Dimension of Bernoulli Convolutions in \mathbb{R}^d

Haojie Ren Technion – Israel Institute of Technology

One World Numeration Seminar

Online Seminar 26th November 2024

November 25, 2024

Let $d \ge 1$ be an integer and let $(\lambda_1, ..., \lambda_d) = \lambda \in (0, 1)^d$ be with $\lambda_1 > ... > \lambda_d$. Denote by μ_{λ} the distribution of the random vector

$$\sum_{n\geq 0}\pm \left(\lambda_1^n,...,\lambda_d^n\right),\,$$

where the \pm signs are chosen independently and with equal weight. The measure μ_{λ} is called the Bernoulli convolution associated to λ .

< 日 > < 同 > < 回 > < 回 > < 回 > <

A Borel probability measure θ on \mathbb{R}^d is said to be exact dimensional if there exists a number dim θ such that

$$\lim_{\delta \downarrow 0} \frac{\log \theta(B(x, \delta))}{\log \delta} = \dim \theta \text{ for } \theta \text{-a.e. } x,$$

where $B(x, \delta)$ is the closed ball with centre x and radius δ .

• Feng and Hu (2009): μ_{λ} is always exact dimensional.

${\sf Question}\ 1$

what is the value of dim μ_{λ} ?

2

Lyapunov dimension of μ_{λ}

Setting

$$m:=\max\left\{0\leq k\leq d \ : \ \Pi_{j=1}^k\lambda_j\geq 1/2
ight\},$$

the Lyapunov dimension is defined as follows:

$$\dim_L \mu_{\lambda} := \begin{cases} m + \frac{\log 2 + \sum_{j=1}^m \log \lambda_j}{-\log \lambda_{m+1}} &, \text{ if } m < d \\ d \frac{\log 2}{-\sum_{j=1}^d \log \lambda_j} &, \text{ if } m = d \end{cases}$$

It always holds that

 $\dim \mu_{\lambda} \leq \min \left\{ \dim_{L} \mu_{\lambda}, d \right\}.$

• Question 1^{*}: when dim $\mu_{\lambda} = \min \{ \dim_{L} \mu_{\lambda}, d \}$?

٠

Background: d = 1 and $\lambda \in (1/2, 1)$

Definition

We say that an affine IFS $\Psi := \{\psi_i\}_{i \in \Lambda}$ on \mathbb{R} has no exact overlaps if its elements generate a free semigroup. That is, if $\psi_{u_1} \neq \psi_{u_2}$ for all distinct $u_1, u_2 \in \Lambda^*$, where Λ^* is the set of finite words over Λ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

6/19

Conjecture 1

If $1/\lambda$ has no exact overlaps, then dim $\mu_{\lambda} = 1$?

Background: d = 1 and $\lambda \in (1/2, 1)$

- Erdös (1939): μ_{λ} is singular whenever $1/\lambda$ is a Pisot number.
- Garsia(1963): dim $\mu_{\lambda} < 1$ whenever $1/\lambda$ is a Pisot number.
- Hochman (2014): When $1/2 \le \lambda < 1$ is algebraic but has no exact overlaps, dim $\mu_{\lambda} = 1$.
- Varjú (2019): When $1/2 < \lambda < 1$ is transcendental, then dim $\mu_{\lambda} = 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Przytycki and Urbański (1989) considered the situation in which $\lambda_2 = 1/2$:

- dim $\mu_{(\lambda_1,1/2)} = \dim_L \mu_{(\lambda_1,1/2)}$ whenever μ_{λ_1} is absolutely continuous.
- dim $\mu_{(\lambda_1,1/2)} < \dim_L \mu_{(\lambda_1,1/2)}$ when $\lambda_2 = 1/2$ and λ_1^{-1} is Pisot.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Shmerkin (2006): established that the Hausdorff dimension of the support of μ_{λ} equals the Lyapunov dimension for Lebesgue a.e. $\lambda = (\lambda_1, \lambda_2)$ with $\lambda_1 \lambda_2 < 1/2 < \lambda_2$.

Theorem (Ariel Rapaport with H.R. 2024, Arxiv)

Let $d \in \mathbb{Z}_{>0}$ and $(\lambda_1, ..., \lambda_d) = \lambda \in (0, 1)^d$ be with $\lambda_1 > ... > \lambda_d$, and suppose that $P(\lambda_j) \neq 0$ for every $1 \leq j \leq d$ and nonzero polynomial P with coefficients $\pm 1, 0$. Then dim $\mu_{\lambda} = \min \{\dim_L \mu_{\lambda}, d\}$.

Rapaport (2023, Arxiv) proved this result for cases where λ₁,..., λ_d are all algebraic.

< 口 > < 同 > < 回 > < 回 > < 回 > <

- let *P*⁽ⁿ⁾ ⊂ ℤ[X] be the set of polynomials of degree strictly less than *n* with integer coefficients bounded in absolute value by 2.
- For $1 \le j \le d$ write $\chi_j := -\log \lambda_j$, and set

$$\kappa := \chi_d \dim \mu_\lambda - \sum_{j=1}^{d-1} (\chi_d - \chi_j).$$

• $h_{RW}(\lambda) := \lim_{n \to \infty} \frac{1}{n} H\left(\sum_{0 \le k < n} \pm (\lambda_1^n, ..., \lambda_d^n)\right)$, where $H(\cdot)$ denotes the Shannon entropy.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\Omega := \{(\eta_1, ..., \eta_d) \in (0, 1)^d : \eta_1 > ... > \eta_d\}.$
- Let $\{e_1, ..., e_d\}$ be the standard basis of \mathbb{R}^d . Given $J \subset [d]$ denote by π_J the orthogonal projection onto $\operatorname{span}\{e_j : j \in J\}$. Thus,

$$\pi_J(x) = \sum_{j \in J} \langle e_j, x \rangle e_j \text{ for } x \in \mathbb{R}^d,$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 November 25, 2024

12/19

and $\pi_{[0]}$ is identically 0.

To prove the Main Result, the most challenging part is establishing the following Diophantine result. Once this is achieved, we can follow Varjú's strategy to prove the case d = 1.

Theorem

Suppose that dim $\mu_{\lambda} < \min \{d, \dim_{L} \mu\}$, dim $\pi_{J}\mu_{\lambda} = |J|$ for each proper subset J of [d], and $\lambda_{j_{0}}$ is transcendental for some $1 \leq j_{0} \leq d$. Then for every $\epsilon > 0$ and $N \geq 1$ there exist $n \geq N$ and $(\eta_{1}, \ldots, \eta_{d}) = \eta \in \Omega$ such that,

• for each
$$1 \le j \le d$$
 there exists $0 \ne P_j \in \mathcal{P}^{(n)}$ with $P_j(\eta_j) = 0$;

2
$$h_{RW}(\lambda) < \kappa + \epsilon;$$

$$|\lambda - \eta| \le \exp\left(-n^{1/\epsilon}\right).$$

Given a discrete random vector Y, its Shannon entropy is denoted by H(Y). For a bounded random vector $X = (X_1, ..., X_d)$ in \mathbb{R}^d and $(r_1, ..., r_d) = r \in \mathbb{R}^d_{>0}$, we set

$$H(X;r) := \int_{[0,1)^d} H(\lfloor X_1/r_1 + x_1 \rfloor, ..., \lfloor X_d/r_d + x_d \rfloor) dx_1...dx_d.$$

We refer to H(X; r) as the average entropy of X at scale r.

 The concept of average entropy, originally introduced by Zhiren Wang for ℝ.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 November 25, 2024

Main Finding

• Given $r' \in \mathbb{R}^d_{>0}$, we also set

$$H(X; r \mid r') := H(X; r) - H(X; r').$$

If μ is the distribution of X, we write H(μ; r) and H(μ; r | r') in place of H(X; r) and H(X; r | r').

3

(日)

Main Finding

Definition

Given $\epsilon > 0$ and $m \ge 1$, we say that $\mu \in \mathcal{M}(\mathbb{R}^d)$ is (ϵ, m) -non-saturated across the principal directions at all scales, or simply (ϵ, m) -non-saturated, if for all $1 \le j \le d$ and $n \ge 0$,

$$\frac{1}{m}H\left(\mu,\mathcal{E}_{n+m}\mid\mathcal{E}_n\vee\pi_{[d]\setminus\{j\}}^{-1}\mathcal{E}_{n+m}\right)<\chi_j-\epsilon.$$

• Write $[d] = \{1, ..., d\}$, let $\pi_{[d] \setminus \{j\}}$ be the orthogonal projection onto $\operatorname{span}\{e_j\}_{j \in [d] \setminus \{j\}}$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 November 25, 2024

- \mathcal{E}_n is a partition of \mathbb{R}^d into rectangles with side lengths roughly $\lambda_1^n, ..., \lambda_d^n$.
- For $t \in \mathbb{R}$, we write $\lambda^t := (\lambda_1^t, ..., \lambda_d^t)$.

Main Finding

Theorem

For each $\epsilon > 0$ and $M \ge 1$, there exists $C = C(\lambda, \epsilon, M) > 1$ such that the following holds. Let $\mu \in \mathcal{M}(\mathbb{R}^d)$ be (ϵ, m) -non-saturated for all $m \ge M$, and let $\nu \in \mathcal{M}(\mathbb{R}^d)$, $0 < \beta < 1/2$, and $t_2 > t_1 > 0$ be with $\frac{1}{t_2 - t_1} H(\nu; \lambda^{t_2} \mid \lambda^{t_1}) > \beta$. Then,

$$H\left(\nu * \mu; \lambda^{t_2} \mid \lambda^{t_1}\right) \geq H\left(\mu; \lambda^{t_2} \mid \lambda^{t_1}\right) + C^{-1}\beta\left(\log \beta^{-1}\right)^{-1}(t_2 - t_1) - C.$$

- Hochman (2014) shows $f_{\lambda,\epsilon,M}(\beta)$ for some function $f_{\lambda,\epsilon,M}(\cdot)$ in the case d = 1.
- Varju (2019) shows $C^{-1}\beta \left(\log \beta^{-1}\right)^{-1}$ for some function in the case d = 1.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

The idea of Main Finding

- Our approach extends Hochman's qualitative insights to provide a proof of Varjú's (2019) quantitative entropy increase theorem in ℝ.
- To investigate the quantitative entropy increase theorem in \mathbb{R}^d , we draw upon the insights from Ariel Rapaport's qualitative version (2023 Arxiv) in \mathbb{R}^d .

November 25, 2024

18/19

• Additive combinatorics plays a crucial role in the proof.

Thank you!

2

ヘロト ヘロト ヘヨト ヘヨト