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1. Radix representation of rational integers

Distinction between (algebraic) integer and rational integer.

Let g ≥ 2. If n ∈ Z, n > 0 then there exist uniquely l ≥ 0,0 ≤
a0, . . . , al < g such that

n = nlg
l + nl−1g

l−1 + . . .+ n0.

Let (n)g = n0n1 . . . nl the word (sequence) of digits of the g-ary
representation of n, e.g. 2020 = 2·103+0·102+2·101+0·100 =
3 · 54 + 1 · 53 + 0 · 52 + 4 · 51 + 0 · 50, thus

(2020)10 = 0202, (2020)5 = 04013. (0)g = 0 for all g ≥ 2.

Unfamiliar notation, but simplifies considerably the manipulation
with the equations.



General question: Assume that (n)g admits some property.

What can we prove about the set of such n. The property can

be e.g. periodicity, subword of special shape, few non-zero digits,

etc.

If (n)g = bl then n is called a base g repdigit, if b = 1 then

repunit. Plainly

(n)g = bl if and only if n = b
gl − 1

g − 1
.

Does there exist integers which are repunits in two different

bases?



Yes: trivial examples (1)g = 1, (n)g = 1l, h = n − 1 ⇒ (n)h = 12.

Non trivial examples

(31)5 = 13 and (31)2 = 15,

(8191)90 = 13 and (8191)2 = 113.

Goormaghtigh conjecture: there are no more non-trivial exam-

ples.



Reformulation to the language of Diophantine equations: If

(x, y, n,m), x, y > 1,m, n > 2, x 6= y is a solution of

xn − 1

x− 1
=
ym − 1

y − 1

then (x, y, n,m) = (5,2,3,5) and (90,2,3,13).

When either the bases x and y, or the base x and the exponent

n, or the exponents m and n are fixed, then our equation has

finitely many solutions.



2. Radix representation in algebraic number fields

Let K an algebraic number field with ring of integers ZK.

The pair (γ,D), where γ ∈ ZK and D ⊂ Z is a complete residue

system modulo γ is called a generalized number system with

finiteness property, GNS, in ZK if for any 0 6= β ∈ ZL there exist

an integer ` ≥ 0 and a0, . . . , a` ∈ D, a` 6= 0 such that

β = a`γ
` + · · ·+ a1γ + a0. (1)

Denote the sequence or word of the digits a0a1 . . . a` by (β)γ.

The GNS concept was initiated by D. Knuth, and developed

further by Penney, I. Kátai, J. Szabó, B. Kovács, etc.



Not all (γ,D) is a GNS! For example
(
−1+

√
−7

2 , {0.1}
)

is, but(
1+
√
−7

2 , {0.1}
)

is not a GNS in Z[
√
−7]. Pelda!

This GNS is a special case of GNS in a polynomial ring over

an order, i.e., a commutative ring with unity, whose additive

structure is a free Z-module of finite rank. To avoid technical

difficulties we restrict ourself to maximal orders of number fields.



3. A theme of K. Mahler

K. Mahler, 1981, proved that the number 0.(1)g(h)g(h2)g . . . is

irrational, equivalently: the infinite word (1)g(h)g(h2)g . . . is not

periodic. Refinements, generalizations and new methods by

• P. Bundschuh, 1984

• H. Niederreiter, 1986

• Z. Shan, 1987

• Z. Shan and E. Wang, 1989: Let (ni)
∞
i=1 be a strictly

increasing sequence of integers. Then (hn1)g(hn2)g . . . is not

periodic. In the proof they used the theory of Thue equations.



Generalizations for numeration systems based on linear recursive

sequences:

• P.G. Becker, 1991

• P.G. Becker and J. Sander 1995

• G. Barat, R. Tichy and R. Tijdeman, 1997

• G. Barat, C. Frougny and A. Pethő, 2005

Problem 1. Is it true that if (ni)
∞
i=1 is a strictly increasing se-

quence of integers then (hn1)g(hn2)g . . . is not automatic?



3.1. Results on power sums

Let 0 /∈ A,B ⊂ ZK be finite, and Γ,Γ+ be the semigroup, group

generated by B. Put

S(A,B, s) = {α1µ1 + · · ·+ αsµs : αj ∈ A, µj ∈ Γ}.

Example: K = Q,A = {1},B = {2,3} then

S(A,B,2) = {2a3b + 2c3d : a, b, c, d ≥ 0}.



Theorem 1. Let s ≥ 1 and A,B as above. Assume that cn ∈
S(A,B, s) and (cn) has infinitely many distinct terms. If (γ,D)

is a GNS in ZK and the elements of {γ ∪ B} are multiplicatively

independent then the infinite word (c1)γ(c2)γ . . . is not periodic.

With K = Q,A = {1},B = {h}, γ = g we get Mahler’s result,

when g, h are multiplicatively independent.

The proof of Theorem 1 is based on the following

Lemma 1. Let (γ,D) be a GNS in ZK and w,w1 ∈ D∗. Assume

that the elements of {γ ∪ B} are multiplicatively independent.

There are only finitely many U ∈ S(A,B, s) such that (U)γ =

w1w
k, and (U)γ = wkw1.



Problem 2. Let A,B, γ,D, w1 as in Lemma 1. There are only

finitely many U ∈ S(A,B, s) and w ∈ D∗ such that (U)γ = w1w
k

with k ≥ k0.

This is true if K = Q,A = {1},B = {h} and k is fixed. The

equation (hx)g = w1w
k has only finitely many solutions in w ∈

{0,1, . . . , g − 1}∗ and x ≥ 0 integer.



Corollary 1. Let γ be an algebraic integer. Let K = Q(γ) and

D ⊂ Z and assume that (γ,D) is a GNS in ZK. For any m ∈ Z
and w,w1 ∈ D∗ there exist only finitely many β ∈ ZK of norm m

such that (β)γ = w1w
k or wkw1.

Proof. If γ is rational or imaginary quadratic then there are in ZK
only finitely many elements with given norm, hence the state-

ment holds automatically.

Otherwise there exists in ZK only finitely many pairwise not as-

sociated elements with given norm. Let A be such a set. There

exist by Dirichlet’s theorem ε1, . . . , εr such that every unit of in-

finite order of ZK can be written in the form ε
m1
1 · · · εmr

r . Set

B = {ε1, . . . , εr} and apply Theorem 1.



3.2. Solutions of norm form equations

Let K be an algebraic number field of degree k. It has k isomor-

phic images, K(1) = K, . . . ,K(k) in C. Let α1 = 1, α2, . . . , αk ∈ ZK
be Q-linear independent elements and L(X) = α1X1 + · · ·+αkXk.

Consider the norm form equation

NK/Q(L(X)) =
k∏

j=1

(α(j)
1 X1 + · · ·+ α

(j)
k Xk) = t, (2)

where 0 6= t ∈ Z, which solutions are searched in Z. Notice that

NK/Q(L(X)) ∈ Z[X].

If k = 2, α2 =
√
d,0 < d 6= � then NK/Q(X1 +

√
dX2) = X2

1 − dX
2
2

⇒ (2) is a Pell equation.



Theorem 2. Let (xn) = ((xn1, . . . , xnk)) be a sequence of dif-

ferent solutions of (2). Let 1 ≤ j ≤ k be fixed, g ≥ 2 and

w,w1 ∈ {0,1, . . . , g − 1}∗. If (xnj) is finite or has infinitely many

nonzero terms then the equation (|xnj|)g = w1w
u has only finitely

many solutions in n, u.

Outline of the proof If K is Q or an imaginary quadratic number

field then (2) has finitely many solutions ⇒ we are done.

By a deep theorem of W.M. Schmidt (1982) there exist a finite

set A ⊂ ZK such that

α1xn1 + · · ·+ αkxnk = µun

with µ ∈ A and with a unit un ∈ ZK.



Taking conjugates we obtain the system of linear equations

α
(i)
1 xn1 + · · ·+ α

(i)
k xnk = µ(i)u

(i)
n , i = 1, . . . , k,

which implies

xnj = ν1u
(1)
n + · · ·+ νku

(k)
n

with some constants νi belonging to the normal closure of K.

The assumption (xnj) is non-zero for infinitely many n implies

that (xnj) is not bounded. Now we can apply Theorem 1.�

Corollary 2. Let g ≥ 2 be an integer. There are only finitely

many g-repunits among the solutions of (2).



3.3. Results on rational integers

Van der Poorten and Schlickewei, 1982: the elements of

S(A,B, s) are growing exponentially. Now we show that under

certain assumptions the set of values of polynomials at rational

integers behave similarly, i.e., cannot have arbitrary long peri-

odic expansions, provided the preperiod and the period are given.

Theorem 3. Let K be an algebraic number field of degree k ≥
2, (γ,D) be a GNS in ZK, and w,w1 ∈ D∗. Let t(X) ∈ ZK[X]

be of degree v ≥ 0. Assume that γ has two conjugates whose

quotient is not a root of unity. Then there exist only finitely many

effectively computable rational integers n such that (t(n))γ =

w1w
u.



Remark 1. Assume that γ` = m for some integers ` ≥ 1, and mZ.

As (γ,D) is a GNS in ZK we have K = Q(γ), i.e., the degree of γ is

exactly k. Hence ` ≥ k. Let 0 6= d ∈ D. Then the rational integers∑j
i=0 dγ

`i admit the periodic representation wj, j ≥ 1 with the

word w = d0`. On the other hand, as γ` = m, ` = 1, . . . , k, hence

γ`/γj are roots of unity. Thus our assumption is necessary.



Scats of the proof of Theorem 3. Let w1 ∈ D∗ be given. By

unicity of expansions there is exactly one U with (U)γ = w1.

Thus our statement is true if w = λ.

Let w = d0 . . . dh−1 and q = d0 +d1γ+ . . .+dh−1γ
h−1. Set q0 = 0

if w1 = λ, and q0 = f0 + f1γ + . . . + fg−1γ
g−1 provided w1 =

f0 . . . fg−1.

Let n ∈ Z and assume that (t(n))γ = w1w
u holds for some k > 0.



It means that

t(n) = q0 + γg
u−1∑
i=0

γih
h−1∑
j=0

djγ
j

= q0 + γg
u−1∑
i=0

qγih

= q0 + qγg
γhu − 1

γh − 1

=
qγg

γh − 1
γhu + q0 −

qγg

γh − 1
.

Setting

α =
qγg

γh − 1
6= 0, β = q0 − α



we get the system of equations

t(1)(n)− α(1)(γ(1)h)u + β(1) = 0,

t(2)(n)− α(2)(γ(2)h)u + β(2) = 0

in the unknown integers n, u. Computing the resultant of the
polynomials on the LHS’s with respect to the variable n we get
the necessary condition(

α1(γ(1)h)u + α2(γ(2)h)u
)v

+ F3

(
(γ(1)h)u, (γ(2)h)u

)
= 0, (3)

where F3(X,Y ) denotes a polynomial with coefficients from K
and such that the total degree of its monomials is at most v−1.
Thus, if |γ(1)| ≥ |γ(2)| then∣∣∣F3

(
(γ(1)h)u, (γ(2)h)u

)∣∣∣ ≤ c1|γ(1)|hu(v−1) (4)

with an effective constant depending only on k, v, h, the digits of
w and on the coefficients of t and the defining polynomial of γ.



Case I. |γ(1)| = |γ(2)|, but γ(1)/γ(2) is not a root of unity.

As γ(1)/γ(2) is not a root of unity there exist by Shorey and

Tijdeman (1986) effectively computable constants c2, c3, c4 such

that ∣∣∣α1(γ(1)h)u + α2(γ(2)h)u
∣∣∣ ≥ c2|γ(1)|hu exp(−c3 logu),

whenever |u| ≥ c4. Hence∣∣∣α1(γ(1)h)u + α2(γ(2)h)u
∣∣∣v ≥ cv2|γ(1)|huv exp(−c3v logu).

Comparing this lower bound with (4) implies our statement.



Case II. |γ(1)| > |γ(2)|.

This case is much simpler as the first one. Indeed |γ(1)| > |γ(2)|
implies ∣∣∣α1(γ(1)h)u + α2(γ(2)h)u

∣∣∣v ≥ c5|γ(1)|huv,

whenever |u| ≥ c6. �



Corollary 3. Let K be an algebraic number field of degree k ≥ 2

and (γ,D) be a GNS in ZK. Let t(X) ∈ ZK[X]. Assume that γ

has two conjugates whose quotient is not a root of unity. Then

the infinite word W = (t(1))γ(t(2))γ(t(3))γ . . . is not ultimately

periodic.

Idea of the proof. Omitting, if necessary, some starting mem-

bers of (t(n)) we may assume that W is periodic, i.e. W = H∞

with H ∈ Dh.

We have (t(n))γ = cn0H
encn1 for all n ≥ 1, where cn0 is a a

suffix and cn1 is a a prefix of H and en ≥ 0. As |t(n)| → ∞ the

length of (t(n))γ, n = 1,2, . . ., thus en is not bounded. There

exists an infinite sequence k1 < k2 < . . . of integers such that

l((t(kn+1))γ) > l((t(kn))γ).



Write (t(kn))γ = ckn0H
eknckn1. As H has at most h−1 proper pre-

fixes and h−1 proper suffixes there exists an infinite subsequence

of kn, n ≥ 1 such that ckn0 and ckn1 are fixed, say ckn0 = C0 and

ckn1 = C1. In the sequel we omit the subindexes.

With this simplified notation we have (cn)γ = C0H
enC1, where

C0 denotes a proper suffix, and C1 a proper prefix of H and (en)

tends to infinity. Finally, replacing H by the suffix of length h

of HC1, and denoting it again by H we have (cn)γ = C0H
en for

infinitely many n. Contradition to Theorem 3. �



Conjecture 1. Let K be an algebraic number field and (γ,D)

be a GNS in ZK. Let t(X) ∈ ZK[X]. Then the infinite word

(t(1))γ(t(2))γ(t(3))γ . . . is not automatic.

If K = Q and t(x) = x then Cγ = 0.(1)γ(2)γ(3)γ . . . is the Cham-

pernowne number. He proved in 1933 that C10 is normal. Nakai

and Shiokawa (1962): Cγ in base γ is normal. Mahler (1937):

C10 is transcendental.

Generalization: Let (t(1))γ(t(2))γ(t(3))γ . . . = s1s2 . . . , which is

a word over D. The series
∑∞
j=1 sjγ

−j defines a complex number.

Is it always transcendental?



4. Rational integers with fixed representation word

Fix w ∈ Z∗. Search for number systems (γ,D) and rational

integers n such that (n)(γ,D) = w. The underlying idea: If

w = w1 . . . w` and (α)γ = w then

α = w1 + w2γ + · · ·+ w`γ
`−1.

Denote k the degree of γ. If k ≥ ` − 1 then 1, γ, . . . , γ`−1 are Q-

linearly independent, thus α ∈ Z is only possible if w2, . . . , w` = 0

and α = w1.



What about if k < ` − 1? Search γ as a root of the polynomial

Xk+gk−1X
k−1 + . . .+g0. Then γj =

∑k−1
i=0 gijγ

i holds for all j ≥ 0

where gij are polynomials of g0, . . . , gk−1 with integer coefficients.

Thus

α =
`−1∑
j=0

wj+1γ
j

=
`−1∑
j=0

wj+1

k−1∑
i=0

gijγ
i

=
k−1∑
i=0

`−1∑
j=0

wj+1gijγ
i.

As 1, γ, . . . , γk−1 are Q-linearly independent α ∈ Z holds if and

only if
∑`−1
j=0wj+1gij = 0 for i = 1, . . . , k − 1. These are systems

of diophantine equations.



For example for k = 2 we have

j 0 1 2 3 4 5

g0j 1 0 −g0 g0g1 −g0g
2
1 + g2

0 g0g
3
1 − 2g2

0g1
g1j 0 1 −g1 g2

1 − g0 −g3
1 + 2g0g1 g4

1 − 3g0g
2
1 + g2

0

The same data for k = 3.

j 0 1 2 3 4 5 6

g0j 1 0 0 −g0 g0g2 −g0g2
2 + g0g1 g0g3

2 − g0g2
1 − g0g1g2 + g2

0
g1j 0 1 0 −g1 g1g2 − g0 −g1g2

2 + g0g2 + g2
1 g1g3

2 − g0g2
2 − 2g2

1g2 + 2g0g1

g2j 0 0 1 −g2 g2
2 − g1 −g3

2 + 2g1g2 − g0 g4
2 − 3g1g2

2 + 2g0g2 + g2
1



Algorithm

Input: w = w1 . . . w` ∈ Z∗ such that ` ≥ 2 and w` 6= 0.

Output: The set S of triplets (γ,D, n) such that [Q(γ) : Q] =

k ≥ 2, n ∈ Z and (n)(γ,D) = w.

1. S ← ∅; D ← {w1, . . . , w`};
2. for k ← 2 to ` do {
3. for i← 1 to k − 1 do Li ←

∑`−1
j=0wj+1gij;

5. S1 ← set of solutions of the system of equations

Li = 0, i = 1, . . . , k − 1 in (g0, . . . , gk−1) ∈ Zk;



6. for g = (g0, . . . , gk−1) ∈ S1 do {
7. S1 ← S1 \ {g};
8. if g0|x−y for all x, y ∈ Dw and P (X) = Xk+gk−1X

k−1+. . .+g0

is irreducible then

9. S ← {(γ,D, n)}, where γ is a zero of P (X), D ⊇ Dw is a

complete residue system modulo g0 and n =
∑`−1
j=0wj+1g0j

} (* end of the g cycle*)

} (* end of the k cycle*)



Example Search for all algebraic integer γ such that (n)γ =

0202, i.e,

2γ3 + 2γ = n→ n = 2m.

Plainly deg γ ≤ 3.

deg γ = 3→ γ3 + γ −m = 0 and |m| ≥ 3, {0,2} ⊂ D.

deg γ = 2→ (g2
1−g0+1)γ+g0g1−m = 0 thus m = g3

1+g1, g0 =

g2
1 + 1, |g1| ≥ 1.

deg γ = 2→ m = g3 + g.



5. Repunits in number systems

If (γ,D) is fixed then there there are by Theorem 3 only finitely

many rational integers, which are repunits in (γ,D).

Similarly, if ` is fixed then the Algorithm finds up to equiva-

lence all number systems for which there exists a rational integer,

which is a repunit of length `.

We present here more precise description. For i ≥ 0 let

Gi(X) =
i∑

h=0

(X − 1)h =
(X − 1)i+1 − 1

X − 2
.



Proposition 1. Let K be a number field of degree k ≥ 2. The

only rational integer, which is a repunit of length ` ≤ k in a

number system in ZK is 1.

• If γ is a zero of Qm(X) =
∑k
i=1X

i + m, 0,±1 6= m ∈ Z and

D is a complete residue system modulo m including 0,1 then

(1−m)(γ,D) = 1k+1.

• For 0,1 6= m ∈ Z let Pm(X) =
∑k
i=0Gi(m)Xk−i, γ be a zero

of Pm(X) and D be a complete residue system modulo Gk(m)

including 0,1. Then (Gk+1(m))(γ,D) = 1k+2.



Proof. Only the third assertion. The recursion
Gi+1(X) = (X − 1)Gi(X) + 1, i ≥ 0 is easy to verify. Thus

(m− 1)Pm(X) =
k∑
i=0

(m− 1)Gi(m)Xk−i

=
k∑
i=0

(Gi+1(m)− 1)Xk−i

= Gk+1(m) +XPm(X)−
k+1∑
i=0

Xi,

hence

Gk+1(m) ≡
k+1∑
i=0

Xi (mod Pm(X)),

which means

Gk+1(m) =
k+1∑
i=0

γi. �



Remark 2. By the Algorithm, there is no rational integer, which

is a repunit of length five in a quadratic number field.

Theorem 4. If K has at least three real conjugates, then there is

no rational integer which is a repunit with respect to any number

system in K.

Proof. Let γ ∈ ZK and assume that 1 6= n ∈ Z be a repunit in a

number system (γ,D). Then there is an 2 ≤ ` ∈ Z such that

n =
`−1∑
i=0

γi =
γ` − 1

γ − 1
.



Let γ′ be a conjugate of γ. Then

γ` − 1

γ − 1
=
γ′` − 1

γ′ − 1
.

If ` is odd then the function f(x) = x`−1
x−1 is strictly monotonically

increasing for x < −1 and x > 1. We have |γ|, |γ′| > 1, hence the

last equality is impossible.

If ` is even, then f(x) is strictly decreasing over (−∞,−1) and

strictly increasing over (1,∞), hence for fixed y ∈ R the equation

f(x) = y, |x| > 1 may have at most two real solutions.



Imre Kátai and Júlia Szabó (1975) characterized the CNS in the

imaginary, and Kátai and Kovács (1980) in the real quadratic

number fields. Their results is

Theorem 5. Let γ be a zero of the irreducible polynomial X2 +

aX + b ∈ Z[X], and set K = Q(γ). Then (γ, {0,1, . . . , |b| − 1}) is a

CNS in ZK if and only if 1 ≤ a ≤ b, and b ≥ 2.

The roots of the polynomials Qm(X) = X2+X+m and Pm(X) =

X2 +mX +m2 −m+ 1 generate CNS in which 1−m as well as

m3 − 2m2 + 2m are repunits of length 3 and 4 respectively.

If 1 ≤ a ≤ b, b ≥ 2 be fixed then, by Theorem 3, there

are only finitely many rational integer repunits in the CNS(
−a+
√
a2−4b

2 , {0,1, . . . , b− 1}
)

. We did not found any other CNS,

in which some rational integer is a repunit.



Conjecture 2. The only rational integer repunits in(
−1+

√
1−4m

2 , {0,1, . . . ,m− 1}
)

and (
−m+

√
−3m2+4m−4

2 , {0,1, . . . ,m2 −m}
)

are 1−m and m3 − 2m2 + 2m respectively.

Probably the following much stronger conjecture is still true.

Conjecture 3. Apart from the examples of Conjecture 2 there

are no CNS in quadratic number fields in which there are rational

integer repunits.



6. GNS with given digit set

Problem 3. Let D ⊂ Z be given. How many γ ∈ ZK exist such

that (γ,D) is a GNS in ZK?

For K = Q the answer is: at most two, g = ±|D|!
Same if K is imaginary quadratic, except when K = Q(i) and

K = Q
(
±1±

√
−3

2

)
.

Theorem 6 (Evertse, Győry, Pethő and Thuswaldner (2019)).

Let K be number field and 0 ∈ D ⊂ Z. Then there exist only

finitely many, effectively computable γ ∈ ZK such that (γ,D) is a

GNS.



Proof. Let γ ∈ ZK and D ⊂ Z be such that (γ,D) is a GNS.

The set D has to be a complete residue system of ZK modulo γ,

which is only possible if |N(γ)| = |D|. If there is no such γ then

we are done. If K = Q or an imaginary quadratic number field

then there are only finitely many γ with |N(γ)| = |D| and our

assertion holds again.



We now assume that there are infinitely many γ ∈ ZK such that

|N(γ)| = |D|. If (γ,D) is a GNS then there exist for all α ∈ ZK an

integer L and di ∈ D, i = 0, . . . , L such that

α =
L∑
i=0

diγ
i,

hence ZK = Z[γ]. By a deep theorem of Győry (1978) there exist

only finitely many Z-equivalence classes of β ∈ ZK such that

ZK = Z[β]. Hence there is such a β and u ∈ Z with α = β+u. For

fixed β there are only finitely many effectively computable u ∈ Z
with |N(β + u)| = |D|, thus the assertion is proved.

In fact Evertse, et al (2019) proved the above theorem for num-

ber systems in general orders.



Thank you for your attention!

I wish everybody refreshing
summer holidays!


