Overlap Coincidences for general S-adic tilings

A joint work with Jörg Thuswaldner

December 2023, Yasushi Nagai (Shinshu University)

Contents

- (1)Definitions
- (2) The first main result (Overlap algorithm)
- (3) The Second main result (block substitutions)

Analogies

Symbolic	Geometric
Sequences (Words)	Tilings
The product topology on $\mathscr{A}^{\mathbb{N}}$	Tiling metric
Shift σ	Translation by $x \in \mathbb{R}^d$
Subshift $X = \overline{\{\sigma^n(w) \mid n \in \mathbb{N}\}}$	Continuous hull $X_{\mathcal{T}} = \overline{\{\mathcal{T} + x \mid x \in \mathbb{R}^d\}}$

The definition of tilings

a tile: $S \subset \mathbb{R}^d$, compact, non-empty, $S^{\circ -} = S$ sometimes with a label (S, l)

a patch=a collection \mathcal{P} of tiles such that

$$S, T \in \mathcal{P}, S \neq T \Rightarrow S^{\circ} \cap T^{\circ} = \emptyset$$

The definition of tiling

a tile: $S \subset \mathbb{R}^d$, compact, non-empty, $S^{\circ -} = S$ sometimes with a label (S, l) a patch=a collection \mathcal{P} of tiles such that $S, T \in \mathcal{P}, S \neq T \Rightarrow S^{\circ} \cap T^{\circ} = \emptyset$

Example

$$T_W = ([0, 1]^2, W) =$$

$$T_B = ([0, 1]^2, B) =$$

The definition of tilings

a tiling=a patch \mathcal{T} such that the union of supports of the tiles in \mathcal{T} is \mathbb{R}^d

$$\mathcal{T} = \{T_W + (n, m) \mid n + m \text{ odd}\} \cup \{T_B + (n, m) \mid n + m \text{ even}\}$$

crystallographic, i.e. $\mathcal{T} + (n, m) = \mathcal{T} \text{ for } n + m \text{ even}$

interest: non-periodic but "ordered" tiling

$$\mathcal{T} + x = \mathcal{T} \text{ only for } x = 0$$

construction: via a substitution rule

The tiling metric

Analogies

Symbolic	Geometric
Sequences (Words)	Tilings
The product topology on $\mathscr{A}^{\mathbb{N}}$	Tiling metric
Shift σ	Translation by $x \in \mathbb{R}^d$
Subshift $X = \overline{\{\sigma^n(w) \mid n \in \mathbb{N}\}}$	Continuous hull $X_{\mathcal{T}} = \overline{\{\mathcal{T} + x \mid x \in \mathbb{R}^d\}}$

Tiling dynamical systems

Continuous hull

$$X_{\mathcal{T}} = \overline{\{\mathcal{T} + x \mid x \in \mathbb{R}^d\}}$$

 \mathbb{R}^d acts on $X_{\mathcal{T}}$ via translation:

$$X_{\mathcal{T}} \times \mathbb{R}^d \ni (\mathcal{S}, x) \mapsto \mathcal{S} + x \in X_{\mathcal{T}}$$

Often there is one and only one invariant Borel probability measure μ

Tiling dynamical systems

 \mathbb{R}^d acts on $X_{\mathcal{T}}$ via translation:

$$X_{\mathcal{T}} \times \mathbb{R}^d \ni (\mathcal{S}, x) \mapsto \mathcal{S} + x \in X_{\mathcal{T}}$$

Often there is one and only one invariant Borel probability measure μ

We say \mathcal{T} has pure discrete dynamical spectrum if there exists a complete orthonormal basis for $L^2(\mu)$ consisting of eigenfunctions for Koopman operators $U_x: f \mapsto f(\cdot - x)$

Main question

Decide which non-periodic tiling has pure discrete dynamical spectrum.

a substitution rule = a recipe for "expanding and subdividing"

- = \bullet \mathcal{A} : a finite set of tiles (the alphabet)
 - ρ : the rule of expanding $P \in \mathcal{A}$ and then subdivide it
 - $\phi \colon \mathbb{R}^d \to \mathbb{R}^d$ (the expansion map)
 a linear map s.t. λ : eigenvalue $\Rightarrow |\lambda| > 1$

Example

$$\tau = \frac{1+\sqrt{5}}{2}$$
 :expansion factor $(\phi = \tau \times \text{identity})$ $\mathcal{A} = \{[0,\tau], [0,1]\}$

$$\rho_F(T_1) = \{T_1, T_2 + \tau\} \qquad \rho_F(T_2) = \{T_1\}$$

Example
$$\tau = \frac{1+\sqrt{5}}{2}$$
: expansion factor $\mathcal{A} = \{[0,\tau], [0,1]\}$

$$\rho_F(T_1) = \{T_1, T_2 + \tau\} \qquad \rho_F(T_2) = \{T_1\}$$

$$T_1 \qquad \text{expand by } \tau \qquad 0 \qquad \tau^2$$

$$\text{subdivide}$$

$$T_1 \qquad T_2 + \tau \qquad \text{subdivide}$$

$$T_1 \qquad T_2 + \tau \qquad \rho_F(T_1)$$

$$T_2 \qquad \text{expand by } \tau \qquad T_1 \qquad \rho_F(T_2)$$

Example 2

$$\mathcal{A} = \{([0,1]^2, B), ([0,1]^2, W)\}$$

$$\phi = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$$

Example 3

In general, ρ is a map that sends a proto-tile $P \in \mathcal{A}$ to a patch $\rho(P)$

We can iterate ρ to obtain $\rho^n(P)$, n = 1, 2, ...

given a substitution rule $(\mathcal{A}, \phi, \rho)$, we can "iterate" ρ

$$\rho_F(T_1) = \{T_1, T_2 + \tau\}$$

$$\mathcal{T} = \lim_{n \to \infty} \rho^{kn}(\mathcal{P})$$
 a self-similar tiling

apply ρ "infinitely many times" \leadsto self-similar or self-affine tiling

what if we pick two ρ_1, ρ_2 , toss a coin each time and decide which of ρ_1 and ρ_2 we apply by head/tail?

to make sense of $\rho_1 \circ \rho_2$, ρ_1 and ρ_2 must share a common alphabet

if so, for arbitrary
$$i_1, i_2, \ldots \in \{1, 2\}$$
, the limit

$$\lim_{n\to\infty}\rho_{i_1}\rho_{i_2}\cdots\rho_{i_n}(\mathcal{P})$$

convergent?

$$\mathcal{T} = \lim_{n \to \infty} \rho^{kn}(\mathcal{P})$$
 a self-similar tiling

apply ρ "infinitely many times" \leadsto self-similar or self-affine tiling

what if we pick two ρ_1, ρ_2 , toss a coin each time and decide which of ρ_1 and ρ_2 we apply by head/tail?

to make sense of $\rho_1 \circ \rho_2$, ρ_1 and ρ_2 must share a common alphabet

if so, for arbitrary $i_1, i_2, \ldots \in \{1, 2\}$, the limit

$$\lim_{n\to\infty} \rho_{i_1} \rho_{i_2} \cdots \rho_{i_n}(\mathcal{P})$$

$$i_{k_n}$$
yes, under FLC

convergent?

$$\mathcal{T} = \lim_{n \to \infty} \rho^{kn}(\mathcal{P})$$
 a self-similar tiling

apply ρ "infinitely many times" \leadsto self-similar or self-affine tiling

what if we pick two ρ_1, ρ_2 , toss a coin each time and decide which of ρ_1 and ρ_2 we apply by head/tail?

to make sense of $\rho_1 \circ \rho_2$, ρ_1 and ρ_2 must share a common alphabet

if so, for arbitrary $i_1, i_2, \ldots \in \{1, 2\}$, the limit

$$\lim_{n\to\infty}\rho_{i_1}\rho_{i_2}\cdots\rho_{i_{k_n-1}}\rho_{i_{k_n}}(\mathscr{P})$$

convergent?

yes, under FLC

if so, for arbitrary $i_1, i_2, \ldots \in \{1, 2\}$, the limit

$$\lim_{n\to\infty}\rho_{i_1}\rho_{i_2}\cdots\rho_{i_{k_n-1}}\rho_{i_{k_n}}(\mathscr{P})$$

convergent?

yes, under FLC

Is \mathcal{T} non-periodic? \leadsto case-by-case

The spectral properties of $\mathcal{T}?\leadsto$ discuss this later

if so, for arbitrary $i_1, i_2, \ldots \in \{1, 2\}$, the limit

$$\lim_{n\to\infty}\rho_{i_1}\rho_{i_2}\cdots\rho_{i_{k_n-1}}\rho_{i_{k_n}}(\mathscr{P})$$

convergent?

yes, under FLC

S-adic tilings belonging to $(i_n)_{n=1,2,...}$: tilings of the form

$$\mathcal{T} = \lim_{n \to \infty} \rho_{i_1} \circ \rho_{i_2} \circ \cdots \circ \rho_{i_{k_n}} (\mathcal{P}_n)$$

 $\{\rho_1, \rho_2, \dots, \rho_{m_a}\}$: a finite family of substitutions

with a common alphabet \mathcal{A}

 $i_1, i_2, \ldots \in \{1, 2, \ldots, m_a\}$: a directive sequence

S-adic tilings: tilings of the form $\mathcal{T} = \lim_{n \to \infty} \rho_{i_1} \circ \rho_{i_2} \circ \cdots \circ \rho_{i_{k_n}}(\mathcal{P}_n)$

 $\{\rho_1, \rho_2, \ldots, \rho_{m_a}\}$: a finite family of substitutions with a common alphabet \mathcal{A}

 $i_1, i_2, \ldots \in \{1, 2, \ldots, m_a\}$: a directive sequence

in other words: a tiling $\mathcal{T} = \mathcal{T}^{(1)}$ that admits "de-substituted tilings"

$$\mathcal{T}^{(2)}, \mathcal{T}^{(3)}, \mathcal{T}^{(4)}, \dots$$

such that

$$\rho_{i_n}(\mathcal{T}^{(n+1)}) = \mathcal{T}^{(n)}, n = 1, 2, \dots$$

$$\rho_{i_n}(\mathcal{T}^{(n+1)}) = \mathcal{T}^{(n)}, n = 1, 2, \dots$$

Main question

Decide which S-adic tiling has pure discrete dynamical spectrum.

Pisot Conjecture:

Self-affine tilings by substitution rules with the Pisot condition have pure discrete spectrum

Today's result

- (1) Give a sufficient condition for a given S-adic tiling to be pure discrete
- (2) this condition is satisfied for almost all block S-adic tilings

Contents

- (1) Definitions (done)
- (2) The first main result (Overlap algorithm)
- (3) The Second main result (block substitutions)

The main idea

(1) Generalize Solomyak's overlap algorithm [Solomyak 1997] to the S-adic setting (2) apply the overlap algorithm $t\phi$ a class of S-adic tiligs of interest

Goes back to the coincidence condition for constant-length symbolic substitution

$$\mathcal{T}_1 \stackrel{\rho_1}{\leftarrow} \mathcal{T}_2 \stackrel{\rho_2}{\leftarrow} \mathcal{T}_3 \stackrel{\rho_3}{\leftarrow} \cdots,$$

where ρ_n : a substitution rule with a fixed alphabet \mathscr{A} and non-fixed expansion map $\phi_n \colon \mathbb{R}^d \to \mathbb{R}^d$

Pick a relatively dense subset $\Lambda_n \subset \mathbb{R}^d$ for each n such that $\phi_n(\Lambda_{n+1}) \subset \Lambda_n$

An overlap @n = a triple (S, x, T) such that $S, T \in \mathcal{T}_n$ and $x \in \Lambda_n$ with $int(S + x) \cap intT \neq \emptyset$

An overlap @n = a triple (S, x, T) such that $S, T \in \mathcal{T}_n$ and $x \in \Lambda_n$ with $int(S + x) \cap int T \neq \emptyset$

 $(S, x, T) \sim (S', x', T')$

An overlap @n = a triple (S, x, T) such that $S, T \in \mathcal{T}_n$ and $x \in \Lambda_n$ with $int(S + x) \cap intT \neq \emptyset$

$$(S, x, T) \sim (S', x', T')$$

[S, x, T]: the equivalence class

$$V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$$

[S, x, T]: the equivalence class

$$V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$$

$$(S, x, T)@n + 1 \rightarrow (S', x', T')@n$$

if
$$S' \in \rho_n(S)$$
, $T' \in \rho_n(T)$, and $x' = \phi_n(x)$

[S, x, T]: the equivalence class

$$V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$$

$$(S, x, T)@n + 1 \rightarrow (S', x', T')@n$$

if
$$S' \in \rho_n(S)$$
, $T' \in \rho_n(T)$, and $x' = \phi_n(x)$

 $V_{n+1} \ni v \to w \in V_n$ if there are

$$(S, x, T) \in v, (S', x', T') \in w$$

such that $(S, x, T) \rightarrow (S', x', T')$

[S, x, T]: the equivalence class

$$V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$$

$$(S, x, T)@n + 1 \rightarrow (S', x', T')@n$$

if
$$S' \in \rho_n(S)$$
, $T' \in \rho_n(T)$, and $x' = \phi_n(x)$

 $V_{n+1} \ni v \to w \in V_n$ if there are

$$(S, x, T) \in v, (S', x', T') \in w$$

such that $(S, x, T) \rightarrow (S', x', T')$

[S, x, T]: the equivalence class

$$V_n = \{ [S, x, T] \mid (S, x, T) : \text{an overlap } @n \}$$

An overlap (S, x, T) is a coincidence if S + x = T

The first main theorem

Theorem (N-Thuswaldner)

If there are $n_1 < m_1 < n_2 < m_2 < \cdots$ such that,

for any j and $v \in V_{m_j}$, there is a path from v to a coincidence $w \in V_{n_j}$

+ a technical condition,

Then \mathcal{T}_1 has pure discrete dynamical spectrum

A combinatorial condition an analytic condition

Contents

- (1) Definitions (done)
- (2) The first main result (Overlap algorithm) (done)
- (3) The Second main result (block substitutions)

$$\mathcal{A} = \{T_i = ([0,1]^d, i) \mid i = 1,2,...,n_0\}$$
: fix

A substitution rule with alphabet $\mathcal A$ and a diagonal expansion map

$$\phi = \begin{pmatrix} k_1 & & \\ & k_2 & \\ & \ddots & \\ & & k_d \end{pmatrix}$$

 $(k_i \in \mathbb{Z}_{>1})$ is called a block substitution.

Example

$$d = 2, n_0 = 3$$

 ξ_2 is not bijective

Middle-left

Example

 ξ_1^2 connects every non-coincidence overlap to every non-coincidence overlap

 ξ_1 (bijective)

 ξ_2 (non-bijective)

A special case for the second main theorem

Assume in $(i_j)_{j=1,2,...} \in \{1,2\}^{\mathbb{N}}$, both 11 and 2 appear infinitely often.

Then the S-adic tilings belonging to the directive sequence $\xi_{i_1}, \xi_{i_2}, \dots$

have pure discrete spectrum.

The second main theorem (N-Thuswaldner)

Let $\xi_1, \xi_2, ...$ be a family of all block substitutions in dimension d and the number of colors n_0 .

Pick

 $(1)j_1,j_2,...,j_k$ such that $\xi_{j_1}\circ \xi_{j_2}\circ \cdots \circ \xi_{j_k}$ connects every non-coincidence overlap to every non-coincidence overlap,

(2) j_c such that ξ_{j_c} is not bijective

Assume in $(i_j)_{j=1,2,...} \in \{1,2,...\}^{\mathbb{N}}$, both $j_1j_2\cdots j_k$ and j_c appear infinitely often.

Then the S-adic tilings belonging to the directive sequence $\xi_{i_1}, \xi_{i_2}, \dots$

have pure discrete spectra.

Corollary

Let μ be a product measure on $\{1,2,...\}^{\mathbb{N}}$ such that $\mu([j_b]) > 0$ and $\mu([j_c]) > 0$ where ξ_{j_b} is bijective and the columns generate the whole permutation group, and ξ_{j_c} is non-bijective. Then for μ -a.a. $(i_j) \in \{1,2,...\}^{\mathbb{N}}$, the S-adic tilings belonging to it have pure discrete spectra.

Example

$\boldsymbol{\xi}_1$	ξ_2	
$1 \rightarrow 122$	$1 \rightarrow 122$	μ -a.a. $(i_j) \in \{1,2\}^{\mathbb{N}}$
$2 \rightarrow 231$	$2 \rightarrow 232$	
$3 \rightarrow 313$	$3 \rightarrow 323$	

Corollary

Let μ be the product measure on $\{1,2,\ldots\}^{\mathbb{N}}$ such that $\mu([j_b]) > 0$ and $\mu([j_c]) > 0$ where ξ_{j_b} is bijective and the columns generate the whole permutation group, and ξ_{j_c} is non-bijective. Then for μ -a.a. $(i_j) \in \{1,2,\ldots\}^{\mathbb{N}}$, the S-adic tilings belonging to it have pure discrete spectra.

Example	$\boldsymbol{\xi}_1$	ξ_2	Separately yield tilings
	$0 \rightarrow 03$	$0 \rightarrow 02$	with non-zero ac part
	$1 \rightarrow 12$	$1 \rightarrow 32$	If 12 appears infinitely often in the
	$2 \rightarrow 13$	$2 \rightarrow 01$	directive sequence→pure discrete
	$3 \rightarrow 02$	$3 \rightarrow 31$	spectrum

Aremark

● [Bustos-Mañibo-Yassawi 23+]: similar criterion for one-dimensional S-adic words

• For the 2-dimensional example ξ_1, ξ_2 all the tilings generated by these are non-periodic

Further questions

Non-block cases?

Fig. 8 Results for S(5), $\lambda = 1 + a_2$

Gähler-Kwan-Maloney 2014

• The converse: pure point spectrum \Rightarrow overlap coincidence for Λ_n = return vectors?

Thank you for your attention.

Assume in $(i_j)_{j=1,2,...} \in \{1,2,...\}^{\mathbb{N}}$, both $j_1j_2\cdots j_k$ and j_c appear infinitely often.

Then the S-adic tilings belonging to the directive sequence $\xi_{i_1}, \xi_{i_2}, \dots$ have pure discrete spectrum.

Corollary

Let (X, σ, μ) be an ergodic subshift of $\{1, 2, ...\}^{\mathbb{N}}$ such that $\mu([j_1, j_2, ..., j_k]) > 0$ and $\mu([j_c]) > 0$. Then for μ -almost all $(i_j) \in X$, the S-adic tilings belonging to the directive sequence $\xi_{i_1}, \xi_{i_2}, ...$ have pure discrete spectrum.

Corollary

Let (X, σ, μ) be an ergodic subshift of $\{1, 2, ...\}^{\mathbb{N}}$ such that $\mu([j_1, j_2, ..., j_k]) > 0$ and $\mu([j_c]) > 0$. Then for μ -almost all $(i_j) \in X$, the S-adic tilings belonging to the directive sequence $\xi_{i_1}, \xi_{i_2}, ...$ have pure discrete spectrum.

Corollary

Let μ be the product measure on $\{1,2,\ldots\}^{\mathbb{N}}$ such that $\mu([j_b]) > 0$ and $\mu([j_c]) > 0$ where ξ_{j_b} is bijective and the columns generate the whole permutation group, and ξ_{j_c} is non-bijective. Then for μ -a.a. $(i_j) \in \{1,2,\ldots\}^{\mathbb{N}}$, the same conclusion holds.

The second main theorem (N-Thuswaldner)

Corollary

Let (X, σ, μ) be an ergodic subshift of $\{1, 2, ...\}^{\mathbb{N}}$ such that $\mu([j_1, j_2, ..., j_k]) > 0$ and $\mu([j_c]) > 0$. Then for μ -almost all $(i_j) \in X$, the S-adic tilings belonging to the directive sequence $\xi_{i_1}, \xi_{i_2}, ...$ have pure discrete spectrum.