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Introduction

Today’s talk is about subshifts of very low word complexity

Main question: what can be said about subshifts whose word
complexity is near minimum possible?

Main result: such subshifts have substitutive/S-adic structure, which
implies that they are very simple as dynamical systems

In particular, they have discrete spectrum



Introduction

Today’s talk is about subshifts of very low word complexity

Main question: what can be said about subshifts whose word
complexity is near minimum possible?

Main result: such subshifts have substitutive/S-adic structure, which
implies that they are very simple as dynamical systems

In particular, they have discrete spectrum



Subshifts and word complexity

A subshift is defined by

Finite set A (called the alphabet)
The (left) shift action σ on AZ

A set X ⊂ AZ which is invariant under σ and closed in product
topology

Example 1: A = {0, 1}, X = {. . . 000.000 . . . , . . . 111.111 . . .}
Example 2: A = {0, 1}, X = {0, 1}Z

Example 3: A = {0, 1}, X a Sturmian subshift
Formal definition of Sturmian is a little technical, but an example is
given by Fibonacci sequence:
x = 01
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A subshift is defined by

Finite set A (called the alphabet)
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Subshifts and word complexity

A subshift is defined by

Finite set A (called the alphabet)
The (left) shift action σ on AZ

A set X ⊂ AZ which is invariant under σ and closed in product
topology

Example 1: A = {0, 1}, X = {. . . 000.000 . . . , . . . 111.111 . . .}
Example 2: A = {0, 1}, X = {0, 1}Z

Example 3: A = {0, 1}, X a Sturmian subshift
Formal definition of Sturmian is a little technical, but an example is
given by Fibonacci sequence:
x = . . . .0100101001001 . . .
Define X to be set of limit points of {σnx : n ≥ 0}
Sturmian shifts are induced by irrational circle rotations



Subshifts and word complexity

For any subshift X , define word complexity function by:

for all n > 0, p(n) is the number of n-letter words/strings appearing
within some x ∈ X

Example 1: A = {0, 1}, X = {. . . 000.000 . . . , . . . 111.111 . . .}:
p(n) = 2
Example 2: A = {0, 1}, X = {0, 1}Z:
p(n) = 2n

Example 3: A = {0, 1}, X a Sturmian subshift:
p(n) = n + 1

The Morse-Hedlund theorem states that if ∃n s.t. p(n) ≤ n, then
X is a finite union of periodic points

Sturmians achieve minimum possible p(n) among infinite subshifts

Slowest possible growth of p(n) implies ‘almost’ circle rotation

What about linear growth?



Linear word complexity

X has strong linear complexity if ∃C s.t. ∀n, p(n) < Cn

Equivalent: lim sup p(n)/n <∞
X has weak linear complexity if lim inf p(n)/n <∞
Relationship complicated; in fact not only might lim inf p(n)/n,
lim sup p(n)/n be unequal, but they MUST be unequal unless an
integer! (Heinis, Cassaigne)

Even weak linear complexity strongly restricts dynamics of X

Basic dynamical properties for future results:
X is transitive if there exists x ∈ X with X = {σnx}
X is minimal if X = {σnx} for every x ∈ X
X is uniquely ergodic if only one σ-invariant measure



Some properties of subshifts with linear complexity

Theorem: (Boshernitznan) If X is minimal (transitive) and has
weak linear complexity, then X has only finitely many ergodic
σ-invariant measures

Theorem: (Dysktra, Ormes, P.) If X is transitive and has weak
linear complexity, then X has only finitely many minimal subsystems

Theorem: (Donoso, Durand, Maass, Petite) If X is minimal and
has weak linear complexity, then X has finite topological rank

Theorem: (Boshernitzan) If X is minimal (transitive) and
lim sup p(n)/n < 3, then X is uniquely ergodic

Theorem: (Ormes, P.) If X is transitive and aperiodic and
lim sup p(n)/n < 3/2, then X is minimal

Maybe not only finiteness, but value of lim sup p(n)/n can be
important



Linear complexity and mixing properties

Theorem: (Ferenczi) If X has strong linear complexity, then X
cannot support a nontrivial strongly mixing measure.

µ strongly mixing: ∀A,B, µ(A ∩ σ−nB)→ µ(A)µ(B)

Theorem: (Chacon) There exists uniquely ergodic X with
lim sup p(n)/n = 2 with µ weakly mixing.

µ weakly mixing: ∀A,B, µ(A ∩ σ−nB)→ µ(A)µ(B) except for n in
set of density 0
Equivalent: no nontrivial eigenfunctions, i.e. f ∈ L2 with
f (σx) = λf (x) for λ 6= 1

Theorem: (Ferenczi) There exists uniquely ergodic X with
lim sup p(n)/n = 5/3 with µ weakly mixing.

Question: (Ferenczi) Is 5/3 the minimal possible lim sup p(n)/n for
X with weakly mixing µ?



Main results about subshifts with low linear complexity

Theorem: (Creutz, P.) There exists uniquely ergodic X with
lim sup p(n)/n = 3/2 which has µ weakly mixing.

Negatively answers Ferenczi’s question

Theorem: (Creutz, P.) If X is transitive with lim sup p(n)/n < 4/3
(automatically uniquely ergodic), then µ has discrete spectrum.

µ has discrete spectrum if L2 is spanned by eigenfunctions
Equivalent to rotation of compact abelian group
Opposite of weak mixing

Informally: if word complexity close enough to Sturmian, still group
rotation, but possibly more complicated than a circle

Consequence: infimum of lim sup p(n)/n for X with weakly mixing µ
is in [4/3, 3/2]



Substitutive/S-adic structure

Key component: lim sup p(n)/n < 4/3 implies that X is determined
by a sequence of substitutions

A substitution from B to A is τ : A→ B∗

Example: π defined by π(0) = ab, π(1) = acd

π extendable to B∗ by concatenation, e.g. π(001) = ababacd

Can compose π from B to A with τ from B to B into π ◦ τ from B
to A.

τ(0) = 01, τ(1) = 001 gives π ◦ τ : 0 7→ abacd , 1 7→ ababacd



Substitutive/S-adic structure

An infinite sequence of substitutions can induce a subshift

Define τk : {0, 1} → {0, 1}∗, assume all τk(0) begin with 0

Define ρk = τ1 ◦ · · · ◦ τk
Then ρk+1(0) = ρk(τk+1(0)) = ρk(0) . . .

Can define x = lim ρk(0), X = {σnx}
Example: if all τk = τ : 0 7→ 01, 1 7→ 0

τ2 : 0 7→ 010, 1 7→ 01

τ3 : 0 7→ 01001, 1 7→ 010

τ4 : 0 7→ 01001010, 1 7→ 01001

x = .0100101001001 . . .; Fibonacci sequence!

In general, Sturmian comes from τk given by continued fraction
expansion of rotation number



Substitutive/S-adic structure

Results of Ferenczi, P.-Schmieding already imply that
lim sup p(n)/n < 2 means X comes from a sequence
τk : {0, 1} → {0, 1}∗ and π : {0, 1} → A

Need π for silly reason; alphabet of X may not be {0, 1}!
π applied after sequence of τk

But in general, only S-adic structure alone doesn’t restrict X very
much

When lim sup p(n)/n < 4/3, we prove that τk are of very specific
type



Substitutive/S-adic structure

Theorem: (Creutz-P.) If lim sup p(n)/n < 4/3 and X transitive,
then X generated by (π and) τk where every τk : 0 7→ 0mk−11,
1 7→ 0nk−11 and 0 < mk < nk ≤ 2mk + 1. In addition,

nk ≤ 2mk unless (mk , nk) = (1, 3)
(1, 3) can’t happen if lim sup p(n)/n < 5/4
If (mk , nk) = (1, 3), then nk+1 = mk+1 + 1
∃M, ε s.t. mk > M =⇒ nk ≤ (2− ε)mk

τk(0) may not begin with 0, but τk(1) ends with 1, limit x still exists

X is Sturmian when π identity and all τk have nk = mk + 1

Heuristic: The closer nk ,mk are, the ‘simpler’ X is



Eigenvalues (Host’s criterion)

This substitutive structure implies that X has discrete spectrum
(group rotation), but we’ll just demonstrate one eigenfunction

Technique is due to Host

For all k, define vk = ρk(0) and uk = ρk(1) (ρk = τ1 ◦ · · · τk)

x = lim ρn(1) = lim ρk(τk+1 . . .) is concatenation of uk and vk
Host’s criterion: Suppose that there exist α ∈ (0, 1) and summable
sequence εk so that every length L of a finite concatenation of uk , vk
appearing in uk+1 or vk+1, 〈Lα〉 < εk

〈x〉 distance from x to nearest integer



Eigenvalues (Host’s criterion)

Host’s criterion: Suppose that there exist α ∈ (0, 1) and summable
sequence εk so that every length L of a finite concatenation of uk , vk
within uk+1 or vk+1, 〈Lα〉 < εk

We’ll build eigenfunction with eigenvalue λ := e2πiα

For y ∈ X , let dk(y) = min{i : σ−iy begins with uk or vk}
dk(σy) = dk(y) + 1 unless σy begins with uk or vk

Exceptions have small measure for large k

If fk = e2πiαdk , then fk(σy) = e2πiαfk(y) = λfk(y) except on set of
small measure (approximate eigenfunction)

Note that for any y , dk+1(y)− dk(y) is the length of some
concatenation of uk and vk within uk+1 or vk+1



Eigenvalues (Host’s criterion)

Host’s criterion: Suppose that there exist α ∈ (0, 1) and summable
sequence εk so that every length L of a finite concatenation of uk , vk
within uk+1 or vk+1, 〈Lα〉 < εk

We’ll build eigenfunction with eigenvalue λ := e2πiα

For y ∈ X , let dk(y) = min{i : σ−iy begins with uk or vk}
dk(σy) = dk(y) + 1 unless σy begins with uk or vk

Exceptions have small measure for large k

If fk = e2πiαdk , then fk(σy) = e2πiαfk(y) = λfk(y) except on set of
small measure (approximate eigenfunction)

Note that for any y , dk+1(y)− dk(y) is the length L of some
concatenation of uk and vk within uk+1 or vk+1

|fk(y)− fk+1(y)| = |fk(y)(1− e2πiαL)| < εk by Host’s criterion

fk uniformly Cauchy, so converge to limit f , which must be an
eigenfunction!



Eigenvalues (for low word complexity)

Recall that in our setting, all τk : 0 7→ 0mk−11, 1 7→ 0nk−11

vk+1 = ρk+1(0) = ρk(τk+1(0)) = ρk(0mk+1−11) = v
mk+1−1
k uk

Similarly, uk+1 = v
nk+1−1
k uk

We’ll outline proof of Host’s criterion when lim sup p(n)/n < 5/4 (so
m ≤ 2n) and π identity



Eigenvalues (for low word complexity)

vk+1 = v
mk+1−1
k uk , uk+1 = v

nk+1−1
k uk

0 < mk < nk ≤ 2mk , ∃M, ε s.t. mk > M =⇒ nk < (2− ε)mk

Define α = 1

m1+
n1−m1

m2+
n2−m2

m3+
n3−m3

...
Consider convergents ck

dk
c1
d1

= 1
m1

, |v1| = |0m1−11| = m1

c2
d2

= 1

m1+
n1−m1

m2

= m2
m1m2+n1−m1

= m2
m1(m2−1)+n1

,

|v2| = |vm2−1
1 u1| = m1(m2 − 1) + n1

|v2| = |vm2−1
1 u1| = m1(m2 − 1) + n1

dk = |vk |
For all k, | ckdk − α| < |

ck
dk
− ck+1

dk+1
| = (n1−m1)···(nk−mk )

dkdk+1



Eigenvalues (for low word complexity)

0 < mk < nk ≤ 2mk , ∃M, ε s.t. mk > M =⇒ nk < (2− ε)mk

dk = |vk |, | ckdk − α| <
(n1−m1)···(nk−mk )

dkdk+1

〈|vk |α〉 = |ck − dkα| < (n1−m1)···(nk−mk )
dk+1

dk+1 = |vk+1| = |vmk+1−1
k uk | > mk+1|vk | = mk+1dk

vk+1, uk+1 contain any number p of consecutive vk up to nk+1

〈|vpk |α〉 <
(n1−m1)···(nk−mk )nk+1

dk+1
< 2(n1−m1)···(nk+1−mk+1)

m1...mk+1

Each ni−mi
mi
≤ 1 since n ≤ 2m, and m > M gives ni−mi

mi
< 1− ε

Yields exponential decay of 〈|vpk |α〉 for p < nk+1

Host’s criterion: Suppose that there exist α and summable
sequence εk so that every length L of a finite concatenation of uk , vk
within uk+1 or vk+1, 〈Lα〉 < εk

Satisfied, so X has nontrivial eigenfunction!



Summary

We just proved existence of eigenfunction when
lim sup p(n)/n < 5/4 with no π

In fact π affects nothing, proof works up to 4/3, and eigenfunctions
span L2 (discrete spectrum)

Theorem: (Creutz, P.) If X is transitive with lim sup p(n)/n < 4/3
(automatically uniquely ergodic), then µ has discrete spectrum.

If we take nk = 2mk for all k and they grow quickly (i.e. the ε from
previous proof doesn’t exist), then lim sup p(n)/n = 3/2 and there
are no nontrivial eigenvalues

Theorem: (Creutz, P.) There exists uniquely ergodic X with
lim sup p(n)/n = 3/2 which has µ weakly mixing.



Pisot/S-adic Pisot conjectures

When π identity and all τk same τ , X is a substitution subshift

Has associated matrix M with Mij = number of i in τ(j)

Example: τ(0) = 001, τ(1) = 0001→ M = ( 2 3
1 1 )

Pisot conjecture: If largest eigenvalue λ of M is a Pisot number,
meaning that λ > 1 and all other eigenvalues have moduli less than
1, then X has discrete spectrum.

There’s an S-adic version as well, too long to get into here. But
requires at least all τk are Pisot

Our τ : 0 7→ 0m−11, 1 7→ 0n−11 are Pisot iff n ≤ 2m ((1, 3) is not
Pisot, but can combine with previous substitution)

For weak mixing example, each substitution is Pisot, but 2nd
eigenvalues approaching 1 quickly, so ‘average behavior’ (read:
Lyapunov exponent) not Pisot.



Thanks for listening!


