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Diophantine approximations (I)

Given α ∈ R, q ∈ N∗, ∃ p ∈ Z s.t. |qα− p| ≤ 1
2 , i.e., |α− p

q | ≤
1

2q .

Dirichlet (1841): pigeonhole principle =⇒ ∀α ∈ R \Q, one has

#

{
p

q
∈ Q : |α− p

q
| < 1

q2
=

1

1 · q2

}
=∞

Definition

The Lagrange spectrum L ⊂ R is L := {l(α) <∞ : α ∈ R \Q},

l(α) := lim sup
p,q→∞

1

|q(qα− p)|
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Diophantine approximations (II)

Given h(x , y) = ax2 + bxy + cy2 a real, indefinite, binary quadratic
form with positive discriminant ∆(h) := b2 − 4ac > 0, let

m(h) := sup
(p,q)∈Z2\{(0,0)}

√
∆(h)

|h(p, q)|

Definition

The Markov spectrum M ⊂ R is M := {m(h) <∞ : h as above }.
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Beginning of L and M (I)

Hurwitz (1890):
√

5 = min L because

#

{
p

q
∈ Q : |α− p

q
| < 1√

5q2

}
=∞, ∀α ∈ R \Q,

and

#

{
p

q
∈ Q : |1 +

√
5

2
− p

q
| < 1

(
√

5 + ε)q2

}
<∞, ∀ ε > 0.
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Beginning of L and M (II)

Markov (1880) : L ∩ [
√

5, 3) = M ∩ [
√

5, 3) ={
√

5 <
√

8 <

√
221

5
< . . .

}
=

{√
9− 4

z2
n

: n ∈ N

}
where xn ≤ yn ≤ zn, (xn, yn, zn) ∈ N3 is a Markov triple, i.e.,

x2
n + y2

n + z2
n = 3xnynzn

Some related topics

Markov uniqueness conjecture: Bombieri, Aigner, ...;

Z-pts of M.-H. var.: Zagier, Baragar, Gamburd-Magee-Ronan;

Geod. of hyperb. surf.: McShane-Rivin, Mirzakhani, ...;

Dynamics on character varieties: Goldman, Cantat, ...;

Markov expanders: Bourgain-Gamburd-Sarnak, ...
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Markov’s tree

All Markov triples are deduced from (1, 1, 1) via Vieta’s involutions
(x , y , z) 7→ (3yz − x , y , z), etc. This leads to Markov’s tree:

(1,5,13)

(2,5,29)

(1,13,34)

(5,13,194)

(5,29,433)

(2,29,169)

(1,34,89)

(13,34,1325)

(13,194,7561)

(5,194,2897)

(5,433,6466)

(29,433,37666)

(29,169,14701)

(2,169,985)

(1,1,1) (1,1,2) (1,2,5)
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L and M after Perron (I)

Let σ((an)n∈Z) = (an+1)n∈Z be the shift dynamics on Σ = (N∗)Z,
and consider the height function f : Σ→ R,

f ((an)n∈Z) := [a0; a1, . . . ] + [0; a−1, . . . ]

= a0 +
1

a1 + 1

. . .

+
1

a−1 + 1

. . .

Perron proved in 1921 that

L = {lim sup
n→∞

f (σn(a)) <∞ : a ∈ Σ}

and
M = {sup

n∈Z
f (σn(a)) <∞ : a ∈ Σ}
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L and M after Perron (I)
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Perron’s description of L and M

Remark

The key fact behind Perron’s characterization of L is the identity
α− pn

qn
= (−1)n

(xn+yn)q2
n

for α := [a0; a1, a2, . . . , ],
pn
qn

:= [a0; a1, . . . , an],

xn := [0; an+1, . . . ], yn := [0; an, . . . , a1].

(N∗)Z−

(N∗)N

f
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L and M after Perron (II)

This dynamical characterisation of L and M gives access to several
results:

Perron also showed in 1921 that (
√

12,
√

13) ∩M = ∅,√
12,
√

13 ∈ L, ...

L = {sup
n∈Z

f (σnx) : x per.} ⊂ M = {sup
n∈Z

f (σnx) : x ev. per.}

are closed subsets of the real line,

etc.
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L, M and the modular surface

The relation between continued fractions and geodesics on the
modular surface H/SL(2,Z) says that L and M correspond to
heights of excursions of geodesics into the cusp of H/SL(2,Z).

Movie by Pierre Arnoux and Edmund Harriss.
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Impressionistic picture of the modular surface

gt(x)

H

x
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Ending of L and M

The works of Hall (1947), ..., Freiman (1975) give that the largest
half-line of the form [c ,∞) contained in L ⊂ M is[

2221564096 + 283748
√

462

491993569
,∞

)

This half-line is called Hall’s ray in the literature and its left
endpoint is called Freiman’s constant cF = 4.5278 . . . .
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Intermediate portion of L and M (I)

We saw that L and M coincide before 3 and after cF :

L ∩ [
√

5, 3] = M ∩ [
√

5, 3]

and
L ∩ [cF ,∞) = M ∩ [cF ,∞) = [cF ,∞).

However, Freiman (1968), Flahive (1977) and M.-Moreira (2018)
proved that M \ L has a rich structure near 3.11, 3.29 and 3.7, and
0.531 < dim(M \ L) < 0.987.
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Intermediate portion of L and M (II)

Moreira (2016) showed that

dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t))

for all t ∈ R. Hence, M \ L doesn’t create “jumps in dimension”
between L and M.

Moreira also proved that d(t) := dim(L ∩ (−∞, t)) is a continuous
non-Hölder function of t such that

d(3 + ε) > 0 ∀ε > 0 and d(
√

12) = 1.
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Global view of the Lagrange and Markov spectra

Markov theorem

Moreira theorem

Hurwitz theorem Freiman constant
(1975)

Perron
(1921)

Freiman

Cusick's conjecture

(1890)

(1880)

(1968)
Freiman (1973)

Flahive (1977)

(2016)

(1975)

Hall's ray
(1947)

3 4,5278...3,11...∈

M-L

3,29...∈

M-L

 √12  √13 √8

22
9√3  + 65

 √5 3,7096...∈
M-L

M. - Moreira
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Fine details of the intermediate portion of L and M ?

Despite all recent progress, many basic problems are still open:
e.g., Berstein conjectured that [4.1, 4.52] ⊂ L ⊂ M and a folkloric
question (cf. Cusick-Flahive) whether int(L ∩ [3,

√
12]) 6= ∅.

Remark

This relates to sumsets / projections of certain Cantor sets: e.g.,
int(L ∩ [3,

√
12]) 6= ∅ is expected “as” Marstrand’s theorem

“predicts” that int(C (2) + C (2)) 6= ∅ for the “nonlinear” Cantor
set C (2) := {[0; γ] : γ ∈ {1, 2}N} with dim(C (2)) > 1/2.

By “analogy” with the case of the famous Mandelbrot set, one
could hope to build strategies to these kind of questions by the
inspection of rigorous drawings of L and M.
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Markov values at periodic orbits (I)

We know that L = {sup
n∈Z

f (σnx) : x periodic} (and similarly for M).

This suggests to try to draw L by computing Markov values
m(x) := sup

n∈Z
f (σnx) at certain periodic words x ∈ (N∗)Z.

Unfortunately, the natural bound on the complexity of the resulting
algorithm is large. Indeed:√

5 ≤ ` = lim sup
j→∞

f (σnx) ≤
√

21 implies x ∈ {1, 2, 3, 4}Z;

given m, there are hm and a sequence ji →∞ such that
f (σjx) < `+ 1/m ∀ j ≥ hm and f (σji x)→ `;
given N, there is S ∈ {1, 2, 3, 4}2N+1 such that for infinitely
many ji ’s one has S = (xji−N , . . . , xji , . . . , xji+N);
moreover, S can be connected to itself using factors of sizes
2N + 1 of words with Markov values ≤ t + 1/m.
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Markov values at periodic orbits (II)

Hence, there exists 1 ≤ k ≤ 42N+1 and a factor (a0, . . . , a2N+k+1)
of size 2N + k + 1 of a word with Markov value ≤ t + 1/m such
that (a0, . . . , a2N) = S = (ak , . . . , a2N+k+1). In particular, since
|[0; z1, . . . , zn, zn+1, . . . ]− [0; z1, . . . , zn,wn+1, . . . ]| < 1

2n−1 ,

θ = (a0, . . . , ak−1) ∈
⋃

1≤s≤42N+1

{1, 2, 3, 4}s

is a periodic word with Markov value |m(θ)− `| < 1
m + 1

2N−2 .

In summary, if we compute the Markov values of ∼ 4Q
4

periodic
words of lengths ≤ Q4, then we obtain a 1/Q-dense subset of L.
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Main result

Theorem (Delecroix–M.–Moreira)

There is an algorithm providing finite sets 1/Q-close (in Hausdorff
topology) to L and M after time O(Q2.367).

An approximation of L2 = L ∩ [
√

5,
√

12] given by this algorithm:

2.9 3.0 3.1 3.2 3.3 3.4

Lagrange spectrum L2 at precision Q2 = 150000
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Some initial remarks about the algorithm

The algorithm was implement in Sage by Delecroix and it is
available at https:// plmlab.math.cnrs.fr/delecroix/lagrange

3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

Lagrange spectrum L3 at precision Q3 = 3000

Our approx. of LK = {lim sup f (σnx) : x ∈ {1, . . . ,K}Z} are
1

250 -close to L (which is not enough to tackle Berstein’s conj.).
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Some “fake news” (I)

As a warmup, let us describe a simplified version of the algorithm
with a slightly worse polynomial complexity.

Given x = (xm)m∈Z ∈ (N∗)Z and n ∈ Z, let

λn(x) := f (σn(x)) := [xn; xn+1, . . . ] + [0; xn−1, . . . ]

In order to describe L ∩ [0,R], it suffices to study the values of f
along the orbits of the restriction of σ to {1, . . . ,K = bRc}Z.

Fix Q and take n s.t. b = (b−n, . . . , b0, . . . , bn) ∈ {1, . . . ,K}2n+1

generates a cylinder

~b := {a ∈ {1, . . . ,K}Z : aj = bj ∀ |j | ≤ n}

with sup
a∈~b

λ0(a)− inf
a∈~b

λ0(a) < 1/Q.

C. Matheus Approximations of L and M
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Some “fake news” (II)

Consider the graph G̃K ,Q with set of vertices {1, . . . ,K}2n and
edges u → v when u = (u−n, . . . , un−1) and v = (v−n, . . . , vn−1)
satisfy vj = uj+1 ∀ − n ≤ j ≤ n − 2. We equip the edges u → v of
this de Bruijn graph with weights

w(u−n, . . . , vn) :=

sup
a∈~b

λ0(a) + inf
a∈~b

λ0(a)

2
.

Definition

A Lagrange edge e is an edge belonging to cycle γ such that w(e)
is maximal among all edges in γ.

The heart of the matter is the fact that the set of weights of
Lagrange edges of G̃K ,Q is 1/Q-close to L ∩ [0,R].
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Genuine algorithm (I)

Even though de Bruijn graphs are pleasant, well-known objects,
their usage in the previous construction is suboptimal: roughly
speaking, the combinatorial size 2n + 1 of a word (b−n, . . . , bn)
loses track of the geometry of C (K ) = {[0; x ] : x ∈ {1, . . . ,K}N}.

For this reason, we introduce the notion of geometric size of
b ∈ {1, . . . ,K}+ =

⋃
n∈N
{1, . . . ,K}n, namely,

diam(b) := diameter {[0; x ] : x = b · · · ∈ {1, . . . ,K}N}

and we consider

CK ,Q := {b ∈ {1, . . . ,K}+ : diam(b) ≤ 1

Q
< diam(b′)}.
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Genuine algorithm (II)

Very roughly speaking, our idea is to build a graph GK ,Q (playing

the role of G̃K ,Q) based on the set CK ,Q (instead of {1, . . . ,K}n).

Remark

The precise definition of GK ,Q is somewhat involved. In particular,
even though CK ,Q serves to define the vertices and edges of GK ,Q ,
it is not the vertex set of this graph. Also, GK ,Q has two types of
edges (called “prolongation” and “shift”).

In any event, it takes time O(m) to determine if an edge e of GK ,Q

is Lagrange, where m := #edges of GK ,Q : indeed, it suffices to
perform a depth-first search on the edges with weight ≤ w(e) to
try to connect the endpoints of e.
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Genuine algorithm (III)

It follows that it takes time O(m2) to compute the set of weights
of Lagrange edges of GK ,Q .

Actually, if we order the edges e1, . . . , em so that w(ei ) ≤ w(ei+1)
and introduce the graphs G (k) obtained from {e1, . . . , ek} after
identifying vertices in the same strong connected component and
removing loops, then G (k) is derived from G (k−1) by adding ek and
describing new connected components, and the Lagrange edges ek
are those creating cycles when added to G (k−1).

Thus, we can employ methods of online cycle detection and
maintenance of strongly connected components to compute all
Lagrange edges of GK ,Q in time O(m3/2).

Furthermore, it is not difficult to check that the set of weights of
Lagrange edges of GK ,Q is 1/Q-close to L ∩ [0,R].
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Genuine algorithm (IV)

Hence, our task is to determine m = #edges of GK ,Q .

A quick inspection of the definitions reveals that m = O(#CK ,Q)2,
so that our algorithm runs in time O(#CK ,Q)3.

At this point, we recall Bowen’s equation∑
~b∈CK ,Q

Λ(~b)−dim(C(K)) ≤ 1,

where Λ(~b) ∼ 1/diam(~b) ∼ Q is the maximal derivative of the
|~b|-iterate of the restriction of the Gauss map to the interval
{[0; x ] : x = b · · · ∈ {1, . . . ,K}N}.

Consequently, #CK ,Q ∼ Qdim(C(K)) and the running time of our
algorithm is O(Q3dim(C(K))). Since dim(C (4)) < 0.789, our main
theorem is proved.
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Thank you! Merci! Obrigado!
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