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» In this talk we give some examples of instances of the
Ostrowski numeration system appearing in the study of
combinatorics on words.

» Specifically we will look at repetitions in two families of

words: balanced words and rich words.



» Here are the basic concepts concerning repetitions.

» Let u be a finite word and write u = ugu; - - - u,,—1, Where

vV v.v. v v Y

the u; are letters.

A positive integer p is a period of w if u; = u;4, for all 4.
Write |u| for the length of u: i.e., |u| = n.

Let e = |u|/p and let z be the prefix of u of length p.
We say that u has exponent e and write u = 2°.

e.g., 01011010 = (01011)¥/5

A square (resp. cube) is a repetition with exponent 2
(resp. 3)



The critical exponent of an infinite word w is

E(w) = sup{r € Q : there is a finite, non-empty factor of w

with exponent r}.



For example, the word
w = 012021012102012021 - - -
obtained by iterating the substitution
0 — 012, 1 — 02, 2—1

contains no squares, but has repetitions with exponents

arbitrarily close to 2, so F(w) = 2.



Dejean’s Theorem

Given an alphabet A of size k, the least critical exponent

among all infinite words over A is
7/4, k=3

7/5, k=4
k/(k—1), k=2o0rk>5.

What happens if, instead of considering all infinite words, we

restrict ourselves to a specific family of infinite words?



> let u be a finite word
» the number of times the letter a appears in u is |ul,

» a word w (finite or infinite) over an alphabet A is
balanced if for every a € A and every pair u, v of factors

of w with |u| = |v| we have

[ ula — Jvfa| < 1.



» the word 0020010201 is not balanced since |00200|y = 4
and [10201|p = 2

» the word 01201210210 is balanced



» Balanced words are obtained from Sturmian words.

» Let o be an irrational real number between 0 and 1,
called the slope.

» Suppose « has continued fraction expansion
a = [do, dl, dg, d3, .. ]



The characteristic Sturmian word with slope « is the infinite
word ¢, obtained as the limit of the sequence of standard

words s, defined by

S0 =0, s1= Odl’ll, Sy = si”_lsn,Q, n > 2.



One characteristic Sturmian word is of particular significance.
Let ¢ = (1 + +/5)/2. The Fibonacci word is the characteristic

Sturmian word
cp = 010010100100101001010010010100 - - -

with slope 6 := 1/¢? = [0,2,1]. We call the corresponding

standard words the finite Fibonacci words:

Jo=0, fi=01, fo,=010, ..., fo=foifu



On a binary alphabet, the infinite aperiodic balanced

words are exactly the Sturmian words.

» Mignosi and Pirillo (1992) showed that E(cg) = 2 + ¢.

» More general results of Damanik and Lenz (2002) and

Justin and Pirillo (2001) show that this is minimal over

all Sturmian words.

What about balanced words over larger alphabets?



» An infinite word y has the constant gap property if, for
each letter a, there is some number d such that the
distance between successive occurrences of a in y is

always d.
» This is stronger than being periodic.

» (0120)“ is periodic but is not a constant gap word
(contains both 00 and 0120)

» (0102)% is a constant gap word



Theorem (Graham 1973; Hubert 2000)

A recurrent aperiodic word x is balanced if and only if x is
obtained from a Sturmian word u over {0, 1} by:
» replacing the positions containing 0's in u by a periodic
sequence y with constant gaps over some alphabet A, and
» replacing the positions containing 1's in u by a periodic
sequence y' with constant gaps over some alphabet B,

disjoint from A.



e.g., take the Sturmian word

v = 0101001010010101001010010101001010010100 - - - |
y = (01)“ and y' = (2324)“, then

x = 0213012041021302104120130214012031021401 - - -

is balanced.



For each alphabet size k, we wanted to construct balanced
words x with the least possible critical exponent. For each set
of parameters in the table, x}, is constructed from c,, y, and

y' as described above.

koo« cf. y Y

3 V2-1 [0,2] (o1 2¢

4 1/¢° [0,2,T] (o1« (23)

5 V2-1 [0,2] (0102)¢  (34)~

6 (78 —2v6)/101  [0,1,2,1,1,1,1,1,2] 0¥ (123415321435)¢

7 (63—+10)/107 [0,1,1,3,1,2,1] (01)*  (234526432546)“

8 (23+2)/31 [0,1,3,1,2] (01)*  (234526732546237526432576)~

9 (23-v2)/31 [0,1,2,3,2] (01)*  (234567284365274863254768)~

10 (109 4+ v/13)/138 [0,1,4,2,3] (01)*  (234567284963254768294365274869)”



» R., Shallit, and Vandomme (2019) showed that:

> E(xs) =2+ ~2.7071

> E(xg) =1+ $ ~ 1.8090.
> We also conjectured that for 5 < k < 10, E(z),) = $=2.
» We showed that all of these values are minimal, except

for x4, which was done by Peltomaki.

» How does one prove that each word has the claimed

critical exponent?



» Here we introduce the Ostrowski a-numeration system.
» Suppose « has continued fraction expansion
o = [O, dl, dQ, d3, .. ]

» Let p,/q, denote the convergents:

Pn —10,dy,dy, ds, ... dy),

an

where

p_2=0, p1=1 p,=dpn_1+ ppo forn >0;
qg2=1 q1=0, ¢=dygu-1+ quoforn=>0.



Each non-negative integer N can be represented uniquely as

N=>" ba.

0<i<j

bjbjfl tee bo, where

where the b; are digits satisfying:
1. 0 < by < dy,
2. 0<b; <djyq, fori > 1, and
3. fori>1, if b =d;; 4, then b,_; = 0.
We call the word b;b;_; - - - by the canonical Ostrowski

a-representation of N.



e.g., if a =1/¢* =[0;2,1], then the Ostrowski-ov numeration
system is the classical Zeckendorf numeration system. That is,
it is the place-value numeration system where the places have

values given by the sequence of Fibonacci numbers:
1,2,3,5,8, ...,

and canonical representations do not have two consecutive 1's.



eg., ifa= V2 —1= [0; 2], then the Ostrowski-a: numeration
system is the place-value numeration system where the places

have values given by the sequence of Pell numbers:
1,2,5,12,29,.. .,

and in any canonical representation, 2's are followed by 0''s.



Defining the characteristic Sturmian word of slope « in terms
of the Ostrowski numeration system:
Theorem

Let N > 1 be an integer with Ostrowski a-representation
bjbj_1---by. Then ¢,[N] =1 if and only if b;b;_; - - - by ends

with an odd number of 0's.



If the continued fraction expansion of « is ultimately
periodic (i.e., if o is a quadratic irrational), a finite
automaton can easily check if its input is a canonical

Ostrowski-a representation.

1n

The property “ends with an odd number of 0's” can also
easily be checked by a finite automaton.

This means that ¢, is an Ostrowski-a-automatic
sequence.

That is, there is a finite automaton with output that
outputs ¢,[NN] when given the Ostrowski-a representation

of N as input.



» If ¢, is an Ostrowski-a-automatic sequence, it is not hard
to show that any word obtained by replacing the 0's and
1's respectively by constant gap sequences ' and 3/ is
also Ostrowski-a automatic.

» The words x;, defined above are Ostrowski-av automatic.

» Given a finite automaton generating an Ostrowski-a
automatic sequence, we can use the program \Walnut to

prove combinatorial properties of the sequence.



» For /-automatic sequences (i.e., sequences generated by a
automaton that takes base-k representations as input),

Walnut works as follows.

» Given a k-automatic sequence and an expression in
first-order logic, where the variables generally represent
positions or lengths of factors in the automatic sequence,
Walnut will output a new automaton accepting the
base-k representations of the natural numbers that satisfy

the logical expression.



Walnut can be extended to work with other numeration

systems.
Important: the addition relation

{(x,y,2) € N*: x4+ y = 2} for the numeration system

must be recognizable by a finite automaton.

» Clearly this is true for base-k.

» It is also true for the Zeckendorf (Fibonacci) system.



» The word x4 from the table is Fibonacci-automatic.

» Recall, it is obtained by replacing the 0's (resp. 1's) in
the Fibonacci word with (01)“ (resp. (23)%).

Figure: Fibonacci-base automaton for x4



Let X denote the automaton for x4. Using Walnut, we
compute the periods p such that a repetition with exponent

> 5/3 and period p occurs in z4:

eval periods_of_high_powers "?msd_fib Ei (p>=1) &
(Aj (3xj <= 2*p) => X[i+j]=X[i+j+p])";

The output of this command is an automaton accepting
0*1001000%; i.e., representations of numbers of the form
Fn+Fn73:2Fn71-

reg pows msd_fib "0*x1001000%";



Next we compute pairs (n,p) such that x4 has a factor of
length n + p with period p, and furthermore that factor cannot
be extended to a longer factor of length n + p + 1 with the

same period.

def maximal_reps "?msd_fib Ei (Aj (j<n) =>

X [1+J] =X [1+J +p] ) & (X [i+n] =X [i+n+p] ) ",



We now compute pairs (n, p) where p has to be of the form
0*1001000* and n + p is the longest length of any factor
having that period.

eval highest_powers "7msd_fib (p >= 1) &
$pows(p) & $maximal_reps(n,p) &

(Am $maximal_reps(m,p) => m <= n)";



The output of this last command is an automaton accepting
pairs (n, p) having the form

o) QO C G} GF-OF

When p = 2F;_ | we see that n = F; — 2.



» Maximal repetitions of exponent > 5/3 in x4 have
exponent of the form 1+ (F; — 2)/(2F;_1).

» These exponents converge to 1 + ¢/2 from below.

» We conclude that z, has critical exponent 1 + ¢/2.



» Recall: the above computations are only possible because
addition in the Fibonacci-base is recognizable by a finite
automaton.

» What about the other Ostrowski-o numeration systems
needed for the other ;7

» Hieronymi and Terry (2017) showed that addition is
indeed recognizable by a finite automaton when « is a

quadratic irrational.



» Aseem Baranwal (Master's Thesis 2020) found a simpler
way to construct the adder for the Ostrowski numeration

with respect to a quadratic irrational «.

» He implemented this in Walnut.



» Baranwal and Shallit (2019) used the adder for the Pell
numeration system (Ostrowski-cv with
o =1/2—1=10;2]) to show that the critical exponent
of 5 is 3/2.

» Baranwal then extended this to show that for 6 < k < 8§,
the word x;, as defined in the table above has critical
exponent (k —2)/(k — 3).

» The computations for £k = 9,10 ran out of memory on a
computer with 400 GB of RAM.



Now we switch our attention from balanced words to rich

words.

A palindrome is a word that is equal to its reversal, i.e., it
reads the same forwards and backwards.

A word of length n contains at most n distinct nonempty
palindromes.

Words of length n that contain n distinct nonempty

palindromes are called palindrome-rich, or simply rich (or
full).

An infinite word is rich if all of its factors are rich.



» The length 9 word 011101011 is rich.

» It has 9 non-empty palindromes: 0, 1, 11, 111, 01110,
101, 010, 10101, 1101011.

» The length 9 word 011010011 is not rich:

» It only has 8 non-empty palindromes: 0, 1, 11, 0110, 101,
010, 00, 1001



What is the least possible critical exponent among all

infinite rich words on a given alphabet?

» It is necessarily > 2 (Pelantovd and Starosta, 2013).

» We resolve this for the binary alphabet.

» Note that all Sturmian words are rich, but the words that

achieve the minimal critical exponent among rich words

are not Sturmian words.



Let ¥y = {0,1,...,k — 1}. Define f: ¥ — ¥ and
g,h X5 — X5 by
f0) = 0 f(1) = o1 f(2) = o1
g(0) = 011 g(1) = 0121 g¢g(2) = 012121

h(0) = 01 h(1) = 02  h(2) = 022



» Baranwal and Shallit (2019) showed that f(h*(0)) is rich
and has critical exponent 2 + \/5/2

» They did so by showing that this word is Pell-automatic:
i.e., it is generated by an automaton that takes as input
representations of numbers in the Pell numeration system

(the Ostrowski-o numeration system corresponding to

a=+v2-1=[0;2]).



» Richness can be verified with Walnut.

» Use the following: A word w is rich if and only if every

prefix of w has a unioccurent palindromic suffix.

The critical exponent computation is done as shown in
the previous example.

Baranwal and Shallit conjectured that this critical
exponent of 2 4 1/2/2 was minimal over all infinite binary

rich words.



Theorem (Currie, Mol, R., 2019)

Let w € X% be a 14/5-free rich word. For every n > 1, a
suffix of w has the form f(h"(w,)) or f(g(h™(w,))) for some

word w,, € 3.



Theorem (Currie, Mol, R., 2019)

The least critical exponent over all infinite binary rich words is

2+/2/2.



Idea: By the previous theorem, a sequence with the least
critical exponent is one of f(h*(0)) or f(g(h“(0))).

» Both are rich and have critical exponent 2 + \/5/2

» Baranwal and Shallit, 2019 showed the first, using

Walnut;

Currie, Mol., and R., 2020 showed the second, using
other techniques.

The main idea for the latter was the observation of
Pelantova that these words are complementary symmetric

Rote words.



References

» For most of this, see Aseem Baranwal's Master's thesis
(ask Jeff Shallit for a copy). Also, see:

» N. Rampersad, J. Shallit, E. Vandomme, “Critical
exponents of infinite balanced words”, Theoret. Comput.
Sci. 777 (2019), 454-463.

» J. Currie, L. Mol, N. Rampersad, “The repetition
threshold for binary rich words”, Discrete Math. Theoret.
Comput. Sci 22 (2020).



The End



