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Let X be a Cantor set and T : X → X an homeomorphism.

The system (X ,T ) is said minimal if any T -invariant (T (K ) = K )
proper closed subset K  X is empty.

Theorem (Herman-Putnam-Skau (92))

Any minimal Cantor system (X ,T ) is conjugate to a properly
ordered Bratteli-Vershik system.



Bratteli-Vershik system

•

• • •

•
3 2 1

•
2 3 14

•
13 2

•
1 2 3

•
2 31

•
413 2

...
...

...

- Local order of edges at each vertex (θn).

- Proper order: all the min/max edges

of level n have the same

extremity at level n − 1
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Bratteli-Vershik system

•

• • •

• • •

• • •
...

...
...

element = infinite path
T maps path to the next one

(for the order)

A-dic representation
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Finite Topological Rank Minimal Systems

Definition

A minimal Cantor system (X ,T ) conjugate to a Bratteli-Vershik
system with a uniformly bounded number of vertices per level is
said of finite (topological) rank.

The rank of (X ,T ) is the smallest bound on the number of
vertices among all the BV-representations.

Examples:

odometer

Sturmian subshift

coding of minimal Interval Exchange Transformation

substitutive subshift, linearly recurrent subshift,...
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Rigidity properties

Minimal finite rank system:

are either equicontinuous either expansive (hence subshifts)
Downarowicz, Maass (08)

have zero entropy (folklore)

The rank of the system bounds:

the number of ergodic invariant probability measure
see Bezugly, Kwiatkowski, Medynets, Solomyak (13)

the rational rank of the dimension group
Giordano,Putnam, Skau, Handelman, Hosseini

the rational rank of the continuous spectrum of the system
Bressaud, Durand, Maass



Main results

Q. : Provide a practical characterization of finite rank minimal
systems.
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Main results

A combinatorial characterization of expansive finite rank minimal
systems

Theorem (DDMP (20))

A minimal subshift (X ,T ) has a finite rank if and only if the
following limit is finite

lim
n→+∞

inf
W⊂∪k≥nLk(X )

W is recognizable in X

|W|.

Lk(X ): set of words of length k in X
Recognizability results Mossé (92), Karhumäki (02),
Berthé-Steiner-Thuswaldner-Yassawi (19)
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Consequences

Corollary

A minimal subshift (X ,T ) with a non-superlinear complexity, i.e
lim infn→∞ pX (n)/n < +∞, has a finite rank.

where pX (n) = |Ln(X )|.
Converse is false.

The proof use deconnectability properties of the Rauzy graphs.
See Ferenczi 96, Monteil.

Return words of special words form a recognizable family.
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A, B finite alphabets, τ : A∗ → B∗ a non-erasing morphism,
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Definition of relative recognizability, similar [BSTY19]

A, B finite alphabets, τ : A∗ → B∗ a non-erasing morphism,
Y ⊂ AZ be a subshift.
The morphism τ : A∗ → B∗ is recognizable in Y , if

X denotes the subshift generated by τ(Y );

for any x ∈ X , there is a unique (k , y) ∈ N× Y , s.t.
x = T kτ(y) and 0 ≤ k < |τ(y0)| (centered representation).

Ex: τ : a 7→ 01; b 7→ 0, Y = Fibonacci subshift

x = · · · 0100.1010010100100 · · ·

x = · · · 01
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τ(a)

| 0
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τ(b)

| 0.1
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| 01
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τ(a)

| 0
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|0 · · ·



Definition of relative recognizability, similar [BSTY19]

A, B finite alphabets, τ : A∗ → B∗ a non-erasing morphism,
Y ⊂ AZ be a subshift.
The morphism τ : A∗ → B∗ is recognizable in Y , if

X denotes the subshift generated by τ(Y );

for any x ∈ X , there is a unique (k , y) ∈ N× Y , s.t.
x = T kτ(y) and 0 ≤ k < |τ(y0)| (centered representation).

Ex: τ : a 7→ 01; b 7→ 0, Y = Fibonacci subshift

x = · · · 0100.1010010100100 · · ·

x = · · · 01
︸︷︷︸

τ(a)

| 0
︸︷︷︸

τ(b)

| 0.1
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τ(a)

| 01
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τ(a)

| 0
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τ(b)

| 01
︸︷︷︸

τ(a)

| 01
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τ(a)
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τ(b)

| 01
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τ(a)

| 0
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|0 · · ·

x = T τ(· · · ab.aabaababa · · · )



Definition of relative recognizability, similar [BSTY19]

A, B finite alphabets, τ : A∗ → B∗ a non-erasing morphism,
Y ⊂ AZ be a subshift.
The morphism τ : A∗ → B∗ is recognizable in Y , if

X denotes the subshift generated by τ(Y );

for any x ∈ X , there is a unique (k , y) ∈ N× Y , s.t.
x = T kτ(y) and 0 ≤ k < |τ(y0)| (centered representation).

[BSTY19]: When moreover X is an aperiodic subshift, there is a
R > 0 s.t. if y , y ′ ∈ Y , 0 ≤ k < |τ(y0)|, 0 ≤ k ′ < |τ(y ′0)|

T kτ(y)|(−R,R) = T k′τ(y ′)|(−R,R)

then y0 = y ′0 and k = k ′.



Definition of relative recognizability, similar [BSTY19]

A, B finite alphabets, τ : A∗ → B∗ a non-erasing morphism,
Y ⊂ AZ be a subshift.
The morphism τ : A∗ → B∗ is recognizable in Y , if

X denotes the subshift generated by τ(Y );

for any x ∈ X , there is a unique (k , y) ∈ N× Y , s.t.
x = T kτ(y) and 0 ≤ k < |τ(y0)| (centered representation).

A finite set W ⊂ B∗ is recognizable in a subshift X if there are a
morphism τ : A∗ → B∗ and a subshift Y ⊂ AZ, s.t.

τ is recognizable in Y ;

X is the subshift generated by τ(Y );

τ(A) = W.



Main results

Theorem (DDMP (20))

A minimal subshift (X ,T ) has a finite rank if and only if the
following limit is finite

lim
n→+∞

inf
W⊂∪k≥nLk(X )

W is recognizable in X

|W|.

Lk(X ): set of words of length k in X

Samuel Petite
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Relations with S-adic subshifts

Theorem (Espinoza, Golestani-Hosseini 20)

Let (X ,T ) be a minimal aperiodic subshift.
The system (X ,T ) is of finite rank ⇔ it is conjugate to a primitive
S-adic subshift with lim infn |An| < +∞.

Durand-Leroy 12 ⇒



⇒ Strategy of proof

•

• • •a b c

•a
3 2 1

•b
2 3 14

•c
13 2

•a
1 2 3

•b
2 31

•c
413 2

...
...

...

- Local order of edges at each vertex (θn).

τ1 : a 7→ cba τ2 : a 7→ abc

b 7→ cbca b 7→ abc

c 7→ cba c 7→ abbc

BV conjugate to the S-adic system

given by (τn)n≥1
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Relations with S-adic subshifts

Theorem (Espinoza, Golestani-Hosseini 20)

Let (X ,T ) be a minimal aperiodic subshift.
The system (X ,T ) is of finite rank ⇔ it is conjugate to a primitive
S-adic subshift with lim infn |An| < +∞.

Durand-Leroy 12 ⇒
[BSTY19] similar result in the measurable context +
recognizability conditions.
[DDMP20] ⇐ + recognizability conditions.

Theorem (Espinoza, Golestani-Hosseini 20)

Let (X ,T ) be a minimal Cantor system of finite rank. Then any
minimal Cantor system (Y ,S) factor of (X ,T ) is of finite rank.



More rigidity results

Proposition (DDMP 20)

A minimal Cantor system of rank 2 has only one asymptotic
component.

An asymptotic component is a set of all the orbits containing
asymptotics points (i.e. points x 6= y s.t. x(−∞,0) = y(−∞,0))

Ex: the Prouhet-Thue-Morse subshift is of rank at least 3.
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More rigidity results

Proposition (DDMP 20)

A minimal Cantor system of rank 2 has only one asymptotic
component.

An asymptotic component is a set of all the orbits containing
asymptotics points (i.e. points x 6= y s.t. x(−∞,0) = y(−∞,0))

Espinoza Maass 20: A minimal Cantor subshift of finite rank has
finitely many asymptotic component.

Corollary (DDMP 20)

A minimal Cantor system (X ,T ) of rank 2 has a trivial
automorphism group: Aut(X ,T ) = 〈T 〉.

Espinoza Maass 20: For a minimal Cantor subshift of finite rank
Aut(X ,T )/〈T 〉 is finite
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Relation with the complexity

Classical examples of finite rank system (I.E.T,
Substitutive,...) have sublinear complexity : px(n) ∈ O(n).

Any finite rank system has zero entropy.

Proposition (DDMP 20)

Any minimal Cantor system (X ,T ) of finite rank is strongly orbit
equivalent to a subshift of sublinear complexity

S-adic system has sublinear complexity with morphisms of the form
τ : A → {b1, · · · , bp}

∗

∀a ∈ A, τ(a) = b
ℓ1(a)
1 · · · b

ℓp(a)
p

for some ℓ1(a), · · · , ℓp(a) ∈ N.



Relation with the complexity

Classical examples of finite rank system (I.E.T,
Substitutive,...) have sublinear complexity : px(n) ∈ O(n).

Any finite rank system has zero entropy.

Proposition (DDMP 20)

Let (X ,T ) be a S-adic subshift generated by a positive directed
sequence (τn : A

∗
n+1 → A∗

n)n≥0. If lim infn |An| ≤ 2, then the
complexity of X is sub-quadratic along a subsequence, i.e.
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Relation with the complexity

Classical examples of finite rank system (I.E.T,
Substitutive,...) have sublinear complexity : px(n) ∈ O(n).

Any finite rank system has zero entropy.

Proposition (DDMP 20)

Let (X ,T ) be a S-adic subshift generated by a positive directed
sequence (τn : A

∗
n+1 → A∗

n)n≥0. If lim infn |An| ≤ 2, then the
complexity of X is sub-quadratic along a subsequence, i.e.

lim inf
n→+∞

pX (n)/n
2 = 0.

For any subexponential function ϕ : N→ R (i.e
lim supn ϕ(n)/α

n = 0,∀α > 1), there exists S-adic subshift (X ,T )
on 2-letters alphabet s.t.

lim sup
n

pX (n)/ϕ(n) > 0.
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Open questions

Is the topological rank computable (for effective S-adic)?

Question

For a finite rank S-adic, does there exists d = d(rank) s.t.

lim inf
n→+∞

pX (n)/n
d = 0?

Question

Let (X ,T ) be a Toeplitz subshift. Is it true that (X ,S) has a finite
topological rank ⇔ the complexity of X is non-superlinear?

Question

Let (X ,T ) be a finite rank subshift. Can (X ,T ) be mixing for an
invariant measure µ ?


