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Overview
(I) The setting:

We associate to a Cantor set X ⊂ R a
complex function.

The poles of this function in C (when
they exist) are the complex dimensions.

(II) Iterated function schemes:

An extension exists when the Cantor set
is an attractor for a C 2 IFS (using
“thermodynamic formalism” ideas).

Interpret poles of the complex function
as complex dimensions of X .

(III) Location of poles

Plot interesting pictures for specific
examples (related to continued fraction):
P. Vytnova, J. Slipantschuk, Angxiu Ni.
Figures in these slides are all due to
Polina Vytnova.
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Starting at the beginning (a very good place to start)

(I) The setting

Mark Pollicott (Warwick University) Complex dimensions and fractal strings September, 2023 3 / 32



4/32

Cantor sets and their gaps

Consider a Cantor set K ⊂ R in the real line.

K

`2 `3`1a b

We denote a = inf(K ) and b = sup(K ).

Definition

Let L = {`j}j≥1 be the lengths of the countable family of maximal bounded
intervals in the compliment of the Cantor set: [a, b] \ K .

We assume an ordering of the lengths of the intervals such that

`1 ≥ `2 ≥ `3 ≥ · · · ≥ `n ≥ · · ·
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A complex function

Definition

We formally define a zeta function ζL(s) to be the function of a single complex
variable formally given by the Dirichlet series

ζL(s) =
∞∑
j=1

`sj for s ∈ C.

The series ζL(s) converges for Re(s) > 1.
This is because then

|ζL(s)| =

∣∣∣∣∣∣
∞∑
j=1

`sj

∣∣∣∣∣∣ ≤
∞∑
j=1

`j ≤ (b − a).

1
0

ζL(s) converges to
an analytic function
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The simplest simple example

Example (Middle third Cantor set)

An easy example is the middle third Cantor set where

L =

{
1

3
,

1

9
,

1

9
,

1

27
,

1

27
,

1

27
,

1

27
,

1

81
, · · ·

}
and provided Re(s) > log 2

log 3 :

ζL(s) =
∞∑
j=1

`sj =
∞∑
n=1

2n−1

3sn

=
1

3s

∞∑
n=1

2n−1

3s(n−1) =
1

3s(1− 2
3s )

=
1

3s − 2
.

Futhermore, Re(s) > D := log 2
log 3 is the largest half plane on which ζL(s) is analytic.
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More generally ...
Given any Cantor set K with interval lengths L = {`j} and a zeta function

ζL(s) =
∞∑
j=1

`sj :

The abscissa of convergence of ζL is denoted

D = inf{σ > 0 : ζL(σ) < +∞}.

Then ζL converges to an analytic function on Re(s) > D.

Example (Middle third Cantor set)

When the Cantor set is the middle third Cantor set: D = log 2
log 3 .

In fact, D = dimB(X ) can be interpreted as the (upper) box dimension of K
(by work of Lapidus).

We can generalize this single example in a simple way.
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Dynamical Cantor sets: iterated function schemes

(II) Iterated function schemes
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The simplest case: Affine Cantor sets
Let 0 < α, β < 1 with α + β < 1 and consider the affine maps T1 : [0, 1]→ [0, 1]
and T2 : [0, 1]→ [0, 1] defined by

T1(x) = αx and T2(x) = βx + (1− β).

1

1− β
T2([0, 1])

T2

0 1

0

α

T1([0, 1])

T1

Definition

The associated Cantor set K (i.e., the limit set or attractor, after Hutchinson) is
the unique non-empty compact set such that K = T1(K ) ∪ T2(K ).

For example, with α = β = 1
3 one recovers the middle third Cantor set.
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Lapidus and ζL(s) poles for affine Cantor sets

Lapidus wrote several books on this topic in which he described L and ζL for
affine Cantor sets and studied the meromorphic extension of ζL(s) past the line
Re(s) = D. The location of the poles in the meromorphic extension he called
complex dimensions. We can consider a couple of affine examples...
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Two affine examples: Poles for ζL(s)
Lapidus and Frankenhuysen plotted the following.

Figure: (a) Poles when α = β = 1
3
(Middle third Cantor set ); and (b) Poles when α = 1

3

and β = 1
2
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Location of poles of ζL(s) in the case of affine contractions

Theorem (Lapidus)

(a) For K given by affine contractions

T1(x) = αx and T2(x) = βx + (1− β)

the function ζL(s) has a meromorphic extension to C.
(b) Moreover, the poles s for ζL(s) are given by the solutions to

αs + βs = 1.

Properties of the poles. As a corollary, there are two cases:

If logα
log β ∈ Q then the poles for ζL(s) are periodic in the imaginary direction.

If logα
log β ∈ R \Q then there are poles for ζL(s) in Re(s) < D that accumulate

on the line Re(s) = D (i.e., poles sn = σn + itn with σn ↗ D as n→ +∞).

These two cases correspond to the two pictures on the previous slide.
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Example: D = dimB(K ) as a complex dimension

The first “complex dimension” is the box counting dimension D = dimB(K ).

Theorem (Moran’s Theorem)

The value D = dimB(K ) is a solution to

αD + βD = 1.

In childhood Pat Moran suffered an attack of appendicitis late
one night after going out with his parents for a meal. He
was operated on too soon after the meal. He vomited on the
operating table and the surgeon had to do a tracheotomy to
let him breathe, cutting his vocal cords in the process. This
gave him a husky voice for the rest of his life.

During World War II, Moran worked on rockets but also wrote papers on fractal
dimensions. After the war his attempt to complete a PhD at Cambridge was
unsuccessful.
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A nice summary of complex dimensions in the affine case

The book Fractal Geometry has a nice account of the results of Lapidus et al for
complex dimensions for affine Cantor sets. (I used this in my undergraduate
course on Fractal Geometry this Spring)

How can we try to generalize these results?
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More generally: C 2 Iterated function schemes

Let T1,T2 : [0, 1]→ [0, 1] be C 2 maps such that

1 supx |T ′1(x)| < 1 and supx |T ′2(x)| < 1 (Contractions);

2 T1([0, 1]) ∩ T2([0, 1]) = ∅ (Disjoint images : strong separation condition).

Definition

The associated Cantor set K (i.e., the limit set or attractor, after Hutchinson) is
the unique non-empty compact set such that K = T1(K ) ∪ T2(K ).

We can recover by taking affine contractions the affine Cantor set.

Example (Recall for affine contractions)

Let 0 < α, β < 1 with α + β < 1 and

T1(x) = αx and T2(x) = βx + (1− β).

These are eaily seen to satisfy (1) and (2) above.
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A non-affine exmple
Recall the Gauss map G : [0, 1]→ [0, 1] by

G (x) =

{
1
x if 0 < x < 1

0 if x = 0

The inverse branches (more or less) are the maps T : [0, 1]→ [0, 1] given by

T (x) =
1

x + n
, for n ∈ N.

Example

Two inverse branches for the Gauss map:
Fix n,m ∈ N (n 6= m) then we can define T1,T2 : [0, 1]→ [0, 1] by

T1(x) =
1

x + n
and T2(x) =

1

x + m
.

The associated attractor K (= T1(K ) ∪ T2(K )) is an affine Cantor set.
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Complex dimensions in the general case
What happens if we have a Cantor set associated to general C 2 contractions? Can
we still extend ζL(s) (and interpret the poles as complex dimensions)?

Theorem

Let K be the Cantor set associated to a C 2 iterated function scheme. Then the
associated zeta function ζL(s) has a meromorphic extension from Re(s) > D to
the larger half-plane Re(s) > 0.

D0

ζL(s) converges to
an analytic function

ζL(s) has a
meromorphic

extension

The dynamical content is in the method: Writing ζL(s) in terms of complex
transfer operators (weighted using s) and an old result of T. Morita.
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A little “thermodynamical formalism”: Transfer Operators

Consider the Banach space of Lipschitz functions

CLip([0, 1]) = {f : [0, 1]→ R : ‖f ‖Lip < +∞}

with norm ‖f ‖ = ‖f ‖Lip + ‖f ‖∞ where

‖f ‖Lip = sup
x 6=y

|f (x)− f (y)|
|x − y |

and ‖f ‖∞ = sup
x
|f (x)|.

Definition
We define the family of linear transfer operators

Ls : CLip([0, 1])→ CLip([0, 1]) (Re(s) > 0)

by
Ls f (x) = |T ′1(x)|s f (T1x) + |T ′2(x)|s f (T2x).

Mark Pollicott (Warwick University) Complex dimensions and fractal strings September, 2023 18 / 32



19/32

Spectrum of the transfer operators

Lemma (after Morita)

∃ 0 < θ < 1, ∀Re(s) > 0 spectrum of

Ls : CLip([0, 1])→ CLip([0, 1])

has isolated eigenvalues in |z | > θ.

θ

We can then write ζL(s) in terms of the resolvent (I − Ls)−1.
In particular,

1 ζL(s) has a meromorphic extension to Re(s) > 0; and

2 s in this domain is a pole for ζL(s) if and only if 1 is an eigenvalue for Ls .

So given the meromorphic extension of ζL(s) ... what do the poles look like?
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Some empirical results

(III) Location of poles
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Continued fraction contractions

We want to consider some empirical results so we want to consider the (next)
simplest setting.

Given distinct n,m ∈ N we can consider Cantor sets K associated to contractions

T1(x) =
1

n + x
and T2(x) =

1

m + x
,

i.e., K is the non-empty compact set such that T1(K ) ∪ T2(K ) = K .

In particular, K ⊂ [0, 1] is merely points whose infinite continued fraction
expansion contains just m’s and n’s.

As before we can associate the lengths L = {`j}∞j=0 of the gaps in the Cantor
set and the zeta function

ζL(s) =
∞∑
j=0

`sj

We can now consider some examples.
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Poles of ζL(s)

Values of (n,m): (i) (4, 7); (ii) (4, 11); (iii) (4, 5); (iv) (2, 7); (v) (3, 6); (vi) (5, 9).
Plots above are due to Polina Vytnova.

skip to end
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Practical plotting: connection to Ruelle-Selberg zeta
functions
In the present case the poles for ζL(s) are the same as that of a much better
understood complex function: The Ruelle-Selberg zeta function Z (s).

For each word i = (i1, · · · , ik) ∈ {1, 2}k we can consider fixed points
Ti1 ◦ · · · ◦ Tik (xi ) = xi . We denote |i | = k .

The Ruelle-Selberg zeta function takes the form

Z (s) = exp

 ∞∑
k=1

1

k

∑
|i|=k

|xi |2s

1− x2i

 .

In particular,

The poles for Z (s) correspond to the poles for ζL(s).

The poles for Z (s) are easier to estimate than the poles for ζL(s).

Therefore we plot the poles of Z (s) and just claim they are the complex
dimensions, i.e., poles of ζL(s)

skip to end
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A special property of ζL(s) for continued fractions

Despite the diversity of plots there is at least one common feature.

In contract to the affine case, for the inverse branches of continued fractions the
function ζL(s) cannot have complex poles too close to the line Re(s) = D.

Theorem
There exists δ > 0 such that the
poles sn = σn + itn satisfy

sup{σn : sn 6= D} ≤ D − δ.

D

δ

0

ζL(s) analytic

ζL(s) meromorphic

Again the dynamics enters in the proofs: This follows from an application of a
result of Naud, which in turn depends on the method of Dolgopyat. This uses that
poles correspond to the complex transfer operator Ls having 1 as an eigenvalue.

extra material
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The end

Thanks for your attention.
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Additional material

Retrospective motivation:
Borthwick values for closed geodesics
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Retrospective motivation Borthwick values

There is another context in which dynam-
ically defined complex function have inter-
esting patterns.

Let M be an infinite area surface of con-
stant curvature −1 (e.g., “pair of pants”).

Consider the Ruelle-Selberg zeta function
for the periods {`n} of orbits for the
geodesic flow defined by

Z (s) =
∞∏
l=0

∏
n

(
1− e−(s+l)`n

)−1
, for s ∈ C

In this case, the poles have very interest-
ing empirical patterns:
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Poles for slightly different surfaces
By slightly changing the lengths of the three (dotted red geodesics) which
determine the surface, the poles chanage significantly.

Plots due to Bandtlow, Pohl, Schick and Weisse. skip to end
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The only case of Bothwick values we understand ... sort of

We can consider a surface of negative cur-
vature whereby the three red (defining)
geodesics have equal length and are rela-
tively long.

We can consider a surface of negative curvature
whereby the three red (defining) geodesics have
equal length and are relatively long. The poles
of Z(s) seem to be close to well defined curves.
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Formulae
As the red curves get longer we can normalize the
horizontal and vertical scales and then the poles
asymptotically lie on one of four curves

{σ(t) + it : t ∈ R}

where σ(t) is one of the following:

σ(t) =
1

2
log |2− 2 cos(t)|

σ(t) =
1

2
log |2 + 2 cos(t)|

σ(t) = log

∣∣∣∣1− 1

2
e2it − 1

2
e it
√

4− 3e2it
∣∣∣∣

σ(t) = log

∣∣∣∣1− 1

2
e2it +

1

2
e it
√

4− 3e2it
∣∣∣∣

skip to end

Mark Pollicott (Warwick University) Complex dimensions and fractal strings September, 2023 31 / 32



32/32

Back to the complex dimensions via the Modular surface
There is a slightly tenuous construction between geodesic flows and complex
dimensions.

Let φt : M → M be the geodesic flow on the Modular surface, with
M = PSL(2,R)/PSL(2,Z).

One can code the geodesics using continued fractions (after Hedlund).

We can associate to distinct n,m ∈ N the Cantor set K ⊂ [0, 1] whose
infinite continued fraction expansions contain only the digits n and m.

One can then associate a φ-invariant measure µ on M corresponding to the
Hausdorff measure on K . We can associate to functions F ,G ∈ C∞(M) the
orrelation function

ρ(t) =

∫
F ◦ φt .Gdµ−

∫
Fdµ

∫
Gdµ

and ask about the speed at which ρ(t)→ 0 as t → +∞.

This is controlled by the poles {sn} of the Laplace transform
ρ̂(s) =

∫∞
0

e−stρ(t)dt. These correspond to the complex dimensions {zn} by
zn = D + sn, for n ≥ 1.

skip to end
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