}

Ω(y)+ =
{
u ∈

M⋃
k=1

Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ω`c(ω) and Tu(c+) = y
}

it holds ∑
u∈Ω(y)−

pu
T ′u(c−)

=
∑

u∈Ω(y)+

pu
T ′u(c+)

.
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Example 1: random continued fraction maps
Let CFα be defined on {0, 1}N × [α− 1, α] as the random map
given by α-continued fraction maps:

Tα,0 =
1

|x|
−
⌊

1

|x|
+ 1− α

⌋
and Tα,1 =

1

x
−
⌊

1

x
+ 1− α

⌋
.

α− 1
0

α

α− 1

α

1
α+1− 1

α+3

(a) Tα,0

α− 1
0

α

α− 1

α

1
α+1

1
α−5

(b) Tα,1
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Note that Tj,α(c±) ∈ {α− 1, α}, so that strong random matching
occurs if the random weighted orbits of α− 1 and α eventually
meet.
For any α ∈ (

√
85−5
6 ,

√
2

2

)
⊆ J4 strong random matching holds for

M = 3 and Y =
{

5−7α
3α−2

}
:

α 1−α
α

3α−2
1−α

5−7α
3α−2

α− 1 4α−3
α−1

2−3α
4α−3

5−7α
3α−2

3α−2
1−α

5−7α
3α−2

1,p

0, 1-p
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For n ≥ 4 let Jn = (`n, rn) be defined by the left and right
endpoints

`n =
n+ 1−

√
n2 − 2n+ 5

2
and rn =

√
n− 2

n
,

respectively. For any n and α ∈ Jn the system CFα has strong
random matching with the same exponent M = 3, identifying a
countable number of matching intervals for the family CFα.

Figure: The semicircles indicate the locations of the intervals Jn.
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Example 2: random β-transformations

β = 1+
√

5
2 , α ∈

(3β−2
2 , 4β − 5

)
and Tα,j : [−β, β]→ [−β, β]

Tα,0(x) =


βx+ α if x ∈

[
− β,− 1

β

)
βx if x ∈

(
− 1

β
, 1
)

βx− α if x ∈ (1, β]

Tα,1(x) =


βx+ α if x ∈ [−β,−1)
βx if x ∈

(
− 1, 1

β

)
βx− α if x ∈

(
1
β
, β
]

−β β

0

− 1
β

10

β

(a) Tα,0

−β β

0

−1 0 1
β

β

(b) Tα,1
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For Rα = {Tα,0, Tα,0}, C =
{
− 1,− 1

β ,
1
β , 1
}

.

For 1 ∈ C: M = 3 and Y = {β2(β − α)}:

Tα,0(1−) = β Tα,ω(β) = β2 − α T 2
α,ω(β) = β2(β − α)

Tα,1(1−) = Tα,j(1
+) = β − α Tα,ω(β − α) = β(β − α) T 2

α,ω(β − α) = β2(β − α).

For 1/β ∈ C: M = 7 and Y = {β5(β − α)− α, β6 − 3β3α}:

Tα,j
(

1
β

−)
= 1 = Tα,0

(
1
β

+)
Tα,1

(
1
β

+)
= 1− α.
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1− α β(1− α) β(β − α) β2(β − α) β3(β − α) β4(β − α) β5(β − α)− α

β2(1− α)

β3(1− α) + α

β4(1− α) + βα

β5(1− α) + β2α

β6(1− α) + β3α+ α = β5(β − α)− βα

β5(1− α) + β2α+ α β6(1− α) + β3α+ βα = β5(β − α)− α

β4(β − α)− α

β5(β − α)− βα

0 0

1

1

0

1

Figure: The first couple of points in the orbit of 1− α under the random
generalised β-transformation. β2(β − α) is boxed since this point also
appears in all random orbits of 1.
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Consequences of strong random matching

On the structure of the density:

Thm. ’20 [Dajani, Kalle, M.]

Let R as before. Assume furthermore that each map {Tj}j is
defined on a finite interval partition, and for each subinterval Ii not
all straight lines have a common weighted intersection point on the
diagonal. If R has strong random matching, then there exists an
invariant probability measure of the form mp × µp such that its
density is piecewise constant on the random prematching set.
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Proof(ish)

There exists an invariant probability measure mp × µp for R with
a probability density fp for µp of the form

fp =

N−1∑
i=1

γi
∑
k≥1

∑
ω∈Ωk

( pω

T ′ω(c−i )
1[c0,Tω(c−i )) −

pω

T ′ω(c+
i )

1[c0,Tω(c+i ))

)
,

for some constants γi depending only on the discontinuity points
ci. We use random matching to rewrite fp as

fp =
N−1∑
i=1

γi

M∑
k=1

( ∑
ω∈Ωk:

∀n≤k, Tωn1 (c−i )6∈Y

pω

T ′ω(c−i )
1[c0,Tω(c−i ))−

∑
ω∈Ωk:

∀n≤k, Tωn1 (c+i )6∈Y

pω

T ′ω(c+
i )

1[c0,Tω(c+i ))

)
.
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Example 3: minimal weight expansions

Many public key cryptosystems deal with the problem of raising
elements of a group into some power, xa. In binary representation,

xa =

n∏
i=0

xdi2
i
,

While the number of squarings is given by the length n of the
binary expansion of a, the number of multiplications equals the
number of non-zero digits di in the expansion, which is called
Hamming weight. One way to reduce the time complexity is
given by lowering the Hamming weight.
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For any fixed integer a, its ordinary binary representation with
digits {0, 1} is uniquely determined, but this is not the case for the
signed one, with digits in {−1, 0, 1}.
We consider a family of random maps Rα on {0, 1}N × [−1, 1] that
generate random signed binary expansions with digits in
{−1, 0, 1}. The randomness of the system allows us to choose (up
to a certain degree) where and when we want to have a digit 0,
and to study for each typical number its infinitely many different
signed binary expansions simultaneously:

x = α
∑
n≥1

dn(ω, x)

2n
.
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The random symmetric doubling maps Rα = {Tα,0, Tα,1} for
α ∈ [1, 2] and

Tα,0(x) =


2x+ α if x ∈

[
− 1, 1−α

2

)
,

2x if x ∈
[

1−α
2 , 1

2

)
,

2x− α if x ∈
[

1
2 , 1
]
,

and

Tα,1(x) =


2x+ α if x ∈

[
− 1,−1

2

]
,

2x if x ∈
(
− 1

2 ,
α−1

2

]
,

2x− α if x ∈
(
α−1

2 , 1
]
.
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−1 1

0

−1 − 1
2

1
2

1

(a) R1

−1 1

0

−1 − 1
2
− 1

4
10 1

2
1
4

1

1
2

(b) R 3
2

−1 1

0

−1 − 1
2

10 1
2

1

(c) R2

Figure: The maps Tα,0 and Tα,1 for α = 1 in (a), α = 3
2 in (b), and

α = 2 in (c). The blue lines correspond to Tα,0, the pink ones to Tα,1
and the violet ones to both.

M. Maggioni 22 / 28



Matching for random systems

Random symmetric doubling maps

1. Let

Sα(x) =


2x+ α if − 1 ≤ x < −1

2 ,

2x if − 1
2 ≤ x ≤

1
2 ,

2x− α if 1
2 < x ≤ 1,

and let

M = inf
{
n ≥ 1 :

1

2
< Snα(1) < α− 1

2

}
+ 1.

For all k < M and ω ∈ Ωk,

Tα,ω(1), Tα,ω(1− α) ∈ {Skα(1), Skα(1− α)}.

Strong random matching holds for Lebesgue almost every
α ∈ [1, 2], for the time M and the set Y = {SMα (1)}.
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2. From
Skα(1− α) = Skα(1)− α for k < M

and random matching it follows that an explicit formula for
the piecewise constant density function is given by:

fp = (γ1 + γ2)
p1

2

M−1∑
k=0

∑
ω∈Ωk

pω
2k
(
1[−1,Tω(α−1)) − 1[−1,Tω(−1))

)
+ (γ2 + γ3)

p0

2

M−1∑
k=0

∑
ω∈Ωk

pω
2k
(
1[−1,Tω(1)) − 1[−1,Tω(1−α))

)
.
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Thm. ’20 [Dajani, Kalle, M.]

For any p and any α ∈ [1, 2] the frequency π0(α,p) is at most 1
2

for mp × λ-a.e. (ω, x) ∈ ΩN × [−1, 1].
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More on the matching intervals:

Let a = [0; a1, a2, . . . , a2j+1] ∈ Q ∩ [0, 1] such that Ia is a maximal
quadratic interval for the α-CF map T0,α. Then(

2M + 1

2Mϕ(a) + 1
,

2M − 1

2Mϕ(a)− 1

)
is a matching interval for Rα, for M =

∑2j+1
i=1 ai, and

ϕ(a) = η((1 ◦ a1)(0 ◦ a2) . . .) and η((bn)n≥1) =
∑
n≥1

bn
2n
.
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Future plans
Do piecewise smooth random interval maps with random matching
have piecewise smooth densities?
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(a) α = 0.70315 . . .,
p0 = 0.3

-0.2 0.2 0.4 0.6

0.8

0.9

1.0

1.1

1.2

1.3

(b) α = 0.77287 . . .,
p0 = 0.6

Figure: Numerical simulations of fp for the random continued fraction
maps CFα. In (a) α ∈ J4 and p0 = 0.3 and in (b) α ∈ J5 and p0 = 0.6.
The dashed lines indicate the position of the prematching set, i.e., the
points in the orbits of α and α− 1 before the moment of matching.
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Thank you for listening.
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