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The definition of tilings

a tile: S C R?, compact, non-empty, S°~ = S

sometimes with a label (.5,1)

a patch=a collection P of tiles such that

SSTeP,S#T=5"NT°=1)



The definition of tiling

a tile: S C R%, compact, non-empty, S°~ = S sometimes with a label (.5, )
a patch=a collection P of tiles such that ST e P,S#4T = 5°NT° =1

Example

Tw = ([Ov 1]27W) —

T = ([0,1]%, B) =




The definition of tilings

a tiling=a patch 7 such that the union of supports of the tiles in T is R¢

T ={Tw + (n,m) | n+modd} U{Ts + (n,m) | n+m even}
crystallographic, i.e. T + (n,m) =T for n +m even



A construction of non-periodic tilings

interest: non-periodic but “ordered” tiling

|

T +x="T only for x =0

construction: via a substitution rule



The tiling metric

-
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Tiling dynamical systems

Continuous hull

X;={T +x|x€RY
R4 acts on X via translation:

X XRIS ($,x)~» S+x€ X,

Often there iIs one and only one invariant Borel probability measure u



Tiling dynamical systems

R? acts on X. Vvia translation:
J

XoXRIS ($,x) > S +x € Xo

Often there Is one and only one invariant Borel probability measure u

We say J has pure discrete dynamical spectrum If there exists a complete
orthonormal basis for L*(u) consisting of eigenfunctions for Koopman

operators U, : f+ f(- — x)



Main question

Decide which non-periodic tiling has pure discrete dynamical spectrum.



A construction of non-periodic tilings

a substitution rule =a recipe for “expanding and subdividing”

= o A: a finite set of tiles (the alphabet)
@ p: the rule of expanding P € A and then subdivide it

® »: RY — RY (the expansion map)

a linear map s.t. A: eigenvalue= || > 1

Ty 15
T = L+ V5 .expansion factor (¢ = 7 x identity) A = {[0, 7], 0, 1]}

pr(T1) ={T,To+ 71}  pr(T2) = {11}



A construction of non-periodic tilings

ik 1
| 1 2
Example -+ — +2\/5 .expansion factor A =1{]0,7],]0,1]}

pr(T1) ={T1,To+ 71}  pr(T2) = {11}

T expand by 7
0 T 0 7'2
subdivide
T1 ' T2 —+ T
pr(T1)
0 T T+ 1
15 expand by 7 T,
pr(12)

0 | (0 T



A construction of non-periodic tilings
Example 2

A = {([07 1]27 B)7 ([07 1]27 W)}

40
=0 3)




A construction of non-periodic tilings
Example 3

o = { }




A construction of non-periodic tilings

In general, p 1Is a map that sends a proto-tile P € & to a patch p(P)

We can Iterate p to obtain p"(P),n = 1,2,...



A construction of non-periodic tilings

given a substitution rule (A, ¢, p), we can “iterate” p op(Ty) = {11, Ty + 7}
9 1 pr(1z) = {11}
|
PF
11 | 1> 11 | 15

| |

PF
T, I T | 13 ' 13 | 15 ‘ 13

| | |

PF

limit: a self-similar or self-affine tiling



A construction of non-periodic tilings

T = lim p""(P) a self-similar tiling

n—r oo

apply p “infinitely many times” ~~ self-similar or self-affine tiling

Q | what if we pick two p1, pa, toss a coin each time and decide which of p; and
po we apply by head/tail?

to make sense of p; o p2, p1 and po must share a common alphabet
if so, for arbitrary iq,49,... € {1,2}, the limit

lim p; p; -+-p; ()

n— Qoo

convergent?



A construction of non-periodic tilings

T = lim p""(P) a self-similar tiling

n—r oo

apply p “infinitely many times” ~~ self-similar or self-affine tiling

Q | what if we pick two p1, pa, toss a coin each time and decide which of p; and
po we apply by head/tail?

to make sense of p; o p2, p1 and po must share a common alphabet

if so, for arbitrary iq,49,... € {1,2}, the limit
lim p; p; -+ p, ()

yes, under FLC

convergent?



A construction of non-periodic tilings

T = lim p""(P) a self-similar tiling

n—r oo

apply p “infinitely many times” ~~ self-similar or self-affine tiling

Q | what if we pick two p1, pa, toss a coin each time and decide which of p; and
po we apply by head/tail?

to make sense of p; o p2, p1 and po must share a common alphabet
if so, for arbitrary iq,49,... € {1,2}, the limit
lim p,p,op;, 3, (P)

convergent”’ yes, under FLC



A construction of non-periodic tilings

if so, for arbitrary iq,49,... € {1,2}, the limit
lim Pi Pi," ',01',%_1/01',%(9J )

n— Qoo

convergent? yes, under FLC

Is 7 non-periodic? ~- case-by-case

The spectral properties of 77~ discuss this later



A construction of non-periodic tilings

if so, for arbitrary iq,49,... € {1,2}, the limit

lim p; p; - ',01',%_1/01',%(9J )

n— Qoo

convergent? yes, under FLC

S-adic tilings belonging to (¢, )n=12 ...: tilings of the form

T = lim p;; op;, 0---0p; (Pr)

n—> 00

{p1,p2,...,pm. }: a finite family of substitutions
with a common alphabet A

i1,%9,... € {1,2,...,my}: a directive sequence



A construction of non-periodic tilings

S-adic tilings: tilings of the form 7 = lim p;, o p;, o---0p;, (Pn)
n— 00 ”

{p1,p2,...,pm, }: a finite family of substitutions with a common alphabet A

i1,1%9,... €{1,2,...,my}: a directive sequence

in other words: a tiling 7 = 7 that admits “de-substituted tilings”

7@ 76 7@
such that

pi (TOTD) =T =12,



A construction of non-periodic tilings

pi, (TVH)) =T n=1,2,...

ik 15

d : I (1)

e 7
l l Piq

1

13 13 o L2 13 I 2 I -

| | A

|
I l Pis
ik

1o | 15 | 17 I 12 I 1 I 3

| A
l l l Pis

’...



Main question

Decide which S-adic tiling has pure discrete dynamical spectrum.

Self-affine tilings by substitution rules with the Pisot condition
have pure discrete spectrum

Today’s result

(1)Give a sufficient condition for a given S-adic tiling to be pure
discrete

(2)this condition is satisfied for almost all block S-adic tilings
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The main idea

(1)Generalize Solomyak’s overlap algorithm [Solomyak 1997] to
the S-adic setting

(2)apply the overlap algorithm t@ a class of S-adic tiligs of
INnterest

Goes back to the coincidence condition for constant-length
symbolic substitution



Overlap algorithm

p p p
91(_116]/2(_257’3(_3...

I

where p . a substitution rule with a fixed alphabet o and non-fixed

expansion map ¢ : R4 - R
Pick a relatively dense subset A, c R? for each n such that ¢ (A ,,) C A,

An overlap @n = a triple (S,x,T) such that S,7e g, and x € A with
int(S + x) N int7T # &



Overlap algorithm

An overlap @n = a triple (S,x,T) such that S, 7€ g, and x € A, with

S+ x| /
g

T/

nt(S + x) N t7 # @

S+ x

S, x, T) ~ (8, x, T



Overlap algorithm

An overlap @n = a triple (S,x,T) such that S,Te 9, and x € A, with

nt(S + x) N t7 # @

S,x, T) ~ (S, x, T
[S, x, T]: the equivalence class

V. ={[S,x,T]]|(S,x,T):an overlap @n}



Overlap algorithm

=
[S,x, T]: the equivalence class T o
V.={[S.x,T]| (S,x,T) : an overlap @n} Pn
Pl
(S.x.T)@n+1— (S.x,T)@n
Pu(S +X)

it S'ep(S),T €p(T), and x' = ¢ (x)

\




Overlap algorithm

T
[S,x, T]: the equivalence class T o
V. ={[S,x,T]| (S,x,T) : an overlap @n} Pn
PulT)
S, x,TY@n+1 - (S, x,T)@n
p,.(S + x)

it S'ep(S),T €p(T), and x' = ¢ (x)

v

n

 D2v->weV If there are

S,x, T)ev, (S, x,T) ew
such that (S,x,7) = (S, x, T

\




Overlap algorithm
(S, x, T]: the equivalence class

@n — 1
V. ={[S,x,T]| (S,x,T) : an overlap @n} I
S,x,T)Y@en+1 - (S, x,T)@n XN @n

it S'ep(S),T €p(T), and x' = ¢ (x)

v

n

 D2v->weV If there are @n + 1

S,x, T)ev, (S, x,T) ew
such that (S,x,7) = (S, x, T



Overlap algorithm
(S, x, T]: the equivalence class
@ @n — 1
V.={[S,x,T]| (S,x,T) : an overlap @n} \ :
:><;;>%%&\\\. @n

An overlap (S,x,T) Is a coincidence It

S+x=T
@n + 1




The first main theorem

Theorem (N-Thuswaldner)
If there are n; < m; < n, <m, < --- such that,

for any jand v € V,, there is a path from v 1o a coincidence w € V,

+ a technical condition,
Then g, has pure discrete dynamical spectrum

A combinatorial condition=an analytic condition
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The block cases

o ={T, = ([0,11%i) | i=1,2,...,ny}: fiX

A substitution rule with alphabet & and a diagonal expansion map

(k. € Z.,) Is called a block substitution.



The block cases

Example

d=2,no=3




The block cases

Example Study the overlap graph for A, = 72

d=2n, =3 ~overlaps are

(L, LB (D
(L) (. (L)

My
alts



The block cases

Example

d= 2,n0 —

. "

>

3

m
“Em

& (bijective)

£, 1S bijective In the sense that, for

any Integer-coordinate point inside

.

.

Lower-left

& (non-pbijective)

. " the patch, & defines a bijection on «

.
.

—_—

Top-middle



The block cases

Example

&, 1S not bijective

d=2,n0=3

. >.
>-

.,
e

& (bijective) & (non-bijective)

Middle-left



The block cases

Example

d=2,n0=3

S
e

& (bijective) & (non-bijective)

(

Moreover, the graph for &, Is as

follows. (A, = Z7)




The block cases

Example ’ ‘

d=2,n0=3

.,
e

& (bijective) & (non-bijective)

(




The block cases

Example

£2 connects every non-coincidence (

overlap to every non-coincidence
overlap

| En B

& (bijective) & (non-bijective)

(




A special case for the second main theorem

Assume in (i),_,, € {1,2}", both 11 and 2 appear infinitely often.
Then the S-adic tilings belonging to the directive sequence ¢;.¢, , ...

have pure discrete spectrum.



The second main theorem(N-Thuswaldner)

Let &,,¢&,, ... be a family of all block substitutions in dimension d and the

number of colors n,.
Pick
(1)ji. /5, ..., j, SUCh that E o & o0& CONNECts every non-coincidence overlap

to every non-coincidence overlap,
(2)j. such that & IS not bijective

Assume in (i)._,, € {1,2,...}", both j,j,---j, and j. appear infinitely often.
Then the S-adic tilings belonging to the directive sequence ¢;.¢, , ...

have pure discrete spectra.



The second main theorem

Corollary

Let 4 be a product measure on {1,2,...}" such that u([j,]) > 0 and u([j.]) > 0

where & Is bijective and the columns generate the whole permutation

group, and ¢ is non-bijective. Then for p-a.a.(i) € {1,2,...}", the S-adic tilings

belonging to It have pure discrete spectra.

Example
£, 3
1 - 122 1 - 122 u-a.a. (i) € {1,2.. N
2 - 231 2— 232

3 — 313 3 — 323



The second main theorem

Corollary

Let 4 be the product measure on {1,2,...}" such that u([j,]) > 0 and

u([j.)) > 0 where ¢ is bijective and the columns generate the whole

permutation group, and ¢ is non-bijective. Then for p-a.a.(i) € {1,2,...}", the

S-adic tilings belonging to it have pure discrete spectra.

Example

S
00— 03
1 - 12
2 — 13
3 — 02

&
00— 02
1 — 32
2 — 01
3 — 31

Separately yield tilings
with non-zero ac part

If 12 appears infinitely often in the
directive sequence—pure discrete

spectrum



A remark

® [Bustos-Marnibo-Yassawi 23+]: similar criterion for one-dimensional S-adic
words

® For the 2-dimensional example ¢, &, all the tilings generated by these are non-

TS |
i
s Bt

periodic




Further guestions

® Non-block cases? é @\
sy BLBA

Fig. 8 Results for S(5),A =1+ a»

Gahler-Kwan-Maloney 2014

@® The converse: pure point spectrum=-overlap coincidence for A = return

vectors?



Thank you for your attention.



The second main theorem

Assume in (i)._,, € {1,2,...}", both j j,---j, and j. appear infinitely often.
Then the S-adic tilings belonging to the directive sequence ¢;.¢, , ...

have pure discrete spectrum.

Corollary
Let (X, 0, u4) be an ergodic subshift of {1,2,...}N such that

u(ljisjrs - i ) >0 and u([j.]) > 0. Then for u-almost all (i) € X, the S-adic
tilings belonging to the directive sequence ¢&;,¢; ,... have pure

discrete spectrum.



The second main theorem

Corollary

Let (X, 0, 4) be an ergodic subshift of {1,2,...}N such that
w(ljis Jos ---»ji 1) > 0 and u([j.]) > 0. Then for u-almost all (i) € X, the S-adic

tilings belonging to the directive sequence ¢&;,¢; , ... have pure

discrete spectrum.

Corollary

Let 1 be the product measure on {1,2,...}" such that u([j,]) > 0 and

u(lj.) > 0 where ¢ Is bijective and the columns generate the whole

permutation group, and ¢ is non-bijective. Then for p-a.a.(i) € {1,2,...}", the

same conclusion holds.



The second main theorem(N-Thuswaldner)

Corollary
Let (X, 0, 1) be an ergodic subshift of {1,2,...1" such that

w(ljis Jos ---»ji)) > 0 and u([j.]) > 0. Then for u-almost all (i) € X, the S-adic
tilings belonging to the directive sequence & ,¢; ,... have pure

discrete spectrum.



