Subshifts of very low complexity

Ronnie Pavlov (joint work with Darren Creutz)

University of Denver www.math.du.edu/~rpavlov

One World Numeration Seminar April 25, 2023

(日) (四) (문) (문) (문)

- Today's talk is about subshifts of very low word complexity
- Main question: what can be said about subshifts whose word complexity is near minimum possible?
- Main result: such subshifts have substitutive/S-adic structure, which implies that they are very simple as dynamical systems

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• In particular, they have discrete spectrum

- Today's talk is about subshifts of very low word complexity
- Main question: what can be said about subshifts whose word complexity is near minimum possible?
- Main result: such subshifts have substitutive/S-adic structure, which implies that they are very simple as dynamical systems

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• In particular, they have discrete spectrum

- Finite set A (called the **alphabet**)
- The (left) shift action σ on A^Z
- A set $X \subset A^{\mathbb{Z}}$ which is invariant under σ and closed in product topology
- Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$
- Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$
- Example 3: $A = \{0, 1\}, X$ a **Sturmian subshift**
 - Formal definition of Sturmian is a little technical, but an example is given by **Fibonacci sequence**: x = 01

- Finite set A (called the **alphabet**)
- The (left) shift action σ on A^Z
- A set $X \subset A^{\mathbb{Z}}$ which is invariant under σ and closed in product topology
- Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$
- Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$
- Example 3: $A = \{0, 1\}, X$ a **Sturmian subshift**
 - Formal definition of Sturmian is a little technical, but an example is given by **Fibonacci sequence**: x = 010

- Finite set A (called the **alphabet**)
- The (left) shift action σ on A^Z
- A set $X \subset A^{\mathbb{Z}}$ which is invariant under σ and closed in product topology
- Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$
- Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$
- Example 3: $A = \{0, 1\}, X$ a **Sturmian subshift**
 - Formal definition of Sturmian is a little technical, but an example is given by **Fibonacci sequence**: x = 01001

- Finite set A (called the **alphabet**)
- The (left) shift action σ on A^Z
- A set $X \subset A^{\mathbb{Z}}$ which is invariant under σ and closed in product topology
- Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$
- Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$
- Example 3: $A = \{0, 1\}, X$ a **Sturmian subshift**
 - Formal definition of Sturmian is a little technical, but an example is given by Fibonacci sequence: x = 01001010

- Finite set A (called the **alphabet**)
- The (left) shift action σ on A^Z
- A set $X \subset A^{\mathbb{Z}}$ which is invariant under σ and closed in product topology
- Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$
- Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$
- Example 3: $A = \{0, 1\}, X$ a **Sturmian subshift**
 - Formal definition of Sturmian is a little technical, but an example is given by Fibonacci sequence: x = 0100101001001

- A subshift is defined by
 - Finite set A (called the **alphabet**)
 - The (left) shift action σ on $A^{\mathbb{Z}}$
 - A set X ⊂ A^ℤ which is invariant under σ and closed in product topology
- Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$
- Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$
- Example 3: $A = \{0, 1\}$, X a Sturmian subshift
 - Formal definition of Sturmian is a little technical, but an example is given by **Fibonacci sequence**:

 $x=\dots.0100101001001\dots$

- Define X to be set of limit points of $\{\sigma^n x : n \ge 0\}$
- Sturmian shifts are induced by irrational circle rotations

Subshifts and word complexity

- For any subshift X, define word complexity function by:
- for all n > 0, p(n) is the number of n-letter words/strings appearing within some x ∈ X
 - Example 1: $A = \{0, 1\}, X = \{\dots 000.000 \dots, \dots 111.111 \dots\}$: p(n) = 2
 - Example 2: $A = \{0, 1\}, X = \{0, 1\}^{\mathbb{Z}}$: $p(n) = 2^n$
 - Example 3: A = {0, 1}, X a Sturmian subshift:
 p(n) = n + 1
- The Morse-Hedlund theorem states that if $\exists n \text{ s.t. } p(n) \leq n$, then X is a finite union of periodic points
- Sturmians achieve minimum possible p(n) among infinite subshifts
- Slowest possible growth of p(n) implies 'almost' circle rotation
- What about linear growth?

- X has strong linear complexity if $\exists C \text{ s.t. } \forall n, p(n) < Cn$
 - Equivalent: $\limsup p(n)/n < \infty$
- X has weak linear complexity if $\liminf p(n)/n < \infty$
- Relationship complicated; in fact not only might lim inf p(n)/n, lim sup p(n)/n be unequal, but they MUST be unequal unless an integer! (Heinis, Cassaigne)
- Even weak linear complexity strongly restricts dynamics of X
 - Basic dynamical properties for future results:
 - X is **transitive** if there exists $x \in X$ with $X = \overline{\{\sigma^n x\}}$
 - X is minimal if $X = \overline{\{\sigma^n x\}}$ for every $x \in X$
 - X is **uniquely ergodic** if only one σ -invariant measure

Some properties of subshifts with linear complexity

- Theorem: (Boshernitznan) If X is minimal (transitive) and has weak linear complexity, then X has only finitely many ergodic σ-invariant measures
- **Theorem:** (Dysktra, Ormes, P.) If X is transitive and has weak linear complexity, then X has only finitely many minimal subsystems
- **Theorem:** (Donoso, Durand, Maass, Petite) If X is minimal and has weak linear complexity, then X has finite topological rank
- Theorem: (Boshernitzan) If X is minimal (transitive) and lim sup p(n)/n < 3, then X is uniquely ergodic
- **Theorem:** (Ormes, P.) If X is transitive and aperiodic and $\limsup p(n)/n < 3/2$, then X is minimal
- Maybe not only finiteness, but value of lim sup p(n)/n can be important

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Linear complexity and mixing properties

• **Theorem:** (Ferenczi) If X has strong linear complexity, then X cannot support a nontrivial strongly mixing measure.

• μ strongly mixing: $\forall A, B, \mu(A \cap \sigma^{-n}B) \rightarrow \mu(A)\mu(B)$

- **Theorem:** (Chacon) There exists uniquely ergodic X with $\limsup p(n)/n = 2$ with μ weakly mixing.
 - μ weakly mixing: ∀A, B, μ(A ∩ σ⁻ⁿB) → μ(A)μ(B) except for n in set of density 0
 - Equivalent: no nontrivial eigenfunctions, i.e. $f \in L^2$ with $f(\sigma x) = \lambda f(x)$ for $\lambda \neq 1$
- **Theorem:** (Ferenczi) There exists uniquely ergodic X with $\limsup p(n)/n = 5/3$ with μ weakly mixing.
- Question: (Ferenczi) Is 5/3 the minimal possible lim sup p(n)/n for X with weakly mixing μ?

Main results about subshifts with low linear complexity

- **Theorem:** (Creutz, P.) There exists uniquely ergodic X with $\limsup p(n)/n = 3/2$ which has μ weakly mixing.
 - Negatively answers Ferenczi's question
- **Theorem:** (Creutz, P.) If X is transitive with $\limsup p(n)/n < 4/3$ (automatically uniquely ergodic), then μ has discrete spectrum.
 - μ has discrete spectrum if L^2 is spanned by eigenfunctions
 - Equivalent to rotation of compact abelian group
 - Opposite of weak mixing
- Informally: if word complexity close enough to Sturmian, still group rotation, but possibly more complicated than a circle
- Consequence: infimum of lim sup p(n)/n for X with weakly mixing μ is in [4/3, 3/2]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Key component: lim sup p(n)/n < 4/3 implies that X is determined by a sequence of **substitutions**
- A substitution from *B* to *A* is $\tau : A \rightarrow B^*$
- Example: π defined by $\pi(0) = ab, \pi(1) = acd$
- π extendable to B^* by concatenation, e.g. $\pi(001) = ababacd$
- Can compose π from B to A with τ from B to B into $\pi \circ \tau$ from B to A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• au(0) = 01, au(1) = 001 gives $\pi \circ au : 0 \mapsto abacd, 1 \mapsto ababacd$

Substitutive/S-adic structure

- An infinite sequence of substitutions can induce a subshift
- Define $au_k : \{0,1\} \to \{0,1\}^*$, assume all $au_k(0)$ begin with 0
- Define $\rho_k = \tau_1 \circ \cdots \circ \tau_k$
- Then $\rho_{k+1}(0) = \rho_k(\tau_{k+1}(0)) = \rho_k(0) \dots$
- Can define $x = \lim \rho_k(0)$, $X = \overline{\{\sigma^n x\}}$
- Example: if all $\tau_k = \tau : 0 \mapsto 01, 1 \mapsto 0$
- $\tau^2: \mathbf{0} \mapsto \mathbf{010}, \mathbf{1} \mapsto \mathbf{01}$
- $\tau^3: 0 \mapsto 01001, 1 \mapsto 010$
- $\tau^4: 0 \mapsto 01001010, 1 \mapsto 01001$
- x = .0100101001001 . . .; Fibonacci sequence!
- In general, Sturmian comes from τ_k given by continued fraction expansion of rotation number

- Results of Ferenczi, P.-Schmieding already imply that lim sup p(n)/n < 2 means X comes from a sequence $\tau_k : \{0,1\} \rightarrow \{0,1\}^*$ and $\pi : \{0,1\} \rightarrow A$
 - Need π for silly reason; alphabet of X may not be $\{0, 1\}$!
 - π applied after sequence of τ_k
- But in general, only S-adic structure alone doesn't restrict X very much
- When lim sup p(n)/n < 4/3, we prove that τ_k are of very specific type

• **Theorem:** (Creutz-P.) If $\limsup p(n)/n < 4/3$ and X transitive, then X generated by $(\pi \text{ and}) \tau_k$ where every $\tau_k : 0 \mapsto 0^{m_k-1}1$, $1 \mapsto 0^{n_k-1}1$ and $0 < m_k < n_k \le 2m_k + 1$. In addition,

•
$$n_k \le 2m_k$$
 unless $(m_k, n_k) = (1, 3)$

- (1,3) can't happen if $\limsup p(n)/n < 5/4$
- If $(m_k, n_k) = (1, 3)$, then $n_{k+1} = m_{k+1} + 1$
- $\exists M, \epsilon \text{ s.t. } m_k > M \Longrightarrow n_k \leq (2 \epsilon)m_k$
- $\tau_k(0)$ may not begin with 0, but $\tau_k(1)$ ends with 1, limit x still exists

- X is Sturmian when π identity and all τ_k have $n_k = m_k + 1$
- Heuristic: The closer n_k, m_k are, the 'simpler' X is

- This substitutive structure implies that X has discrete spectrum (group rotation), but we'll just demonstrate one eigenfunction
- Technique is due to Host
- For all k, define $v_k = \rho_k(0)$ and $u_k = \rho_k(1)$ $(\rho_k = \tau_1 \circ \cdots \tau_k)$
- $x = \lim \rho_n(1) = \lim \rho_k(\tau_{k+1}...)$ is concatenation of u_k and v_k
- Host's criterion: Suppose that there exist α ∈ (0,1) and summable sequence ε_k so that every length L of a finite concatenation of u_k, v_k appearing in u_{k+1} or v_{k+1}, ⟨Lα⟩ < ε_k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

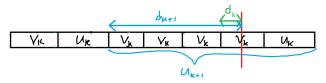
• $\langle x \rangle$ distance from x to nearest integer

Eigenvalues (Host's criterion)

- Host's criterion: Suppose that there exist α ∈ (0,1) and summable sequence ε_k so that every length L of a finite concatenation of u_k, v_k within u_{k+1} or v_{k+1}, ⟨Lα⟩ < ε_k
- We'll build eigenfunction with eigenvalue $\lambda := e^{2\pi i \alpha}$
- For $y \in X$, let $d_k(y) = \min\{i : \sigma^{-i}y \text{ begins with } u_k \text{ or } v_k\}$
- $d_k(\sigma y) = d_k(y) + 1$ unless σy begins with u_k or v_k
 - Exceptions have small measure for large k
- If f_k = e^{2πiαd_k}, then f_k(σy) = e^{2πiα}f_k(y) = λf_k(y) except on set of small measure (approximate eigenfunction)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Note that for any y, d_{k+1}(y) - d_k(y) is the length of some concatenation of u_k and v_k within u_{k+1} or v_{k+1}



Eigenvalues (Host's criterion)

- Host's criterion: Suppose that there exist α ∈ (0,1) and summable sequence ε_k so that every length L of a finite concatenation of u_k, v_k within u_{k+1} or v_{k+1}, ⟨Lα⟩ < ε_k
- We'll build eigenfunction with eigenvalue $\lambda := e^{2\pi i \alpha}$
- For $y \in X$, let $d_k(y) = \min\{i : \sigma^{-i}y \text{ begins with } u_k \text{ or } v_k\}$
- $d_k(\sigma y) = d_k(y) + 1$ unless σy begins with u_k or v_k
 - Exceptions have small measure for large k
- If f_k = e^{2πiαd_k}, then f_k(σy) = e^{2πiα}f_k(y) = λf_k(y) except on set of small measure (approximate eigenfunction)
- Note that for any y, d_{k+1}(y) d_k(y) is the length L of some concatenation of u_k and v_k within u_{k+1} or v_{k+1}
- $|f_k(y) f_{k+1}(y)| = |f_k(y)(1 e^{2\pi i \alpha L})| < \epsilon_k$ by Host's criterion
- *f_k* uniformly Cauchy, so converge to limit *f*, which must be an eigenfunction!

• Recall that in our setting, all $au_k: 0\mapsto 0^{m_k-1}1, 1\mapsto 0^{n_k-1}1$

•
$$v_{k+1} = \rho_{k+1}(0) = \rho_k(\tau_{k+1}(0)) = \rho_k(0^{m_{k+1}-1}1) = v_k^{m_{k+1}-1}u_k$$

• Similarly,
$$u_{k+1} = v_k^{n_{k+1}-1} u_k$$

We'll outline proof of Host's criterion when lim sup p(n)/n < 5/4 (so m ≤ 2n) and π identity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Eigenvalues (for low word complexity)

•
$$v_{k+1} = v_k^{m_{k+1}-1} u_k$$
, $u_{k+1} = v_k^{n_{k+1}-1} u_k$
• $0 < m_k < n_k \le 2m_k$, $\exists M, \epsilon$ s.t. $m_k > M \Longrightarrow n_k < (2-\epsilon)m_k$
• Define $\alpha = \frac{1}{m_1 + \frac{n_1 - m_1}{m_2 + \frac{n_2 - m_2}{m_3 + \frac{n_3 - m_3}{m_3}}}$
· .
• Consider convergents $\frac{c_k}{d_k}$
• $\frac{c_1}{d_1} = \frac{1}{m_1}$, $|v_1| = |0^{m_1 - 1}1| = m_1$
• $\frac{c_2}{d_2} = \frac{1}{m_1 + \frac{n_1 - m_1}{m_2}} = \frac{m_2}{m_1 m_2 + n_1 - m_1} = \frac{m_2}{m_1 (m_2 - 1) + n_1}$,
 $|v_2| = |v_1^{m_2 - 1} u_1| = m_1 (m_2 - 1) + n_1$
 $|v_2| = |v_1^{m_2 - 1} u_1| = m_1 (m_2 - 1) + n_1$
• $d_k = |v_k|$
• For all k , $|\frac{c_k}{d_k} - \alpha| < |\frac{c_k}{d_k} - \frac{c_{k+1}}{d_{k+1}}| = \frac{(n_1 - m_1) \cdots (n_k - m_k)}{d_k d_{k+1}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Eigenvalues (for low word complexity)

•
$$0 < m_k < n_k \le 2m_k$$
, $\exists M, \epsilon$ s.t. $m_k > M \Longrightarrow n_k < (2-\epsilon)m_k$
• $d_k = |v_k|, |\frac{c_k}{d_k} - \alpha| < \frac{(n_1 - m_1) \cdots (n_k - m_k)}{d_k d_{k+1}}$
• $\langle |v_k|\alpha \rangle = |c_k - d_k\alpha| < \frac{(n_1 - m_1) \cdots (n_k - m_k)}{d_{k+1}}$
• $d_{k+1} = |v_{k+1}| = |v_k^{m_{k+1} - 1}u_k| > m_{k+1}|v_k| = m_{k+1}d_k$
• v_{k+1}, u_{k+1} contain any number p of consecutive v_k up to n_{k+1}
• $\langle |v_k^p|\alpha \rangle < \frac{(n_1 - m_1) \cdots (n_k - m_k)n_{k+1}}{d_{k+1}} < \frac{2(n_1 - m_1) \cdots (n_{k+1} - m_{k+1})}{m_1 \cdots m_{k+1}}$
• Each $\frac{n_i - m_i}{m_i} \le 1$ since $n \le 2m$, and $m > M$ gives $\frac{n_i - m_i}{m_i} < 1 - \epsilon$
• Yields exponential decay of $\langle |v_k^p|\alpha \rangle$ for $p < n_{k+1}$

- sequence ϵ_k so that every length L of a finite concatenation of u_k, v_k within u_{k+1} or v_{k+1} , $\langle L\alpha \rangle < \epsilon_k$
- Satisfied, so X has nontrivial eigenfunction!

- We just proved existence of eigenfunction when lim sup p(n)/n < 5/4 with no π
- In fact π affects nothing, proof works up to 4/3, and eigenfunctions span L^2 (discrete spectrum)
- **Theorem:** (Creutz, P.) If X is transitive with $\limsup p(n)/n < 4/3$ (automatically uniquely ergodic), then μ has discrete spectrum.
- If we take $n_k = 2m_k$ for all k and they grow quickly (i.e. the ϵ from previous proof doesn't exist), then $\limsup p(n)/n = 3/2$ and there are no nontrivial eigenvalues
- **Theorem:** (Creutz, P.) There exists uniquely ergodic X with $\limsup p(n)/n = 3/2$ which has μ weakly mixing.

- When π identity and all τ_k same τ , X is a substitution subshift
- Has associated matrix M with M_{ij} = number of i in $\tau(j)$
- Example: $\tau(0) = 001, \tau(1) = 0001 \rightarrow M = (\begin{smallmatrix} 2 & 3 \\ 1 & 1 \end{smallmatrix})$
- Pisot conjecture: If largest eigenvalue λ of M is a Pisot number, meaning that λ > 1 and all other eigenvalues have moduli less than 1, then X has discrete spectrum.
- There's an S-adic version as well, too long to get into here. But requires at least all τ_k are Pisot
- Our $\tau : 0 \mapsto 0^{m-1}1, 1 \mapsto 0^{n-1}1$ are Pisot iff $n \leq 2m$ ((1,3) is not Pisot, but can combine with previous substitution)
- For weak mixing example, each substitution is Pisot, but 2nd eigenvalues approaching 1 quickly, so 'average behavior' (read: Lyapunov exponent) not Pisot.

Thanks for listening!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?