Hotspot lemmas for noncompact spaces

Bill Mance

Department of Mathematics University of Adam Mickiewicz

Dylan Airey (Princeton University)

The classical hotspot lemma.

<ロ> <同> <同> < 同> < 同>

æ

The classical hotspot lemma.

Theorem A real number x is normal to base b if, and only if, there exists a positive number C such that

$$\limsup_{n\to\infty}\frac{A_b(B,n,x)}{n}\leq Cb^{-|B|}$$

for all blocks B of integers $0, 1, \ldots, b-1$.

The classical hotspot lemma.

Theorem A real number x is normal to base b if, and only if, there exists a positive number C such that

$$\limsup_{n\to\infty}\frac{A_b(B,n,x)}{n}\leq Cb^{-|B|}$$

for all blocks B of integers $0, 1, \ldots, b-1$.

This result and its generalizations and extensions are among the fundamental tools used to study normal numbers in various numeration systems.

Is it true that

$$\limsup_{n} \sum_{i} a_{i,n} \leq \sum_{i} \limsup_{n} a_{i,n}?$$

<ロ> <同> <同> < 同> < 同>

æ

Is it true that

$$\limsup_{n} \sum_{i} a_{i,n} \leq \sum_{i} \limsup_{n} a_{i,n}?$$

Yes, if the sums are finite. Counterexample for infinite sums:

<回と < 目と < 目と

臣

Is it true that

$$\limsup_{n} \sum_{i} a_{i,n} \leq \sum_{i} \limsup_{n} a_{i,n}?$$

Yes, if the sums are finite. Counterexample for infinite sums:

Let $a_{i,i} = 1$ and $a_{i,n} = 0$ if $i \neq n$. Then $\limsup_n \sum_i a_{i,n} = 1$ and $\sum_i \limsup_n a_{i,n} = 0$.

▲冊▶ ▲臣▶ ▲臣▶

臣

The setup

Let X be a set with a collection of subsets $C = \{C_m\}$ which form a *semi-\sigma-algebra*: that is C contains X and \emptyset , C is closed under finite intersection, and for any $A \in C$ there is a countable disjoint collection of sets $\{C_k\} \subseteq C$ such that $X \setminus A = \bigcup_k C_k$. Endow X with the topology and Borel σ -algebra generated by C. Let μ be a probability measure and let $T : X \to X$ be a continuous map which preserves μ and is ergodic with respect to μ . The *Birkhoff mean* of a measurable function f with respect to a point $x_0 \in X$ is given by

$$S_N(x_0, f) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x_0).$$

We define the sets

$$A_{\ell}(f,\delta) = \left\{ x \in X : \left| S_{\ell}(x,f) - \int f \, d\mu \right| > \delta \right\}.$$

We define an analog of the Hausdorff measure $H(\cdot)$ for a set E with respect to this family to be $\inf\{\sum \mu(C_i)\}$, where the infimum is taken over coverings (finite or countable) of E. We say that the measures μ and H are *coordinated* if any μ -measurable set is H-measurable.

ON THE PYATETSKII–SHAPIRO CRITERION OF NORMALITY 541

Theorem 1. Let x_0 be a point such that $x_0 \in X$. If for an arbitrary set I from the family $\{C_m\}$,

$$\limsup_{\nu \to \infty} \frac{S_{\nu}(x_0, \chi_I)}{\nu} \le \varphi(\mu(I))$$

and for any $\delta > 0$ we have $H_{\varphi}(A_l(T, \chi_I, \delta)) \to 0$ as $l \to \infty$, then for an arbitrary set V from Γ the following asymptotic relation is valid:

$$\lim_{\nu \to \infty} \frac{S_{\nu}(x_0, \chi_V)}{\nu} = \mu(V). \quad (3)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

3

A counterexample

Theorems 1, 4, and 5 in Moshchevitin and Shkredov (2003) are incorrect as stated. A counterexample to all three is given by considering the space $X = \mathbb{N}^{\mathbb{N}}$ with the shift map T and the family C given by the cylinder sets $[\xi] = \{x \in X : x | _{\{1, \dots, |\xi|\}} = \xi\}$ for $\xi \in \mathbb{N}^{<\infty}$. Consider the point $x_0 = (1, 2, 3, 4, \dots)$. Then for any $I \in C$

$$\limsup_{N\to\infty}\frac{S_N(x_0,\chi_I)}{N}=0$$

since for a fixed $\xi \in \mathbb{N}^{<\infty}$, if $M = \max_{1 \le i \le |\xi|} \xi_i$, then for n > Mwe have $T^n \notin [\xi]$. For any probability measure μ on X and function $\varphi : \mathbb{R}_{\ge 0} \to \mathbb{R}_{\ge 0}$ we have $0 \le \varphi(\mu(I))$. Thus x_0 satisfies the assumptions in each theorem. However, for any probability measure μ on X, there must be some $a \in \mathbb{N}$ such that $\mu[a] > 0$. Thus,

$$\lim_{N \to \infty} \frac{S_N(x_0, \chi_{[a]})}{N} \neq \mu[a].$$
Bill Mance Hotspot lemmas

Tightness

The behavior of this counterexample, where the mass of the orbit escapes to infinity, is the only obstruction to the theorems. To correct these theorems we add a tightness condition which prevents this escape. We say a set of probability measures M is *tight* if for every $\epsilon > 0$ there is a compact set K such that for every $\mu \in M$, $\mu(X \setminus K) < \epsilon$. We define the empirical probability measures for $x \in X$ by $\mathcal{E}(x, n) = \sum_{i=0}^{n-1} \delta_{T^i x}/n$. Note that $S_N(x_0, f) = \int f d\mathcal{E}(x_0, N)$.

▲ 圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The behavior of this counterexample, where the mass of the orbit escapes to infinity, is the only obstruction to the theorems. To correct these theorems we add a tightness condition which prevents this escape. We say a set of probability measures M is *tight* if for every $\epsilon > 0$ there is a compact set K such that for every $\mu \in M$, $\mu(X \setminus K) < \epsilon$. We define the empirical probability measures for $x \in X$ by $\mathcal{E}(x, n) = \sum_{i=0}^{n-1} \delta_{T^i x}/n$. Note that $S_N(x_0, f) = \int f d\mathcal{E}(x_0, N)$.

It was suggested to the authors independently by N. G. Moshchevitin and I. D. Shkredov, J. Vandehey, and the anonymous referee of this article that rather than adding a tightness condition one may instead enlarge the class of cylinder sets on which one tests the hypotheses of the lemma.

Corrections of Theorem 1 in in Moshchevitin and Shkredov (2003)

Theorem Let $x_0 \in X$ be such that the set of probability measures $\{\mathcal{E}(x_0, n)\}_{n=1}^{\infty}$ is tight and let $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be monotone increasing. If for an arbitrary set I from the family \mathcal{C}

$$\limsup_{N\to\infty}\frac{S_N(x_0,\chi_I)}{N}\leq\varphi(\mu(I))$$

and for any $\delta > 0$ we have $\lim_{\ell \to \infty} H_{\varphi}(A_{\ell}(\chi_{I}, \delta)) = 0$, then for a Borel set B, we have

$$\lim_{N\to\infty}\frac{S_N(x_0,\chi_B)}{N}=\mu(B).$$

Corrections of Theorem 1 in Moshchevitin and Shkredov (2003)

Theorem Let $x_0 \in X$ and $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be monotone increasing. If for an arbitrary set $I = \bigcup_k C_k$ which is a countable union of cylinder sets $C_k \in C$

$$\limsup_{N\to\infty}\frac{S_N(x_0,\chi_I)}{N}\leq \sum_k\varphi(\mu(C_k))$$

and for any $\delta > 0$ we have $\lim_{\ell \to \infty} H_{\varphi}(A_{\ell}(\chi_{I}, \delta)) = 0$, then for a Borel set B, we have

$$\lim_{N\to\infty}\frac{S_N(x_0,\chi_B)}{N}=\mu(B).$$

Correction of Theorem 4 in Moshchevitin and Shkredov (2003) and Theorem 7 in Shkredov (2012)

Theorem Let T be the continued fraction map on $X = (0,1) \setminus \mathbb{Q}$ with the Gauss measure

$$\mu(A) = \frac{1}{\log 2} \int_A \frac{1}{1+x} \, dx.$$

Let $x \in X$ be such that $\{\mathcal{E}(x, n)\}_{n=0}^{\infty}$ is tight (with respect to the subspace topology on X). Let $\psi : \mathbb{R}_{>0} \to \mathbb{R}_{\geq 0}$ satisfy $\psi(t) = O(t^{-\eta})$ as $t \to 0$ for any $\eta > 0$. If for any cylinder set I

$$\limsup_{N\to\infty}\frac{S_N(x,\chi_I)}{N}\leq \mu(I)\psi(\mu(I))$$

$$\lim_{N\to\infty}\frac{S_N(x,\chi_I)}{N}=\mu(I).$$

Correction of Theorem 4 in Moshchevitin and Shkredov (2003) and Theorem 7 in Shkredov (2012)

To state the alternative version of Theorem 3 we need a new definition. For a countable alphabet A, an *extended cylinder set* of rank n is a set $C \subseteq A^{\mathbb{N}}$ of the form

$$\left\{x\in A^{\mathbb{N}}: x_1\in S_1,\cdots,x_n\in S_n\right\}$$

where $S_1, \dots, S_n \subseteq A$ are finite or co-finite. Note the extended cylinder sets form a semi-algebra whereas the cylinder sets only form a semi- σ -algebra.

Correction of Theorem 4 in Moshchevitin and Shkredov (2003) and Theorem 7 in Shkredov (2012)

Theorem Let T be the continued fraction map on $X = (0,1) \setminus \mathbb{Q}$ with the Gauss measure

$$\mu(A) = \frac{1}{\log 2} \int_A \frac{1}{1+x} \, dx.$$

Let $x \in X$ and let $\psi : \mathbb{R}_{>0} \to \mathbb{R}_{\geq 0}$ satisfy $\psi(t) = O(t^{-\eta})$ as $t \to 0$ for any $\eta > 0$. If for any extended cylinder set I

$$\limsup_{N\to\infty}\frac{S_N(x,\chi_I)}{N}\leq \mu(I)\psi(\mu(I))$$

$$\lim_{N\to\infty}\frac{S_N(x,\chi_I)}{N}=\mu(I).$$

Corrections of Theorem 5 in in Moshchevitin and Shkredov (2003)

Theorem Let $p = (p_a)_{a=1}^{\infty}$ be a probability vector. Suppose for some $\eta_0 > 0$ the series $\sum_{a=1}^{\infty} p_a^{1-\eta_0}$ converges. Consider the system (X, T, μ) where $X = \mathbb{N}^{\mathbb{N}}$, T is the right shift, and μ is the Bernoulli measure given by sampling each digit i.i.d. according to p. That is $\mu[a_1, \dots, a_n] = \prod_{i=1}^n p_{a_i}$. Let $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be a function such that $\varphi(t) = O(t^{1-\eta})$ as $t \to 0$ for some $\eta \in (0, 1)$. Suppose $x \in X$ is such that $\{\mathcal{E}(x, n)\}_{n=0}^{\infty}$ is tight. If for any cylinder set I

$$\limsup_{N\to\infty}\frac{S_N(x,\chi_I)}{N}\leq \varphi(\mu(I)),$$

$$\lim_{N\to\infty}\frac{S_N(x,\chi_B)}{N}=\mu(B).$$

Corrections of Theorem 5 in in Moshchevitin and Shkredov (2003)

Theorem Let $p = (p_a)_{a=1}^{\infty}$ be a probability vector. Suppose for some $\eta_0 > 0$ the series

$$\sum_{a=1}^{\infty} p_a^{1-\eta_a}$$

converges. Consider the system (X, T, μ) where $X = \mathbb{N}^{\mathbb{N}}$, T is the right shift, and μ is the Bernoulli measure given by sampling each digit i.i.d. according to p. That is $\mu[a_1, \dots, a_n] = \prod_{i=1}^n p_{a_i}$. Let $\varphi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ be a function such that $\varphi(t) = O(t^{1-\eta})$ as $t \to 0$ for some $\eta \in (0, 1)$. Suppose $x \in X$ is such that for any extended cylinder set I

$$\limsup_{N\to\infty}\frac{S_N(x,\chi_I)}{N}\leq \varphi(\mu(I)),$$

$$\lim_{N \to \infty} \frac{S_N(x, \chi_B)}{N} = \mu(B), \quad \text{if } A \in \mathbb{R}$$

Bill Mance Hotspot lemmas