S-adic Subshifts and Finite Topological Rank Minimal Systems

Samuel Petite
with S. Donoso, F. Durand, A. Maass

LAMFA UMR CNRS
Université de Picardie Jules Verne, France

February 1, 2021
Let X be a Cantor set and $T : X \to X$ an homeomorphism.
Let X be a Cantor set and $T : X \to X$ an homeomorphism.

The system (X, T) is said minimal if any T-invariant ($T(K) = K$) proper closed subset $K \subsetneq X$ is empty.
Let X be a Cantor set and $T : X \to X$ an homeomorphism.

The system (X, T) is said minimal if any T-invariant ($T(K) = K$) proper closed subset $K \subsetneq X$ is empty.

Theorem (Herman-Putnam-Skau (92))

Any minimal Cantor system (X, T) is conjugate to a properly ordered Bratteli-Vershik system.
Bratteli-Vershik system

- Local order of edges at each vertex (θ_n).

- Proper order: all the min/max edges of level n have the same extremity at level $n - 1$.
Bratteli-Vershik system

element = infinite path
Bratteli-Vershik system

element = infinite path
T maps path to the next one
(for the order)
Bratteli-Vershik system

- element = infinite path
- T maps path to the next one (for the order)
- adic representation
element = infinite path
T maps path to the next one
(for the order)
adic representation
Bratteli-Vershik system

- element = infinite path
- T maps path to the next one (for the order)
- adic representation
Bratteli-Vershik system

element = infinite path
T maps path to the next one
(for the order)
adic representation
Bratteli-Vershik system

element = infinite path
T maps path to the next one
(for the order)

A-dic representation
Finite Topological Rank Minimal Systems

Definition

A minimal Cantor system \((X, T)\) conjugate to a Bratteli-Vershik system with a uniformly bounded number of vertices per level is said of **finite (topological) rank**.

The **rank** of \((X, T)\) is the smallest bound on the number of vertices among all the BV-representations.
Definition

A minimal Cantor system \((X, T)\) conjugate to a Bratteli-Vershik system with a uniformly bounded number of vertices per level is said of finite (topological) rank.

The rank of \((X, T)\) is the smallest bound on the number of vertices among all the BV-representations.

Examples:

- odometer
- Sturmian subshift
- coding of minimal Interval Exchange Transformation
- substitutive subshift, linearly recurrent subshift,...
Rigidity properties

Minimal finite rank system:
Minimal finite rank system:

- are either equicontinuous either expansive (hence subshifts)

Downarowicz, Maass (08)
Rigidity properties

Minimal finite rank system:
- are either equicontinuous either expansive (hence subshifts)
 Downarowicz, Maass (08)
- have zero entropy (folklore)
Minimal finite rank system:
- are either equicontinuous either expansive (hence subshifts)
- have zero entropy (folklore)

The rank of the system bounds:
- the number of ergodic invariant probability measure
 see Bezugly, Kwiatkowski, Medynets, Solomyak (13)
- the rational rank of the dimension group
 Giordano, Putnam, Skau, Handelman, Hosseini
- the rational rank of the continuous spectrum of the system
 Bressaud, Durand, Maass
Q. : Provide a practical characterization of finite rank minimal systems.
Main results

A combinatorial characterization of expansive finite rank minimal systems
A combinatorial characterization of expansive finite rank minimal systems

Theorem (DDMP (20))

A minimal subshift \((X, T)\) has a finite rank if and only if the following limit is finite

\[
\lim_{n \to +\infty} \inf_{W \subseteq \bigcup_{k \geq n} \mathcal{L}_k(X)} |W|.
\]

\(\mathcal{L}_k(X)\): set of words of length \(k\) in \(X\)

Recognizability results Mossé (92), Karhumäki (02), Berthé-Steiner-Thuswaldner-Yassawi (19)
Consequences

Corollary

A minimal subshift \((X, T)\) with a non-superlinear complexity, i.e \(\liminf_{n \to \infty} p_X(n)/n < +\infty\), has a finite rank.

where \(p_X(n) = |\mathcal{L}_n(X)|\).
Corollary

A minimal subshift \((X, T)\) with a non-superlinear complexity, i.e \(\liminf_{n \to \infty} \frac{p_X(n)}{n} < +\infty\), has a finite rank.

where \(p_X(n) = |L_n(X)|\).

Converse is false.
Consequences

Corollary

A minimal subshift \((X, T)\) with a non-superlinear complexity, i.e.
\[
\liminf_{n \to \infty} \frac{p_X(n)}{n} < +\infty,
\]
has a finite rank.

where \(p_X(n) = |\mathcal{L}_n(X)|\).

Converse is false.

The proof use deconnectability properties of the Rauzy graphs.
See Ferenczi 96, Monteil.

Return words of special words form a recognizable family.
\(\mathcal{A}, \mathcal{B}\) finite alphabets, \(\tau: \mathcal{A}^* \rightarrow \mathcal{B}^*\) a non-erasing morphism,
\(\mathcal{Y} \subset \mathcal{A}^\mathbb{Z}\) be a subshift.
\(\mathcal{A}, \mathcal{B} \) finite alphabets, \(\tau : \mathcal{A}^* \rightarrow \mathcal{B}^* \) a non-erasing morphism, \(Y \subset \mathcal{A}^\mathbb{Z} \) be a subshift.

The morphism \(\tau : \mathcal{A}^* \rightarrow \mathcal{B}^* \) is recognizable in \(Y \), if

1. \(X \) denotes the subshift generated by \(\tau(Y) \);
2. for any \(x \in X \), there is a unique \((k, y) \in \mathbb{N} \times Y \), s.t. \(x = T^k \tau(y) \) and \(0 \leq k < |\tau(y_0)| \) (centered representation).
Definition of relative recognizability, similar [BSTY19]

Let \mathcal{A}, \mathcal{B} finite alphabets, $\tau : \mathcal{A}^* \to \mathcal{B}^*$ a non-erasing morphism, $Y \subset \mathcal{A}^\mathbb{Z}$ be a subshift. The morphism $\tau : \mathcal{A}^* \to \mathcal{B}^*$ is recognizable in Y, if

- X denotes the subshift generated by $\tau(Y)$;
- for any $x \in X$, there is a unique $(k, y) \in \mathbb{N} \times Y$, s.t.
 $$x = T^k \tau(y) \text{ and } 0 \leq k < |\tau(y_0)| \quad \text{(centered representation)}.$$

Ex: $\tau : a \mapsto 01; b \mapsto 0$, $Y = \text{Fibonacci subshift}$
\(\mathcal{A}, \mathcal{B} \) finite alphabets, \(\tau : \mathcal{A}^* \to \mathcal{B}^* \) a non-erasing morphism, \(Y \subset \mathcal{A}^\mathbb{Z} \) be a subshift.

The morphism \(\tau : \mathcal{A}^* \to \mathcal{B}^* \) is **recognizable in** \(Y \), if

- \(X \) denotes the subshift generated by \(\tau(Y) \);
- for any \(x \in X \), there is a unique \((k, y) \in \mathbb{N} \times Y\), s.t.
 \[x = T^k \tau(y) \text{ and } 0 \leq k < |\tau(y_0)| \] (centered representation).

Ex: \(\tau : a \mapsto 01; b \mapsto 0 \), \(Y = \text{Fibonacci subshift} \)

\[x = \cdots 0100.1010010100100100 \cdots \]
\(\mathcal{A}, \mathcal{B}\) finite alphabets, \(\tau: \mathcal{A}^* \rightarrow \mathcal{B}^*\) a non-erasing morphism, \(Y \subset \mathcal{A}^\mathbb{Z}\) be a subshift.

The morphism \(\tau: \mathcal{A}^* \rightarrow \mathcal{B}^*\) is \textbf{recognizable in} \(Y\), if

- \(X\) denotes the subshift generated by \(\tau(Y)\);
- for any \(x \in X\), there is a unique \((k, y) \in \mathbb{N} \times Y\), s.t.
 \[x = T^k \tau(y) \text{ and } 0 \leq k < |\tau(y_0)|\] \textit{(centered representation)}.

Ex: \(\tau: a \mapsto 01; b \mapsto 0\), \(Y = \text{Fibonacci subshift}\)

\[x = \cdots 0100.1010010100100\cdots\]

\[x = \cdots 01|0|0.1|01|0|01|01|0|01|0|0\cdots\]
Let \mathcal{A}, \mathcal{B} be finite alphabets, $\tau : \mathcal{A}^* \to \mathcal{B}^*$ a non-erasing morphism, $Y \subset \mathcal{A}^\mathbb{Z}$ be a subshift.

The morphism $\tau : \mathcal{A}^* \to \mathcal{B}^*$ is recognizable in Y, if

- X denotes the subshift generated by $\tau(Y)$;
- for any $x \in X$, there is a unique $(k, y) \in \mathbb{N} \times Y$, s.t. $x = T^k \tau(y)$ and $0 \leq k < |\tau(y_0)|$ (centered representation).

Ex: $\tau : a \mapsto 01; b \mapsto 0, \quad Y = \text{Fibonacci subshift}$

\[
x = \cdots 0100.1010010100100 \cdots
\]

\[
x = \cdots 01 | 0 | 0.1 | 01 | 0 | 01 | 01 | 0 | 01 | 0 | 0 \cdots
\]

- $\tau(a)$
- $\tau(b)$
- $\tau(a)$
- $\tau(b)$
- $\tau(a)$
- $\tau(b)$
- $\tau(a)$
- $\tau(b)$

Definition of relative recognizability, similar [BSTY19]
\(\mathcal{A}, \mathcal{B} \) finite alphabets, \(\tau : \mathcal{A}^* \rightarrow \mathcal{B}^* \) a non-erasing morphism, \(Y \subset \mathcal{A}^\mathbb{Z} \) be a subshift.

The morphism \(\tau : \mathcal{A}^* \rightarrow \mathcal{B}^* \) is **recognizable in** \(Y \), if

- \(X \) denotes the subshift generated by \(\tau(Y) \);
- for any \(x \in X \), there is a unique \((k, y) \in \mathbb{N} \times Y \), s.t.
 \[x = T^k \tau(y) \text{ and } 0 \leq k < |\tau(y_0)| \]
 (centered representation).

Ex: \(\tau : a \mapsto 01; b \mapsto 0 \), \(Y = \text{Fibonacci subshift} \)

\[x = \cdots 0100.1010010100100 \cdots \]

\[x = \cdots 01 \mid 0 \mid 0.1 \mid 01 \mid 0 \mid 01 \mid 01 \mid 0 \mid 01 \mid 0 \mid 0 \cdots \]

\[\tau(a) \mid \tau(b) \mid \tau(a) \mid \tau(b) \mid \tau(a) \mid \tau(b) \mid \tau(a) \mid \tau(b) \mid \tau(a) \mid \tau(b) \]

\[x = T\tau(\cdots ab.aabaababa \cdots) \]
Definition of relative recognizability, similar [BSTY19]

\(\mathcal{A}, \mathcal{B}\) finite alphabets, \(\tau : \mathcal{A}^* \rightarrow \mathcal{B}^*\) a non-erasing morphism,
\(Y \subset \mathcal{A}^\mathbb{Z}\) be a subshift.

The morphism \(\tau : \mathcal{A}^* \rightarrow \mathcal{B}^*\) is \textit{recognizable in} \(Y\), if

- \(X\) denotes the subshift generated by \(\tau(Y)\);
- for any \(x \in X\), there is a unique \((k, y) \in \mathbb{N} \times Y\), s.t.

 \[x = T^k \tau(y)\] and \(0 \leq k < |\tau(y_0)|\) \textit{ (centered representation)}.

[BSTY19]: When moreover \(X\) is an aperiodic subshift, there is a \(R > 0\) s.t. if \(y, y' \in Y\), \(0 \leq k < |\tau(y_0)|, 0 \leq k' < |\tau(y'_0)|\)

\[
T^k \tau(y)|_{(-R, R)} = T^{k'} \tau(y')|_{(-R, R)}
\]

then \(y_0 = y'_0\) and \(k = k'\).
A, B finite alphabets, \(\tau : A^* \to B^* \) a non-erasing morphism, \(Y \subset A^\mathbb{Z} \) be a subshift.

The morphism \(\tau : A^* \to B^* \) is recognizable in \(Y \), if
- \(X \) denotes the subshift generated by \(\tau(Y) \);
- for any \(x \in X \), there is a unique \((k, y) \in \mathbb{N} \times Y \), s.t.
 \[x = T^k \tau(y) \text{ and } 0 \leq k < |\tau(y_0)| \] (centered representation).

A finite set \(\mathcal{W} \subset B^* \) is recognizable in a subshift \(X \) if there are a morphism \(\tau : A^* \to B^* \) and a subshift \(Y \subset A^\mathbb{Z} \), s.t.
- \(\tau \) is recognizable in \(Y \);
- \(X \) is the subshift generated by \(\tau(Y) \);
- \(\tau(A) = \mathcal{W} \).
Main results

Theorem (DDMP (20))

A minimal subshift \((X, T)\) has a finite rank if and only if the following limit is finite

\[
\lim_{n \to +\infty} \inf_{W \subset \bigcup_{k \geq n} \mathcal{L}_k(X)} |W|.
\]

\(\mathcal{L}_k(X)\): set of words of length \(k\) in \(X\)

\(W\) is recognizable in \(X\).
Relations with S-adic subshifts

\(\mathcal{A}, \mathcal{B} \) finite alphabets.
A positive morphism \(\tau: \mathcal{A}^* \rightarrow \mathcal{B}^* \) is a morphism such that any letters \(a \in \mathcal{A}, b \in \mathcal{B}, b \) appears in \(\tau(a) \).
\mathcal{A}, \mathcal{B} finite alphabets.

A positive morphism $\tau: \mathcal{A}^* \rightarrow \mathcal{B}^*$ is a morphism such that any letters $a \in \mathcal{A}$, $b \in \mathcal{B}$, b appears in $\tau(a)$.

A primitive S-adic subshift is the orbit closure for the shift action of points of the form

$$\lim_{n \rightarrow +\infty} \tau_0 \circ \cdots \circ \tau_n(a_n^\infty),$$

for a fixed sequence of morphisms $(\tau_n: \mathcal{A}_{n+1}^* \rightarrow \mathcal{A}_n^*)_n$, s.t.

$$\forall n \in \mathbb{N}, \exists N > n, \quad \tau_n \circ \tau_{n+1} \circ \cdots \circ \tau_N \text{ is positive}.$$
Relations with S-adic subshifts

\[\mathcal{A}, \mathcal{B} \] finite alphabets.

A positive morphism \(\tau : \mathcal{A}^* \to \mathcal{B}^* \) is a morphism such that any letters \(a \in \mathcal{A}, b \in \mathcal{B}, b \) appears in \(\tau(a) \).

A primitive S-adic subshift is the orbit closure for the shift action of points of the form

\[
\lim_{n \to +\infty} \tau_0 \circ \cdots \circ \tau_n(a_n^\infty),
\]

for a fixed sequence of morphisms \((\tau_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n \), s.t.

\[
\forall n \in \mathbb{N}, \exists N > n, \quad \tau_n \circ \tau_{n+1} \circ \cdots \circ \tau_N \text{ is positive.}
\]

Theorem (Espinoza, Golestani-Hosseini 20)

Let \((X, T)\) be a minimal aperiodic subshift. The system \((X, T)\) is of finite rank \(\iff\) it is conjugate to a primitive S-adic subshift with \(\lim \inf_n |A_n| < +\infty\).
Relations with S-adic subshifts

Theorem (Espinoza, Golestani-Hosseini 20)

Let \((X, T)\) be a minimal aperiodic subshift. The system \((X, T)\) is of finite rank \(\iff\) it is conjugate to a primitive S-adic subshift with \(\lim \inf_n |A_n| < +\infty\).

Durand-Leroy 12
- Local order of edges at each vertex \((\theta_n)\).

\[\tau_1 : a \mapsto cba \quad \tau_2 : a \mapsto abc\]
\[b \mapsto cbca \quad b \mapsto abc\]
\[c \mapsto cba \quad c \mapsto abbc\]

BV conjugate to the S-adic system given by \((\tau_n)_{n \geq 1}\)
Theorem (Espinoza, Golestani-Hosseini 20)

Let \((X, T)\) be a minimal aperiodic subshift. The system \((X, T)\) is of finite rank \(\iff\) it is conjugate to a primitive \(S\)-adic subshift with \(\lim \inf_n |A_n| < +\infty\).

Durand-Leroy 12 \(\Rightarrow\)

[BSTY19] similar result in the measurable context + recognizability conditions.
Theorem (Espinoza, Golestani-Hosseini 20)

Let (X, T) be a minimal aperiodic subshift. The system (X, T) is of finite rank \iff it is conjugate to a primitive S-adic subshift with $\lim \inf_n |A_n| < +\infty$.

Durand-Leroy 12 \implies

[BSTY19] similar result in the measurable context $+$ recognizability conditions.

[DDMP20] \iff $+$ recognizability conditions.
Relations with S-adic subshifts

Theorem (Espinoza, Golestani-Hosseini 20)

Let \((X, T)\) be a minimal aperiodic subshift. The system \((X, T)\) is of finite rank \(\Leftrightarrow\) it is conjugate to a primitive S-adic subshift with \(\lim \inf_n |A_n| < +\infty\).

Durand-Leroy 12 \(\Rightarrow\)

[BSTY19] similar result in the measurable context + recognizability conditions.

[DDMP20] \(\Leftarrow\) + recognizability conditions.

Theorem (Espinoza, Golestani-Hosseini 20)

Let \((X, T)\) be a minimal Cantor system of finite rank. Then any minimal Cantor system \((Y, S)\) factor of \((X, T)\) is of finite rank.
More rigidity results

Proposition (DDMP 20)

A minimal Cantor system of rank 2 has only one asymptotic component.

An asymptotic component is a set of all the orbits containing asymptotics points (i.e. points $x \neq y$ s.t. $x(-\infty,0) = y(-\infty,0)$).

Ex: the Prouhet-Thue-Morse subshift is of rank at least 3.
More rigidity results

Proposition (DDMP 20)

A minimal Cantor system of rank 2 has only one asymptotic component.

An asymptotic component is a set of all the orbits containing asymptotics points (i.e. points \(x \neq y\) s.t. \(x_{(-\infty,0)} = y_{(-\infty,0)}\))

Corollary (DDMP 20)

A minimal Cantor system \((X, T)\) of rank 2 has a trivial automorphism group: \(\text{Aut}(X, T) = \langle T \rangle\).
More rigidity results

Proposition (DDMP 20)

A minimal Cantor system of rank 2 has only one asymptotic component.

An asymptotic component is a set of all the orbits containing asymptotics points (i.e. points $x \neq y$ s.t. $x(-\infty,0) = y(-\infty,0)$)

Espinoza Maass 20: A minimal Cantor subshift of finite rank has finitely many asymptotic component.

Corollary (DDMP 20)

A minimal Cantor system (X, T) of rank 2 has a trivial automorphism group: $\text{Aut}(X, T) = \langle T \rangle$.

More rigidity results

Proposition (DDMP 20)

A minimal Cantor system of rank 2 has only one asymptotic component.

An asymptotic component is a set of all the orbits containing asymptotics points (i.e. points $x \neq y$ s.t. $x(-\infty, 0) = y(-\infty, 0)$)

Espinoza Maass 20: A minimal Cantor subshift of finite rank has finitely many asymptotic component.

Corollary (DDMP 20)

A minimal Cantor system (X, T) of rank 2 has a trivial automorphism group: $\text{Aut}(X, T) = \langle T \rangle$.

Espinoza Maass 20: For a minimal Cantor subshift of finite rank $\text{Aut}(X, T)/\langle T \rangle$ is finite
Classical examples of finite rank system (I.E.T, Substitutive,...) have sublinear complexity : $p_x(n) \in O(n)$.
Classical examples of finite rank system (I.E.T, Substitutive,...) have sublinear complexity: $p_x(n) \in \mathcal{O}(n)$.

Any finite rank system has zero entropy.
Classical examples of finite rank system (I.E.T, Substitutive,...) have sublinear complexity: $p_x(n) \in O(n)$.

Any finite rank system has zero entropy.

Proposition (DDMP 20)

Any minimal Cantor system (X, T) of finite rank is strongly orbit equivalent to a subshift of sublinear complexity.
Classical examples of finite rank system (I.E.T, Substitutive,...) have sublinear complexity: $p_x(n) \in O(n)$.

Any finite rank system has zero entropy.

Proposition (DDMP 20)

Any minimal Cantor system (X, T) of finite rank is strongly orbit equivalent to a subshift of sublinear complexity

S-adic system has sublinear complexity with morphisms of the form $\tau: A \rightarrow \{b_1, \cdots, b_p\}^*$

$$\forall a \in A, \quad \tau(a) = b_1^{\ell_1(a)} \cdots b_p^{\ell_p(a)}$$

for some $\ell_1(a), \cdots, \ell_p(a) \in \mathbb{N}$.
Classical examples of finite rank system (I.E.T, Substitutive,...) have sublinear complexity: \(p_x(n) \in \mathcal{O}(n) \).

Any finite rank system has zero entropy.

Proposition (DDMP 20)

Let \((X, T) \) be a S-adic subshift generated by a positive directed sequence \((\tau_n : A_{n+1}^* \rightarrow A_n^*)_{n \geq 0} \). If \(\lim \inf_n |A_n| \leq 2 \), then the complexity of \(X \) is sub-quadratic along a subsequence, i.e.

\[
\liminf_{n \rightarrow +\infty} \frac{p_X(n)}{n^2} = 0.
\]
Relation with the complexity

- Classical examples of finite rank system (I.E.T, Substitutive,...) have sublinear complexity: $p_X(n) \in O(n)$.
- Any finite rank system has zero entropy.

Proposition (DDMP 20)

Let (X, T) be a S-adic subshift generated by a positive directed sequence $(\tau_n : A_{n+1}^* \to A_n^*)_{n \geq 0}$. If $\lim \inf_n |A_n| \leq 2$, then the complexity of X is sub-quadratic along a subsequence, i.e.

$$\liminf_{n \to +\infty} \frac{p_X(n)}{n^2} = 0.$$

For any subexponential function $\varphi : \mathbb{N} \to \mathbb{R}$ (i.e $\limsup_n \varphi(n)/\alpha^n = 0, \forall \alpha > 1$), there exists S-adic subshift (X, T) on 2-letters alphabet s.t.

$$\limsup_n \frac{p_X(n)}{\varphi(n)} > 0.$$
Open questions

Is the topological rank computable (for effective S-adic)?
Open questions

Is the topological rank computable (for effective S-adic)?

Question

For a finite rank S-adic, does there exists \(d = d(\text{rank}) \) s.t.

\[
\lim_{n \to +\infty} \inf p_X(n)/n^d = 0?
\]
Open questions

Is the topological rank computable (for effective S-adic)?

Question

For a finite rank S-adic, does there exist $d = d(\text{rank})$ s.t.

$$\liminf_{n \to +\infty} \frac{p_X(n)}{n^d} = 0?$$

Question

Let (X, T) be a Toeplitz subshift. Is it true that (X, S) has a finite topological rank \iff the complexity of X is non-superlinear?
Open questions

Is the topological rank computable (for effective S-adic)?

Question

For a finite rank S-adic, does there exists \(d = d(\text{rank}) \) s.t.

\[
\lim_{n \to +\infty} \inf \frac{p_X(n)}{n^d} = 0?
\]

Question

Let \((X, T)\) be a Toeplitz subshift. Is it true that \((X, S)\) has a finite topological rank \(\iff\) the complexity of \(X\) is non-superlinear?

Question

Let \((X, T)\) be a finite rank subshift. Can \((X, T)\) be mixing for an invariant measure \(\mu\)?