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Hotspot lemma

The classical hotspot lemma.

Theorem A real number x is normal to base b if, and only if, there
exists a positive number C such that

lim sup
n→∞

Ab(B, n, x)

n
≤ Cb−|B|

for all blocks B of integers 0, 1, . . . , b − 1.

This result and its generalizations and extensions are among the
fundamental tools used to study normal numbers in various
numeration systems.
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An analysis question

Is it true that

lim sup
n

∑
i

ai ,n ≤
∑
i

lim sup
n

ai ,n?

Yes, if the sums are finite. Counterexample for infinite sums:

Let ai ,i = 1 and ai ,n = 0 if i 6= n. Then lim supn

∑
i ai ,n = 1 and∑

i lim supn ai ,n = 0.
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The setup

Let X be a set with a collection of subsets C = {Cm} which form a
semi-σ-algebra: that is C contains X and ∅, C is closed under finite
intersection, and for any A ∈ C there is a countable disjoint
collection of sets {Ck} ⊆ C such that X \ A =

⋃
k Ck . Endow X

with the topology and Borel σ-algebra generated by C. Let µ be a
probability measure and let T : X → X be a continuous map
which preserves µ and is ergodic with respect to µ.
The Birkhoff mean of a measurable function f with respect to a
point x0 ∈ X is given by

SN(x0, f ) =
1

N

N−1∑
n=0

f (T nx0).

We define the sets

A`(f , δ) =

{
x ∈ X :

∣∣∣∣S`(x , f )−
∫

f dµ

∣∣∣∣ > δ

}
.
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The setup

We define an analog of the Hausdorff measure H(·) for a set E
with respect to this family to be inf{

∑
µ(Ci )}, where the infimum

is taken over coverings (finite or countable) of E . We say that the
measures µ and H are coordinated if any µ-measurable set is
H-measurable.
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An almost correct theorem
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A counterexample

Theorems 1, 4, and 5 in Moshchevitin and Shkredov (2003) are
incorrect as stated. A counterexample to all three is given by
considering the space X = NN with the shift map T and the family
C given by the cylinder sets [ξ] = {x ∈ X : x |{1,··· ,|ξ|} = ξ} for
ξ ∈ N<∞. Consider the point x0 = (1, 2, 3, 4, · · · ). Then for any
I ∈ C

lim sup
N→∞

SN(x0, χI )

N
= 0

since for a fixed ξ ∈ N<∞, if M = max1≤i≤|ξ| ξi , then for n > M
we have T n /∈ [ξ]. For any probability measure µ on X and
function ϕ : R≥0 → R≥0 we have 0 ≤ ϕ(µ(I )). Thus x0 satisfies
the assumptions in each theorem. However, for any probability
measure µ on X , there must be some a ∈ N such that µ[a] > 0.
Thus,

lim
N→∞

SN(x0, χ[a])

N
6= µ[a].
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Tightness

The behavior of this counterexample, where the mass of the orbit
escapes to infinity, is the only obstruction to the theorems. To
correct these theorems we add a tightness condition which prevents
this escape. We say a set of probability measures M is tight if for
every ε > 0 there is a compact set K such that for every µ ∈ M,
µ(X \ K ) < ε. We define the empirical probability measures for
x ∈ X by E(x , n) =

∑n−1
i=0 δT ix/n. Note that

SN(x0, f ) =
∫
f dE(x0,N).

It was suggested to the authors independently by N. G.
Moshchevitin and I. D. Shkredov, J. Vandehey, and the anonymous
referee of this article that rather than adding a tightness condition
one may instead enlarge the class of cylinder sets on which one
tests the hypotheses of the lemma.
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Corrections of Theorem 1 in in Moshchevitin and Shkredov
(2003)

Theorem Let x0 ∈ X be such that the set of probability measures
{E(x0, n)}∞n=1 is tight and let ϕ : R≥0 → R≥0 be monotone
increasing. If for an arbitrary set I from the family C

lim sup
N→∞

SN(x0, χI )

N
≤ ϕ(µ(I ))

and for any δ > 0 we have lim`→∞Hϕ(A`(χI , δ)) = 0, then for a
Borel set B, we have

lim
N→∞

SN(x0, χB)

N
= µ(B).
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⋃
k Ck which is a countable union of
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lim sup
N→∞

SN(x0, χI )

N
≤
∑
k
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Correction of Theorem 4 in Moshchevitin and Shkredov
(2003) and Theorem 7 in Shkredov (2012)

Theorem Let T be the continued fraction map on X = (0, 1) \Q
with the Gauss measure

µ(A) =
1

log 2

∫
A

1

1 + x
dx .

Let x ∈ X be such that {E(x , n)}∞n=0 is tight (with respect to the
subspace topology on X ). Let ψ : R>0 → R≥0 satisfy
ψ(t) = O(t−η) as t → 0 for any η > 0. If for any cylinder set I

lim sup
N→∞

SN(x , χI )

N
≤ µ(I )ψ(µ(I ))

then for any Borel set B

lim
N→∞

SN(x , χI )

N
= µ(I ).
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Correction of Theorem 4 in Moshchevitin and Shkredov
(2003) and Theorem 7 in Shkredov (2012)

To state the alternative version of Theorem 3 we need a new
definition. For a countable alphabet A, an extended cylinder set of
rank n is a set C ⊆ AN of the form{

x ∈ AN : x1 ∈ S1, · · · , xn ∈ Sn

}
where S1, · · · ,Sn ⊆ A are finite or co-finite. Note the extended
cylinder sets form a semi-algebra whereas the cylinder sets only
form a semi-σ-algebra.
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Corrections of Theorem 5 in in Moshchevitin and Shkredov
(2003)

Theorem Let p = (pa)∞a=1 be a probability vector. Suppose for

some η0 > 0 the series
∑∞

a=1 p
1−η0
a converges. Consider the

system (X ,T , µ) where X = NN, T is the right shift, and µ is the
Bernoulli measure given by sampling each digit i.i.d. according to
p. That is µ[a1, · · · , an] =

∏n
i=1 pai . Let ϕ : R≥0 → R≥0 be a

function such that ϕ(t) = O(t1−η) as t → 0 for some η ∈ (0, 1).
Suppose x ∈ X is such that {E(x , n)}∞n=0 is tight. If for any
cylinder set I

lim sup
N→∞

SN(x , χI )

N
≤ ϕ(µ(I )),

then for any Borel set B

lim
N→∞

SN(x , χB)

N
= µ(B).
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