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I In this talk we give some examples of instances of the

Ostrowski numeration system appearing in the study of

combinatorics on words.

I Specifically we will look at repetitions in two families of

words: balanced words and rich words.



I Here are the basic concepts concerning repetitions.

I Let u be a finite word and write u = u0u1 · · ·un−1, where

the ui are letters.

I A positive integer p is a period of u if ui = ui+p for all i.

I Write |u| for the length of u: i.e., |u| = n.

I Let e = |u|/p and let z be the prefix of u of length p.

I We say that u has exponent e and write u = ze.

I e.g., 01011010 = (01011)8/5

I A square (resp. cube) is a repetition with exponent 2

(resp. 3)



The critical exponent of an infinite word w is

E(w) = sup{r ∈ Q : there is a finite, non-empty factor of w

with exponent r}.



For example, the word

w = 012021012102012021 · · ·

obtained by iterating the substitution

0→ 012, 1→ 02, 2→ 1

contains no squares, but has repetitions with exponents

arbitrarily close to 2, so E(w) = 2.



Dejean’s Theorem

Given an alphabet A of size k, the least critical exponent

among all infinite words over A is
7/4, k = 3

7/5, k = 4

k/(k − 1), k = 2 or k ≥ 5.

What happens if, instead of considering all infinite words, we

restrict ourselves to a specific family of infinite words?



I let u be a finite word

I the number of times the letter a appears in u is |u|a
I a word w (finite or infinite) over an alphabet A is

balanced if for every a ∈ A and every pair u, v of factors

of w with |u| = |v| we have

| |u|a − |v|a | ≤ 1.



I the word 0020010201 is not balanced since |00200|0 = 4

and |10201|0 = 2

I the word 01201210210 is balanced



I Balanced words are obtained from Sturmian words.

I Let α be an irrational real number between 0 and 1,

called the slope.

I Suppose α has continued fraction expansion

α = [d0, d1, d2, d3, . . .].



The characteristic Sturmian word with slope α is the infinite

word cα obtained as the limit of the sequence of standard

words sn defined by

s0 = 0, s1 = 0d1−11, sn = sdnn−1sn−2, n ≥ 2.



One characteristic Sturmian word is of particular significance.

Let φ = (1 +
√

5)/2. The Fibonacci word is the characteristic

Sturmian word

cθ = 010010100100101001010010010100 · · ·

with slope θ := 1/φ2 = [0, 2, 1 ]. We call the corresponding

standard words the finite Fibonacci words:

f0 = 0, f1 = 01, f2 = 010, . . . , fn = fn−1fn−2



I On a binary alphabet, the infinite aperiodic balanced

words are exactly the Sturmian words.

I Mignosi and Pirillo (1992) showed that E(cθ) = 2 + φ.

I More general results of Damanik and Lenz (2002) and

Justin and Pirillo (2001) show that this is minimal over

all Sturmian words.

I What about balanced words over larger alphabets?



I An infinite word y has the constant gap property if, for

each letter a, there is some number d such that the

distance between successive occurrences of a in y is

always d.

I This is stronger than being periodic.

I (0120)ω is periodic but is not a constant gap word

(contains both 00 and 0120)

I (0102)ω is a constant gap word



Theorem (Graham 1973; Hubert 2000)

A recurrent aperiodic word x is balanced if and only if x is

obtained from a Sturmian word u over {0, 1} by:

I replacing the positions containing 0’s in u by a periodic

sequence y with constant gaps over some alphabet A, and

I replacing the positions containing 1’s in u by a periodic

sequence y′ with constant gaps over some alphabet B,

disjoint from A.



e.g., take the Sturmian word

u = 0101001010010101001010010101001010010100 · · · ,

y = (01)ω and y′ = (2324)ω, then

x = 0213012041021302104120130214012031021401 · · ·

is balanced.



For each alphabet size k, we wanted to construct balanced

words xk with the least possible critical exponent. For each set

of parameters in the table, xk is constructed from cα, y, and

y′ as described above.

k α c.f. y y′

3
√

2− 1 [0, 2 ] (01)ω 2ω

4 1/φ2 [0, 2, 1 ] (01)ω (23)ω

5
√

2− 1 [0, 2 ] (0102)ω (34)ω

6 (78− 2
√

6)/101 [0, 1, 2, 1, 1, 1, 1, 1, 2 ] 0ω (123415321435)ω

7 (63−
√

10)/107 [0, 1, 1, 3, 1, 2, 1 ] (01)ω (234526432546)ω

8 (23 +
√

2)/31 [0, 1, 3, 1, 2 ] (01)ω (234526732546237526432576)ω

9 (23−
√

2)/31 [0, 1, 2, 3, 2 ] (01)ω (234567284365274863254768)ω

10 (109 +
√

13)/138 [0, 1, 4, 2, 3 ] (01)ω (234567284963254768294365274869)ω



I R., Shallit, and Vandomme (2019) showed that:

I E(x3) = 2 +
√
2
2 ≈ 2.7071

I E(x4) = 1 + φ
2 ≈ 1.8090.

I We also conjectured that for 5 ≤ k ≤ 10, E(xk) = k−2
k−3 .

I We showed that all of these values are minimal, except

for x4, which was done by Peltomäki.

I How does one prove that each word has the claimed

critical exponent?



I Here we introduce the Ostrowski α-numeration system.

I Suppose α has continued fraction expansion

α = [0, d1, d2, d3, . . .].

I Let pn/qn denote the convergents:

pn
qn

= [0, d1, d2, d3, . . . , dn],

where

p−2 = 0, p−1 = 1, pn = dnpn−1 + pn−2 for n ≥ 0;

q−2 = 1, q−1 = 0, qn = dnqn−1 + qn−2 for n ≥ 0.



Each non-negative integer N can be represented uniquely as

bjbj−1 · · · b0, where

N =
∑
0≤i≤j

biqi,

where the bi are digits satisfying:

1. 0 ≤ b0 < d1,

2. 0 ≤ bi ≤ di+1, for i ≥ 1, and

3. for i ≥ 1, if bi = di+1, then bi−1 = 0.

We call the word bjbj−1 · · · b0 the canonical Ostrowski

α-representation of N .



e.g., if α = 1/φ2 = [0; 2, 1], then the Ostrowski-α numeration

system is the classical Zeckendorf numeration system. That is,

it is the place-value numeration system where the places have

values given by the sequence of Fibonacci numbers:

1, 2, 3, 5, 8, . . . ,

and canonical representations do not have two consecutive 1’s.



e.g., if α =
√

2− 1 = [0; 2], then the Ostrowski-α numeration

system is the place-value numeration system where the places

have values given by the sequence of Pell numbers:

1, 2, 5, 12, 29, . . . ,

and in any canonical representation, 2’s are followed by 0′’s.



Defining the characteristic Sturmian word of slope α in terms

of the Ostrowski numeration system:

Theorem

Let N ≥ 1 be an integer with Ostrowski α-representation

bjbj−1 · · · b0. Then cα[N ] = 1 if and only if bjbj−1 · · · b0 ends

with an odd number of 0’s.



I If the continued fraction expansion of α is ultimately

periodic (i.e., if α is a quadratic irrational), a finite

automaton can easily check if its input is a canonical

Ostrowski-α representation.

I The property “ends with an odd number of 0’s” can also

easily be checked by a finite automaton.

I This means that cα is an Ostrowski-α-automatic

sequence.

I That is, there is a finite automaton with output that

outputs cα[N ] when given the Ostrowski-α representation

of N as input.



I If cα is an Ostrowski-α-automatic sequence, it is not hard

to show that any word obtained by replacing the 0’s and

1’s respectively by constant gap sequences y′ and y′ is

also Ostrowski-α automatic.

I The words xk defined above are Ostrowski-α automatic.

I Given a finite automaton generating an Ostrowski-α

automatic sequence, we can use the program Walnut to

prove combinatorial properties of the sequence.



I For k-automatic sequences (i.e., sequences generated by a

automaton that takes base-k representations as input),

Walnut works as follows.

I Given a k-automatic sequence and an expression in

first-order logic, where the variables generally represent

positions or lengths of factors in the automatic sequence,

Walnut will output a new automaton accepting the

base-k representations of the natural numbers that satisfy

the logical expression.



I Walnut can be extended to work with other numeration

systems.

I Important: the addition relation

{(x, y, z) ∈ N3 : x+ y = z} for the numeration system

must be recognizable by a finite automaton.

I Clearly this is true for base-k.

I It is also true for the Zeckendorf (Fibonacci) system.



I The word x4 from the table is Fibonacci-automatic.

I Recall, it is obtained by replacing the 0’s (resp. 1’s) in

the Fibonacci word with (01)ω (resp. (23)ω).
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Figure: Fibonacci-base automaton for x4



Let X denote the automaton for x4. Using Walnut, we

compute the periods p such that a repetition with exponent

≥ 5/3 and period p occurs in x4:

eval periods_of_high_powers "?msd_fib Ei (p>=1) &

(Aj (3*j <= 2*p) => X[i+j]=X[i+j+p])";

The output of this command is an automaton accepting

0∗1001000∗; i.e., representations of numbers of the form

Fn + Fn−3 = 2Fn−1.

reg pows msd_fib "0*1001000*";



Next we compute pairs (n, p) such that x4 has a factor of

length n+ p with period p, and furthermore that factor cannot

be extended to a longer factor of length n+ p+ 1 with the

same period.

def maximal_reps "?msd_fib Ei (Aj (j<n) =>

X[i+j]=X[i+j+p]) & (X[i+n]!=X[i+n+p])";



We now compute pairs (n, p) where p has to be of the form

0∗1001000∗ and n+ p is the longest length of any factor

having that period.

eval highest_powers "?msd_fib (p >= 1) &

$pows(p) & $maximal_reps(n,p) &

(Am $maximal_reps(m,p) => m <= n)";



The output of this last command is an automaton accepting

pairs (n, p) having the form(
0

0
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0

1
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When p = 2Fi−1 we see that n = Fi − 2.



I Maximal repetitions of exponent ≥ 5/3 in x4 have

exponent of the form 1 + (Fi − 2)/(2Fi−1).

I These exponents converge to 1 + φ/2 from below.

I We conclude that x4 has critical exponent 1 + φ/2.



I Recall: the above computations are only possible because

addition in the Fibonacci-base is recognizable by a finite

automaton.

I What about the other Ostrowski-α numeration systems

needed for the other xi?

I Hieronymi and Terry (2017) showed that addition is

indeed recognizable by a finite automaton when α is a

quadratic irrational.



I Aseem Baranwal (Master’s Thesis 2020) found a simpler

way to construct the adder for the Ostrowski numeration

with respect to a quadratic irrational α.

I He implemented this in Walnut.



I Baranwal and Shallit (2019) used the adder for the Pell

numeration system (Ostrowski-α with

α =
√

2− 1 = [0; 2]) to show that the critical exponent

of x5 is 3/2.

I Baranwal then extended this to show that for 6 ≤ k ≤ 8,

the word xk as defined in the table above has critical

exponent (k − 2)/(k − 3).

I The computations for k = 9, 10 ran out of memory on a

computer with 400 GB of RAM.



I Now we switch our attention from balanced words to rich

words.

I A palindrome is a word that is equal to its reversal, i.e., it

reads the same forwards and backwards.

I A word of length n contains at most n distinct nonempty

palindromes.

I Words of length n that contain n distinct nonempty

palindromes are called palindrome-rich, or simply rich (or

full).

I An infinite word is rich if all of its factors are rich.



I The length 9 word 011101011 is rich.

I It has 9 non-empty palindromes: 0, 1, 11, 111, 01110,

101, 010, 10101, 1101011.

I The length 9 word 011010011 is not rich:

I It only has 8 non-empty palindromes: 0, 1, 11, 0110, 101,

010, 00, 1001



I What is the least possible critical exponent among all

infinite rich words on a given alphabet?

I It is necessarily ≥ 2 (Pelantová and Starosta, 2013).

I We resolve this for the binary alphabet.

I Note that all Sturmian words are rich, but the words that

achieve the minimal critical exponent among rich words

are not Sturmian words.



Let Σk = {0, 1, . . . , k− 1}. Define f : Σ∗3 → Σ∗2 and

g, h : Σ∗3 → Σ∗3 by

f(0) = 0 f(1) = 01 f(2) = 011

g(0) = 011 g(1) = 0121 g(2) = 012121

h(0) = 01 h(1) = 02 h(2) = 022



I Baranwal and Shallit (2019) showed that f(hω(0)) is rich

and has critical exponent 2 +
√

2/2.

I They did so by showing that this word is Pell-automatic:

i.e., it is generated by an automaton that takes as input

representations of numbers in the Pell numeration system

(the Ostrowski-α numeration system corresponding to

α =
√

2− 1 = [0; 2]).



I Richness can be verified with Walnut.

I Use the following: A word w is rich if and only if every

prefix of w has a unioccurent palindromic suffix.

I The critical exponent computation is done as shown in

the previous example.

I Baranwal and Shallit conjectured that this critical

exponent of 2 +
√

2/2 was minimal over all infinite binary

rich words.



Theorem (Currie, Mol, R., 2019)

Let w ∈ Σω
2 be a 14/5-free rich word. For every n ≥ 1, a

suffix of w has the form f(hn(wn)) or f(g(hn(wn))) for some

word wn ∈ Σω
3 .



Theorem (Currie, Mol, R., 2019)

The least critical exponent over all infinite binary rich words is

2 +
√

2/2.



I Idea: By the previous theorem, a sequence with the least

critical exponent is one of f(hω(0)) or f(g(hω(0))).

I Both are rich and have critical exponent 2 +
√

2/2.

I Baranwal and Shallit, 2019 showed the first, using

Walnut;

I Currie, Mol., and R., 2020 showed the second, using

other techniques.

I The main idea for the latter was the observation of

Pelantová that these words are complementary symmetric

Rote words.
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The End


