Random matching
for
Random interval maps
Joint work with K. Dajani and C. Kalle

Marta Maggioni, Leiden University

One World Numeration Seminar

September 24, 2020
Outline

- Matching for deterministic interval maps
- Random matching for random interval maps
- Examples: random continued fractions, β-transformations and signed binary representations with minimal weight
Deterministic context

A piecewise smooth interval map T has **strong matching**, or synchronisation, if for any discontinuity point c of T or T' there exist $M, N \in \mathbb{N}$ such that

$$T^M(c^-) = T^N(c^+) \quad \text{and} \quad (T^M)'(c^-) = (T^N)'(c^+),$$

for $c^+ = \lim_{x \downarrow c} x$ and $c^- = \lim_{x \uparrow c} x$.

M, N are called **matching exponents**.
Some results for specific families:

- The family of shift β-transformations \(\{ T_\alpha(x) = \beta x + \alpha \mod 1 \} \alpha \) shows matching λ-a.e. parameter α but only for specific values of β.

- The family of symmetric doubling maps \(\{ S_\eta(x) = 2x - d\eta \} \eta \) does not present matching on a set of full Hausdorff dimension.

- The α-continued fraction maps \(\{ T_\alpha \} \) have matching on a full Lebesgue set, and the difference of the matching exponents determines the behaviour of the entropy.

- For specific maps, matching causes the associated invariant densities to be piecewise smooth (or constant).
Consequence of strong matching on the structure of the density function:

Thm. ’19 [Bruin, Carminati, Marmi, Profeti]

For a piecewise affine eventually expanding interval map T with strong matching, the density of its absolutely continuous invariant probability measure is constant on elements of the prematching partition,

$$
\bigcup_c \left(\bigcup_{i=1}^{M-1} T_i^c(c^-) \cup \bigcup_{i=1}^{N-1} T_i^c(c^+) \right).
$$
Random context

Random maps describe systems that evolve in discrete time in which at each time step one of a number of transformations is chosen according to an i.i.d. process and applied.

Let \(\{T_j : I \rightarrow I\}_{j \in \Omega} \) be a collection of interval maps, for \(\Omega \subseteq \mathbb{N} \) the index set. Let \(\sigma : \Omega^\mathbb{N} \rightarrow \Omega^\mathbb{N} \) be the left shift on one-sided sequences. The pseudo-skew product or \textbf{random map} \(R : \Omega^\mathbb{N} \times I \rightarrow \Omega^\mathbb{N} \times I \) is defined by

\[
R(\omega, x) = (\sigma(\omega), T_{\omega_1}(x)).
\]
Measures for pseudo-skew products:

Let \(\mathbf{p} = (p_j)_{j \in \Omega} \) be a positive probability vector representing the probabilities we apply the map \(T_j \). Let \(m_\mathbf{p} \) be the \(\mathbf{p} \)-Bernoulli measure on \(\Omega^\mathbb{N} \) and \(\mu_\mathbf{p} \) be an absolutely continuous wrt \(\lambda \) measure on \(I \) such that for each measurable set \(B \)

\[
\mu_\mathbf{p}(B) = \sum_{j \in \Omega} p_j \mu_\mathbf{p}(T_j^{-1}(B)).
\]

Then \(m_\mathbf{p} \times \mu_\mathbf{p} \) is an invariant probability measure for \(R \). We call \(\mu_\mathbf{p} \) a \textbf{stationary measure} for \(R \).
We make assumptions on R to guarantee the existence of $m_\mathbf{p} \times \mu_\mathbf{p}$.

1. There exists a finite or countable interval partition $\{I_i\}_i$, such that each $T_j|_{I_i}$ is C^1 and monotone.

2. R is expanding on average, i.e., for each $x \in I$

$$\sum_{j \in \Omega} \frac{p_j}{|T_j'(x)|} < 1.$$

3. For each $j \in \Omega$ the map

$$x \mapsto \begin{cases} \frac{p_j}{|T_j'(x)|} & \text{if } x \neq c, \\ 0 & \text{otherwise,} \end{cases}$$

is of bounded variation for $c \in C$, the set of critical points.
Random matching

A random map R has random matching if for every $c \in C$ there exists an $M = M_c \in \mathbb{N}$ and a set

$$Y_c \subseteq \left\{ T^k_\omega(c^-) : \omega \in \Omega^\mathbb{N}, \ 1 \leq k \leq M \right\} \cap \left\{ T^k_\omega(c^+) : \omega \in \Omega^\mathbb{N}, \ 1 \leq k \leq M \right\}$$

such that for every $\omega \in \Omega^\mathbb{N}$ there exist $k = k_c(\omega), \ell = \ell_c(\omega) \leq M$ with $T^k_\omega(c^-), T^\ell_\omega(c^+) \in Y_c$.

Idea: any random orbit of the left/right limit of any critical point c passes through the set Y_c at the latest at time M.
Strong random matching

A random map \(R \) has *strong random matching* if it has random matching and if for each \(c \in C \) and \(y \in Y_c \) the following holds. For

\[
\Omega(y)^- = \left\{ u \in \bigcup_{k=1}^{M} \Omega^k : \exists \omega \in \Omega^N \text{ with } u = \omega_1 \cdots \omega_{k_c(\omega)} \text{ and } T_u(c^-) = y \right\}
\]

\[
\Omega(y)^+ = \left\{ u \in \bigcup_{k=1}^{M} \Omega^k : \exists \omega \in \Omega^N \text{ with } u = \omega_1 \cdots \omega_{\ell_c(\omega)} \text{ and } T_u(c^+) = y \right\}
\]

it holds

\[
\sum_{u \in \Omega(y)^-} \frac{p_u}{T'_u(c^-)} = \sum_{u \in \Omega(y)^+} \frac{p_u}{T'_u(c^+)}.
\]
Example 1: random continued fraction maps

Let CF_α be defined on $\{0, 1\}^\mathbb{N} \times [\alpha - 1, \alpha]$ as the random map given by α-continued fraction maps:

$$T_{\alpha,0} = \frac{1}{|x|} - \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor$$
and

$$T_{\alpha,1} = \frac{1}{x} - \left\lfloor \frac{1}{x} + 1 - \alpha \right\rfloor.$$
Note that $T_{j,\alpha}(c^\pm) \in \{\alpha - 1, \alpha\}$, so that strong random matching occurs if the random weighted orbits of $\alpha - 1$ and α eventually meet.

For any $\alpha \in \left(\frac{\sqrt{85} - 5}{6}, \frac{\sqrt{2}}{2}\right) \subseteq J_4$ strong random matching holds for $M = 3$ and $Y = \left\{\frac{5-7\alpha}{3\alpha-2}\right\}$:
For $n \geq 4$ let $J_n = (\ell_n, r_n)$ be defined by the left and right endpoints

$$\ell_n = \frac{n + 1 - \sqrt{n^2 - 2n + 5}}{2} \quad \text{and} \quad r_n = \sqrt{\frac{n - 2}{n}},$$

respectively. For any n and $\alpha \in J_n$ the system CF_α has strong random matching with the same exponent $M = 3$, identifying a countable number of matching intervals for the family CF_α.

Figure: The semicircles indicate the locations of the intervals J_n.

M. Maggioni
Example 2: random β-transformations

$\beta = \frac{1+\sqrt{5}}{2}$, $\alpha \in \left(\frac{3\beta-2}{2}, 4\beta - 5\right)$ and $T_{\alpha,j} : [-\beta, \beta] \rightarrow [-\beta, \beta]$

$$T_{\alpha,0}(x) = \begin{cases}
\beta x + \alpha & \text{if } x \in [-\beta, -\frac{1}{\beta}) \\
\beta x & \text{if } x \in (-\frac{1}{\beta}, 1) \\
\beta x - \alpha & \text{if } x \in (1, \beta]
\end{cases}$$

$$T_{\alpha,1}(x) = \begin{cases}
\beta x + \alpha & \text{if } x \in [-\beta, -1) \\
\beta x & \text{if } x \in (-1, \frac{1}{\beta}) \\
\beta x - \alpha & \text{if } x \in (\frac{1}{\beta}, \beta]
\end{cases}$$

(a) $T_{\alpha,0}$

(b) $T_{\alpha,1}$
For $R_\alpha = \{T_{\alpha,0}, T_{\alpha,0}\}$, $C = \{-1, -\frac{1}{\beta}, \frac{1}{\beta}, 1\}$.

For $1 \in C$: $M = 3$ and $Y = \{\beta^2(\beta - \alpha)\}$:

\[
T_{\alpha,0}(1^-) = \beta \quad T_{\alpha,\omega}(\beta) = \beta^2 - \alpha \quad T_{\alpha,\omega}^2(\beta) = \beta^2(\beta - \alpha)
\]

\[
T_{\alpha,1}(1^-) = T_{\alpha,j}(1^+) = \beta - \alpha \quad T_{\alpha,\omega}(\beta - \alpha) = \beta(\beta - \alpha) \quad T_{\alpha,\omega}^2(\beta - \alpha) = \beta^2(\beta - \alpha).
\]

For $1/\beta \in C$: $M = 7$ and $Y = \{\beta^5(\beta - \alpha) - \alpha, \beta^6 - 3\beta^3\alpha\}$:

\[
T_{\alpha,j}(\frac{1}{\beta}^-) = 1 = T_{\alpha,0}(\frac{1}{\beta}^+) \quad T_{\alpha,1}(\frac{1}{\beta}^+) = 1 - \alpha.
\]
Matching for random systems

Example

Figure: The first couple of points in the orbit of $1 - \alpha$ under the random generalised β-transformation. $\beta^2(\beta - \alpha)$ is boxed since this point also appears in all random orbits of 1.
Consequences of strong random matching

On the structure of the density:

Thm. ’20 [Dajani, Kalle, M.]

Let R as before. Assume furthermore that each map $\{T_j\}_j$ is defined on a finite interval partition, and for each subinterval I_i not all straight lines have a common weighted intersection point on the diagonal. If R has strong random matching, then there exists an invariant probability measure of the form $m_p \times \mu_p$ such that its density is piecewise constant on the random prematching set.
Proof(ish)

There exists an invariant probability measure $m_p \times \mu_p$ for R with a probability density f_p for μ_p of the form

$$f_p = \sum_{i=1}^{N-1} \gamma_i \sum_{k \geq 1} \sum_{\omega \in \Omega^k} \left(\frac{p_\omega}{T'_\omega(c_i^-)} 1_{[c_0, T_\omega(c_i^-))} - \frac{p_\omega}{T'_\omega(c_i^+)} 1_{[c_0, T_\omega(c_i^+))} \right),$$

for some constants γ_i depending only on the discontinuity points c_i. We use random matching to rewrite f_p as

$$f_p = \sum_{i=1}^{N-1} \gamma_i \sum_{k=1}^{M} \left(\sum_{\omega \in \Omega^k : \forall n \leq k, T_\omega(c_i^-) \notin Y} \frac{p_\omega}{T'_\omega(c_i^-)} 1_{[c_0, T_\omega(c_i^-))} - \sum_{\omega \in \Omega^k : \forall n \leq k, T_\omega(c_i^+) \notin Y} \frac{p_\omega}{T'_\omega(c_i^+)} 1_{[c_0, T_\omega(c_i^+))} \right).$$
Example 3: minimal weight expansions

Many public key cryptosystems deal with the problem of raising elements of a group into some power, x^a. In binary representation,

$$x^a = \prod_{i=0}^{n} x^{d_i 2^i},$$

While the number of squarings is given by the length n of the binary expansion of a, the number of multiplications equals the number of non-zero digits d_i in the expansion, which is called **Hamming weight**. One way to reduce the time complexity is given by lowering the Hamming weight.
For any fixed integer a, its ordinary binary representation with digits $\{0, 1\}$ is uniquely determined, but this is not the case for the signed one, with digits in $\{-1, 0, 1\}$.

We consider a family of random maps R_α on $\{0, 1\}^\mathbb{N} \times [-1, 1]$ that generate **random signed binary expansions** with digits in $\{-1, 0, 1\}$. The randomness of the system allows us to choose (up to a certain degree) where and when we want to have a digit 0, and to study for each typical number its infinitely many different signed binary expansions simultaneously:

$$x = \alpha \sum_{n \geq 1} \frac{d_n(\omega, x)}{2^n}.$$
The **random symmetric doubling maps** $R_{\alpha} = \{T_{\alpha,0}, T_{\alpha,1}\}$ for $\alpha \in [1, 2]$ and

$$T_{\alpha,0}(x) = \begin{cases}
 2x + \alpha & \text{if } x \in \left[-1, \frac{1-\alpha}{2}\right), \\
 2x & \text{if } x \in \left[\frac{1-\alpha}{2}, \frac{1}{2}\right), \\
 2x - \alpha & \text{if } x \in \left[\frac{1}{2}, 1\right],
\end{cases}$$

and

$$T_{\alpha,1}(x) = \begin{cases}
 2x + \alpha & \text{if } x \in \left[-1, -\frac{1}{2}\right], \\
 2x & \text{if } x \in \left(-\frac{1}{2}, \frac{\alpha-1}{2}\right], \\
 2x - \alpha & \text{if } x \in \left(\frac{\alpha-1}{2}, 1\right].
\end{cases}$$
Matching for random systems

Random symmetric doubling maps

Figure: The maps $T_{\alpha,0}$ and $T_{\alpha,1}$ for $\alpha = 1$ in (a), $\alpha = \frac{3}{2}$ in (b), and $\alpha = 2$ in (c). The blue lines correspond to $T_{\alpha,0}$, the pink ones to $T_{\alpha,1}$ and the violet ones to both.
1. Let

\[S_\alpha(x) = \begin{cases}
2x + \alpha & \text{if } -1 \leq x < -\frac{1}{2}, \\
2x & \text{if } -\frac{1}{2} \leq x \leq \frac{1}{2}, \\
2x - \alpha & \text{if } \frac{1}{2} < x \leq 1,
\end{cases} \]

and let

\[M = \inf \left\{ n \geq 1 : \frac{1}{2} < S_\alpha^n(1) < \alpha - \frac{1}{2} \right\} + 1. \]

For all \(k < M \) and \(\omega \in \Omega^k \),

\[T_{\alpha,\omega}(1), \quad T_{\alpha,\omega}(1 - \alpha) \in \{ S_\alpha^k(1), S_\alpha^k(1 - \alpha) \}. \]

Strong random matching holds for Lebesgue almost every \(\alpha \in [1, 2] \), for the time \(M \) and the set \(Y = \{ S_\alpha^M(1) \} \).
2. From

\[S^k_\alpha(1 - \alpha) = S^k_\alpha(1) - \alpha \quad \text{for } k < M \]

and random matching it follows that an explicit formula for the \textbf{piecewise constant density function} is given by:

\[
f_P = (\gamma_1 + \gamma_2) \frac{p_1}{2} \sum_{k=0}^{M-1} \sum_{\omega \in \Omega^k} \frac{p_\omega}{2^k} \left(1_{[-1,T_\omega(\alpha-1))] - 1_{[-1,T_\omega(-1))]} \right) \\
+ (\gamma_2 + \gamma_3) \frac{p_0}{2} \sum_{k=0}^{M-1} \sum_{\omega \in \Omega^k} \frac{p_\omega}{2^k} \left(1_{[-1,T_\omega(1))] - 1_{[-1,T_\omega(1-\alpha))]}. \]

Thm. ’20 [Dajani, Kalle, M.]

For any p and any $\alpha \in [1, 2]$ the frequency $\pi_0(\alpha, p)$ is at most $\frac{1}{2}$ for $m_p \times \lambda$-a.e. $(\omega, x) \in \Omega^\mathbb{N} \times [-1, 1]$.
More on the matching intervals:

Let \(a = [0; a_1, a_2, \ldots, a_{2j+1}] \in \mathbb{Q} \cap [0, 1] \) such that \(I_a \) is a maximal quadratic interval for the \(\alpha \)-CF map \(T_{0,\alpha} \). Then

\[
\left(\frac{2^M + 1}{2^M \varphi(a) + 1}, \frac{2^M - 1}{2^M \varphi(a) - 1} \right)
\]

is a matching interval for \(R_\alpha \), for \(M = \sum_{i=1}^{2j+1} a_i \), and

\[
\varphi(a) = \eta((1 \circ a_1)(0 \circ a_2) \ldots) \quad \text{and} \quad \eta((b_n)_{n\geq1}) = \sum_{n\geq1} \frac{b_n}{2^n}.
\]
Future plans

Do piecewise smooth random interval maps with random matching have piecewise smooth densities?

(a) $\alpha = 0.70315\ldots$, $p_0 = 0.3$

(b) $\alpha = 0.77287\ldots$, $p_0 = 0.6$

Figure: Numerical simulations of f_{p_0} for the random continued fraction maps CF_α. In (a) $\alpha \in J_4$ and $p_0 = 0.3$ and in (b) $\alpha \in J_5$ and $p_0 = 0.6$. The dashed lines indicate the position of the prematching set, i.e., the points in the orbits of α and $\alpha - 1$ before the moment of matching.
Thank you for listening.