Low Discrepancy Digital Hybrid Sequences and the *t*-adic Littlewood Conjecture

Steven Robertson

Manchester University

October 11, 2024

Steven Robertson (Manchester University) Low Discrepancy Digital Hybrid Sequences Oc

Distribution and Discrepancy

- ∢ ⊒ →

First Definitions

- Let $d \in \mathbb{N}$ and define $\mu_d(\mathcal{B})$ as the *d*-dimensional Lebesgue measure of the measurable set \mathcal{B} .
- Let S be a finite set and let #S denote the cardinality of S.

Definition:

For a sequence
$$z = (z_n)_{n \ge 1}$$
 in \mathbb{R}^d and $\mathcal{B} \subset \mathbb{R}^d$,

$$\#(\mathcal{B}, \mathsf{z}, \mathsf{N}) = \#\{\mathsf{n} \in \mathbb{N} : \mathsf{n} < \mathsf{N}, \ \mathsf{z}_{\mathsf{n}} \in \mathcal{B}\}$$

Definition:

A *d*-dimensional sequence $\mathbf{z} = (\mathbf{z}_n)_{n \ge 1}$ is uniformly distributed if for every box $\mathcal{B} \in [0, 1]^d$ $\lim_{N \to \infty} \frac{\#(\mathcal{B}, \mathbf{z}, N)}{N} = \mu_d(\mathcal{B}).$

- 4 回 ト 4 三 ト 4 三 ト

Discrepancy

Definition:

The discrepancy of the sequence $(\mathbf{z}_n)_{n \in \mathbb{N}}$ is defined as

$$D_N(\mathbf{z}) = \sup_{\mathcal{B} \subset [0,1)^d} \left| \frac{\#(\mathcal{B}, \mathbf{z}, N)}{N} - \mu_d(\mathcal{B}) \right|,$$

where the supremum is taken over all axis-parallel boxes $\mathcal{B} \subset [0,1)^d.$

Definition:

The star discrepancy of the sequence $(\mathbf{z}_n)_{n \in \mathbb{N}}$, denoted $D_N^*(\mathbf{z})$, is defined with the additional condition that \mathcal{B} must have one corner at the origin.

Theorem (Kuipers, Niederreiter, 1974):

For every $N \in \mathbb{N}$ and every sequence $(\mathbf{z}_n)_{n \in \mathbb{N}}$, one has $D_N^*(\mathbf{z}) \leq D_N(\mathbf{z}) \leq 2^d D_N^*(\mathbf{z}).$

< /□> < 三

Bounds on Discrepancy

Theorem (Roth, 1954): For every $N \in \mathbb{N}$ and every sequence $(\mathbf{z}_n)_{n \in \mathbb{N}}$ in the *d*dimensional unit cube, one has $D_N^*(\mathbf{z}) \gg_d \frac{\log^{\frac{d-1}{2}}(N)}{N}.$ **Conjecture:** For every $N \in \mathbb{N}$ and every sequence $(\mathbf{z}_n)_{n \in \mathbb{N}}$ in the *d*dimensional unit cube, one has $D_N^*(\mathbf{z}) \gg_d \frac{\log^d(N)}{N}$. Definition: Let $(\mathbf{z}_n)_{n \in \mathbb{N}}$ be a sequence in the *d*-dimensional unit cube. If $D_N^*(\mathbf{z}) \ll_d \frac{\log^d(N)}{N}$ for every $N \in \mathbb{N}$, then $(\mathbf{z}_n)_{n \in \mathbb{N}}$ is called low discrepancy. 5/34

Low Discrepancy Sequences

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Definition:

Let b > 1 be a natural number and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n>1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Example:

Let b = 5 and let n = 1432. Note that

$$= 2 \cdot 5^0 + 1 \cdot 5^1 + 2 \cdot 5^2 + 1 \cdot 5^3 + 2 \cdot 5^4.$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition:

Let b > 1 be a natural number and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-b Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Example:

Let b = 5 and let n = 1432. Note that

$$n = 2 \cdot 5^0 + 1 \cdot 5^1 + 2 \cdot 5^2 + 1 \cdot 5^3 + 2 \cdot 5^4$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition:

Let b > 1 be a natural number and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n>1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Example:

Let
$$b = 5$$
 and let $n = 1432$. Note that

$$v_n(5) = \frac{1}{5}(2 \cdot 5^{-0} + 1 \cdot 5^{-1} + 2 \cdot 5^{-2} + 1 \cdot 5^{-3} + 2 \cdot 5^{-4})$$

Definition:

Let b > 1 be a natural number and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n>1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Example:

Let
$$b = 5$$
 and let $n = 1432$. Note that

$$v_n(5) = \frac{1}{5}(2 \cdot 5^{-0} + 1 \cdot 5^{-1} + 2 \cdot 5^{-2} + 1 \cdot 5^{-3} + 2 \cdot 5^{-4})$$

Theorem (Halton, 1950):

The base-b Van der Corput sequence is Low Discrepancy.

Steven Robertson (Manchester University) Low Discrepancy Digital Hybrid Sequences

(日)

Kronecker Sequences

Definition:

Let $\alpha \in (0, 1)$ be a real number. The Kronecker sequence associated to α , denoted $k_{\alpha} = (k_n(\alpha))_{n \ge 1}$, is defined as: $k_n(\alpha) = n\alpha \mod 1.$

Theorem (Weyl, 1916):

The Kronecker sequence associated to $\alpha \in \mathbb{R}$ is uniformly distributed if and only if $\alpha \notin \mathbb{Q}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition: Bad

The set of **badly approximable** numbers, denoted **Bad**, contains all the $\alpha \in \mathbb{R}$ for which there exists a constant $c_{\alpha} > 0$ such that for all reduced fractions $\frac{m}{n} \in \mathbb{Q}$

$$\left|\alpha-\frac{m}{n}\right|>\frac{c_{\alpha}}{n^2}.$$

Theorem: (Niederreiter, 1974)

$$\alpha$$
 is in... $(k_n(\alpha))_{n\in\mathbb{N}}$ is...

Definition: Bad

The set of **badly approximable** numbers, denoted **Bad**, contains all the $\alpha \in \mathbb{R}$ for which there exists a constant $c_{\alpha} > 0$ such that for all reduced fractions $\frac{m}{n} \in \mathbb{Q}$

$$\left|\alpha-\frac{m}{n}\right|>\frac{c_{\alpha}}{n^2}.$$

Theorem: (Niederreiter, 1974)

α is in	$(k_n(\alpha))_{n\in\mathbb{N}}$ is
Q	Periodic

Definition: Bad

The set of **badly approximable** numbers, denoted **Bad**, contains all the $\alpha \in \mathbb{R}$ for which there exists a constant $c_{\alpha} > 0$ such that for all reduced fractions $\frac{m}{n} \in \mathbb{Q}$

$$\left|\alpha-\frac{m}{n}\right|>\frac{c_{\alpha}}{n^2}.$$

Theorem: (Niederreiter, 1974)

α is in	$(k_n(lpha))_{n\in\mathbb{N}}$ is
Q	Periodic
$\mathbb{R} \setminus \mathbb{Q}$	Uniformly Distributed

Definition: Bad

The set of **badly approximable** numbers, denoted **Bad**, contains all the $\alpha \in \mathbb{R}$ for which there exists a constant $c_{\alpha} > 0$ such that for all reduced fractions $\frac{m}{n} \in \mathbb{Q}$

$$\left|\alpha-\frac{m}{n}\right|>\frac{c_{\alpha}}{n^2}.$$

Theorem: (Niederreiter, 1974)

α is in	$(k_n(lpha))_{n\in\mathbb{N}}$ is
Q	Periodic
$\mathbb{R} \setminus \mathbb{Q}$	Uniformly Distributed
Bad	Low Discrepancy

Definition: Bad

The set of **badly approximable** numbers, denoted **Bad**, contains all the $\alpha \in \mathbb{R}$ for which there exists a constant $c_{\alpha} > 0$ such that for all reduced fractions $\frac{m}{n} \in \mathbb{Q}$

$$\left|\alpha-\frac{m}{n}\right|>\frac{c_{\alpha}}{n^2}.$$

Theorem: (Niederreiter, 1974)

Let $\alpha \in \mathbb{R}$. Then k_{α} is low discrepancy if and only if $\alpha \in \mathbf{Bad}$.

α is in	$(k_n(lpha))_{n\in\mathbb{N}}$ is
Q	Periodic
$\mathbb{R} \setminus \mathbb{Q}$	Uniformly Distributed
Bad	Low Discrepancy
??⊂Bad	Very Low Discrepancy?

9/34

From **Bad** to Worse

Definition: Bad (again)

Let $\|\alpha\|$ denote the distance from $\alpha \in \mathbb{R}$ to the nearest integer. Then

$$\mathsf{Bad} = \left\{ \alpha \in \mathbb{R} : \inf_{n \in \mathbb{N} \setminus \{0\}} n \, \| n \alpha \| = c_{\alpha} > 0 \right\}.$$

• Let p be a prime and let $\alpha \in \mathbf{Bad}$. Then $p\alpha \in \mathbf{Bad}$.

Question:

How does $c_{p^n\alpha}$ behave as $n \to \infty$?

Definition:

Define the p-adic Badly Approximable Numbers as

$$\mathbf{Bad}_{p} = \left\{ \alpha \in \mathbb{R} : \inf_{\substack{n \in \mathbb{N} \setminus \{0\}\\k \ge 0}} n \left\| np^{k} \alpha \right\| = C_{\alpha,p} > 0 \right\}$$

Key Question:

If $\alpha \in \mathbf{Bad}_p$, what can see say about $D_N((k_n(\alpha))_{n \in \mathbb{N}})$?

10/34

Two Problems Occur...

Problem 1

The p-adic Littlewood Conjecture, de Mathan and Teulié, 2004:

The set Bad_p is empty for every prime p.

Problem 2

Theorem (Schmidt, 1972):

Every one-dimensional sequence z satisfies

$$D_N(z) \gg \frac{\log(N)}{N}$$

11/34

Problem 1:

Diophantine Approximation over Function Fields

Steven Robertson (Manchester University) Low Discrepancy Digital Hybrid Sequences October 11, 2024

э

< ∃⇒

< 47 ▶

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
--------------	------------------------------------

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
Z	$\mathbb{F}_{p}[t] = \left\{ \sum_{i=0}^{h} a_{i}t^{i} : h \in \mathbb{Z}, \ a_{i} \in \mathbb{F}_{p} \right\}$

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
Z	$\mathbb{F}_{p}[t] = \left\{ \sum_{i=0}^{h} a_{i}t^{i} : h \in \mathbb{Z}, \; a_{i} \in \mathbb{F}_{p} ight\}$
Q	$\mathbb{F}_{ ho}(t)=\{ p(t)/q(t): ho(t), q(t)\in \mathbb{F}_{ ho}[t], q(t) eq 0\}$

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
Z	$\mathbb{F}_p[t] = \left\{ \sum_{i=0}^h a_i t^i : h \in \mathbb{Z}, \ a_i \in \mathbb{F}_p \right\}$
Q	$\mathbb{F}_{ ho}(t)=\{ p(t)/q(t): p(t), q(t)\in \mathbb{F}_{ ho}[t], q(t) eq 0 \}$
\mathbb{R}	$\mathbb{F}_p((t^{-1})) = ig\{ \sum_{i=-h}^\infty a_i t^{-i} : h \in \mathbb{Z}, a_i \in \mathbb{F}_p ig\}$

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
Z	$\mathbb{F}_{ ho}[t] = \left\{ \sum_{i=0}^{h} a_i t^i : h \in \mathbb{Z}, \; a_i \in \mathbb{F}_{ ho} ight\}$
Q	$\mathbb{F}_{ ho}(t)=\{ p(t)/q(t): p(t), q(t)\in \mathbb{F}_{ ho}[t], q(t) eq 0 \}$
\mathbb{R}	$\mathbb{F}_p((t^{-1})) = ig\{ \sum_{i=-h}^\infty a_i t^{-i} : h \in \mathbb{Z}, a_i \in \mathbb{F}_p ig\}$
Prime numbers	Irreducible polynomials in $\mathbb{F}_{\rho}[t]$

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
Z	$\mathbb{F}_{p}[t] = \left\{ \sum_{i=0}^{h} a_{i}t^{i} : h \in \mathbb{Z}, \ a_{i} \in \mathbb{F}_{p} \right\}$
Q	$\mathbb{F}_{p}(t) = \{ p(t)/q(t) : p(t), q(t) \in \mathbb{F}_{p}[t], q(t) eq 0 \}$
R	$\mathbb{F}_p((t^{-1})) = ig\{ \sum_{i=-h}^\infty a_i t^{-i} : h \in \mathbb{Z}, a_i \in \mathbb{F}_p ig\}$
Prime numbers	Irreducible polynomials in $\mathbb{F}_p[t]$
$ x $, $x\in\mathbb{R}$	$ \Theta(t) = {q^{deg(\Theta(t))}}, \Theta(t)\in \mathbb{F}_p((t^{-1}))$

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_p
Z	$\mathbb{F}_p[t] = \left\{ \sum_{i=0}^h a_i t^i : h \in \mathbb{Z}, \ a_i \in \mathbb{F}_p \right\}$
Q	$\mathbb{F}_{ ho}(t)=\{ p(t)/q(t): p(t), q(t)\in \mathbb{F}_{ ho}[t], q(t) eq 0 \}$
R	$\mathbb{F}_p((t^{-1})) = ig\{ \sum_{i=-h}^\infty a_i t^{-i} : h \in \mathbb{Z}, a_i \in \mathbb{F}_p ig\}$
Prime numbers	Irreducible polynomials in $\mathbb{F}_p[t]$
$ x $, $x \in \mathbb{R}$	$ \Theta(t) = q^{deg(\Theta(t))}$, $\Theta(t)\in \mathbb{F}_p((t^{-1}))$
x mod 1	$\left\langle \sum_{i=-h}^{\infty} a_i t^{-i} \right\rangle = \sum_{i=1}^{\infty} a_i t^{-i}$

- Let q ∈ N be a positive power of a prime and let F_q denote the finite field of cardinality q.
- For this talk, let p be a prime and let q = p.

Real numbers	Function Field over \mathbb{F}_{p}
Z	$\mathbb{F}_{\rho}[t] = \left\{ \sum_{i=0}^{h} a_{i}t^{i} : h \in \mathbb{Z}, \ a_{i} \in \mathbb{F}_{\rho} \right\}$
Q	$\mathbb{F}_{p}(t) = \{ p(t)/q(t) : p(t), q(t) \in \mathbb{F}_{p}[t], q(t) eq 0 \}$
\mathbb{R}	$\mathbb{F}_p((t^{-1})) = ig\{ \sum_{i=-h}^\infty a_i t^{-i} : h \in \mathbb{Z}, a_i \in \mathbb{F}_p ig\}$
Prime numbers	Irreducible polynomials in $\mathbb{F}_p[t]$
$ x $, $x\in\mathbb{R}$	$ \Theta(t) = {q^{deg(\Theta(t))}}, \Theta(t)\in \mathbb{F}_p((t^{-1}))$
x mod 1	$\left\langle \sum_{i=-h}^{\infty} a_i t^{-i} \right\rangle = \sum_{i=1}^{\infty} a_i t^{-i}$
$\ x\ , x \in \mathbb{R}$	$ \langle \Theta(t) angle $, $\Theta(t)\in \mathbb{F}_p((t^{-1})).$

Definition:

Let b > 1 be a natural number and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n \ge 1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Definition:

Let b > 1 be a natural number and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n \ge 1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as:

$$v_n(b) = \sum_{i=0}^n \frac{n_i}{b^{i+1}}.$$

글 에 에 글 에 다

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $n \in \mathbb{N}$ such that $\sum_{i=0}^{\infty} n_i b^i$. The Base-*b* Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as:

$$v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}.$$

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Baseb Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as: $v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Baseb Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as: $v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as: $v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(v_n(b))_{n\geq 1}$, is defined as: $v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(V_n(B(t)))_{n \ge 1}$, is defined as: $v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(V_n(B(t)))_{n \ge 1}$, is defined as: $v_n(b) = \sum_{i=0}^{\infty} \frac{n_i}{b^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(V_n(B(t)))_{n \ge 1}$, is defined as: $V_n(B(t)) = \sum_{i=0}^{\infty} \frac{N_i(p)}{|B(p)|^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(V_n(B(t)))_{n \ge 1}$, is defined as: $V_n(B(t)) = \sum_{i=0}^{\infty} \frac{N_i(p)}{|B(p)|^{i+1}}$.

Definition:

Let $B(t) \in \mathbb{F}_p[t]$ be a polynomial and let $N(t) \in \mathbb{F}_p[t]$ such that $N(t) = \sum_{i=0}^{\infty} N_i(t)B(t)^i$ and define n = N(p). The Base-B(t) Digital Van Der Corput sequence, denoted $(V_n(B(t)))_{n \ge 1}$, is defined as: $V_n(B(t)) = \sum_{i=0}^{\infty} \frac{N_i(p)}{|B(p)|^{i+1}}$.

Theorem (Hofer, 2018):

The base-B(t) Digital Van der Corput sequence is Low Discrepancy.

Example:

Let p = 3 and let n = 194.

э

글 제 제 글 제

< (17) < (17)

Example:

Let p = 3 and let n = 194. Note that

$$n = 2 \cdot p^0 + 1 \cdot p^1 + 0 \cdot p^2 + 1 \cdot p^3 + 2 \cdot p^4.$$

(日)

э

Example:

Let p = 3 and let n = 194. Note that

$$n = 2 \cdot p^{0} + 1 \cdot p^{1} + 0 \cdot p^{2} + 1 \cdot p^{3} + 2 \cdot p^{4}.$$

Therefore,

$$N(t) = 2 \cdot t^{0} + 1 \cdot t + 0 \cdot t^{2} + 1 \cdot t^{3} + 2 \cdot t^{4}.$$

イロト 不得 トイヨト イヨト

э

Example:

Let p = 3 and let n = 194. Note that

$$n = 2 \cdot p^0 + 1 \cdot p^1 + 0 \cdot p^2 + 1 \cdot p^3 + 2 \cdot p^4.$$

Therefore,

$$N(t) = 2 \cdot t^{0} + 1 \cdot t + 0 \cdot t^{2} + 1 \cdot t^{3} + 2 \cdot t^{4}.$$

In Base $t^2 + 1$, this is

 $N(t) = 1(t^{2} + 1)^{0} + (t + 2)(t^{2} + 1)^{1} + 2(1 + t^{2})^{2}.$

3

く 目 ト く ヨ ト く ヨ ト

Example:

Let p = 3 and let n = 194. Note that

$$n = 2 \cdot p^0 + 1 \cdot p^1 + 0 \cdot p^2 + 1 \cdot p^3 + 2 \cdot p^4.$$

Therefore,

$$N(t) = 2 \cdot t^{0} + 1 \cdot t + 0 \cdot t^{2} + 1 \cdot t^{3} + 2 \cdot t^{4}.$$

In Base $t^2 + 1$, this is

$$N(t) = 1(t^2 + 1)^0 + (t + 2)(t^2 + 1)^1 + 2(1 + t^2)^2.$$

Hence, $V_{194}(1 + t) =$ $\frac{1}{|1+t|} (1|t^2 + 1|^0 + (p+2)|t^2 + 1|^{-1} + 2|1+t^2|^{-2}.)$

Definition:

Let $\alpha \in \mathbb{R}$ be a real number. The Kronecker sequence associated to α , denoted $k_{\alpha} = (k_n(\alpha))_{n \ge 1}$, is defined as: $k_n(\alpha) = n\alpha \mod 1.$

Definition:

Let $\alpha \in \mathbb{R}$ be a real number. The Kronecker sequence associated to α , denoted $k_{\alpha} = (k_n(\alpha))_{n \ge 1}$, is defined as: $k_n(\alpha) = n\alpha \mod 1.$

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Kronecker sequence associated to α , denoted $k_{\alpha} = (k_n(\alpha))_{n \ge 1}$, is defined as: $k_n(\alpha) = n\alpha \mod 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Kronecker sequence associated to α , denoted $k_{\alpha} = (k_n(\alpha))_{n \ge 1}$, is defined as: $k_n(\alpha) = n\alpha \mod 1$.

く 目 ト く ヨ ト く ヨ ト

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Digital Kronecker sequence associated to $\Theta(t)$, denoted $K_{\Theta(t)} = (K_n(\Theta(t)))_{n \ge 1}$, is defined as:

 $k_n(\alpha) = n\alpha \mod 1.$

くぼう くほう くほう

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Digital Kronecker sequence associated to $\Theta(t)$, denoted $K_{\Theta(t)} = (K_n(\Theta(t)))_{n \ge 1}$, is defined as:

 $k_n(\alpha) = n\alpha \mod 1.$

くぼう くほう くほう

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Digital Kronecker sequence associated to $\Theta(t)$, denoted $\mathcal{K}_{\Theta(t)} = (\mathcal{K}_n(\Theta(t)))_{n>1}$, is defined as:

$$K_n(\Theta(t)) = \langle \Theta(t) \cdot N(t) \rangle \Big|_{t=p}$$

where $N(t) \in \mathbb{F}_p[t]$ is such that N(p) = n.

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Digital Kronecker sequence associated to $\Theta(t)$, denoted $\mathcal{K}_{\Theta(t)} = (\mathcal{K}_n(\Theta(t)))_{n>1}$, is defined as:

$$K_n(\Theta(t)) = \langle \Theta(t) \cdot N(t) \rangle \Big|_{t=p}$$

where $N(t) \in \mathbb{F}_{p}[t]$ is such that N(p) = n.

Theorem (Niederreiter, Larcher, 1993):

The Digital Kronecker sequence associated to $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ is uniformly distributed if and only if $\Theta(t) \notin \mathbb{F}_p(t)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト - - ヨ -

Definition:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. The Digital Kronecker sequence associated to $\Theta(t)$, denoted $K_{\Theta(t)} = (K_n(\Theta(t)))_{n \geq 1}$, is defined as:

 $\mathcal{K}_n(\Theta(t)) = \langle \Theta(t) \cdot N(t) \rangle \Big|_{t=p}.$ where $N(t) \in \mathbb{F}_p[t]$ is such that N(p) = n.

Theorem (Niederreiter, Larcher, 1993):

The Digital Kronecker sequence associated to $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ is uniformly distributed if and only if $\Theta(t) \notin \mathbb{F}_p(t)$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_p:

Define **Bad**(P(t), p)

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

Define $\operatorname{\mathsf{Bad}}(P(t),p)$ as all the $\Theta(t)\in \mathbb{F}_p((t^{-1}))$

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of Bad_p : Define $\operatorname{Bad}(P(t), p)$ as all the $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ satisfying $N(t) \in \mathbb{F}_p[t] \setminus \{0\}$ $k \ge 0$

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of Bad_p : Define $\operatorname{Bad}(P(t), p)$ as all the $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ satisfying $\inf_{\substack{N(t) \in \mathbb{F}_p[t] \setminus \{0\}\\k \ge 0}} |N(t)|$

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

Define $\operatorname{Bad}(P(t), p)$ as all the $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ satisfying $\inf_{\substack{N(t) \in \mathbb{F}_p[t] \setminus \{0\}\\k \ge 0}} |N(t)| \left| \left\langle N(t) \cdot P(t)^k \cdot \Theta(t) \right\rangle \right| .$

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

Define $\operatorname{Bad}(P(t), p)$ as all the $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ satisfying $\inf_{\substack{N(t) \in \mathbb{F}_p[t] \setminus \{0\}\\k \ge 0}} |N(t)| \left| \left\langle N(t) \cdot P(t)^k \cdot \Theta(t) \right\rangle \right| > 0.$

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

Define
$$\operatorname{Bad}(P(t), p)$$
 as all the $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ satisfying

$$\inf_{\substack{N(t) \in \mathbb{F}_p[t] \setminus \{0\} \\ k > 0}} |N(t)| \left| \left\langle N(t) \cdot P(t)^k \cdot \Theta(t) \right\rangle \right| > 0.$$

Definition:

The set **Bad**(p) is defined identically but with k = 0.

くぼう くほう くほう

• Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial.

Definition, The analogue of **Bad**_{*p*}:

Define
$$\operatorname{Bad}(P(t), p)$$
 as all the $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ satisfying

$$\inf_{\substack{N(t) \in \mathbb{F}_p[t] \setminus \{0\} \\ k \ge 0}} |N(t)| \left| \left\langle N(t) \cdot P(t)^k \cdot \Theta(t) \right\rangle \right| > 0.$$

Definition:

The set Bad(p) is defined identically but with k = 0.

Theorem, Niederreiter, 1992:

The sequence $K_{\Theta(t)}$ is low discrepancy if and only if $\Theta(t) \in Bad(p)$.

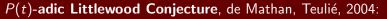
What is known about Bad(P(t), q)

э

→ ∃ →

Image: A matrix

What is known about Bad(P(t), q)



For any choice of finite field \mathbb{F}_p and any irreducible polynomial $P(t) \in \mathbb{F}_p[t]$,

 $\mathsf{Bad}(P(t),q) = \emptyset$

Theorem, Adiceam,	Nesharim,	Lunnon, 2020:
-------------------	-----------	---------------

Let $n \in \mathbb{N}$. Then

 $\operatorname{Bad}(t,3^n) \neq \emptyset$

Theorem, R., 2022:

For every irreducible polynomial $P(t) \in \mathbb{F}_p[t]$, there is an injection from Bad(t, q) into Bad(P(t), q).

Theorem, Garrett, R., 2024

The set **Bad**(P(t), q) is non-empty for any choice of irreducible polynomial $P(t) \in \mathbb{F}_{p}[t]$ when q is a power of 5, 7 or 11.

(日)

э

Problem 2:

Hybrid Sequences

Steven Robertson (Manchester University) Low Discrepancy Digital Hybrid Sequences October 11, 2024 19/34

イロト イボト イヨト イヨト

э

Definition of Hybrid Sequence

Theorem (Schmidt, 1972):

Every one-dimensional sequence z satisfies

$$D_N(z) \gg rac{\log(N)}{N}$$

Definition (Spanier, 1995):

Let $d \in \mathbb{N}$. A *d*-dimensional Hybrid sequence is a concatenation of *d* different one dimensional low discrepancy sequences.

Theorem (Hofer, 2018):

Let $\Theta(t) \in \text{Bad}(q)$ and let $B(t) \in \mathbb{F}_p[t]$. Then, the 2dimensional hybrid sequence $(H_n(\Theta(t), B(t))_{n\geq 0} = (K_n(\Theta(t)), V_n(B(t)))_{n\geq 0}$ satisfies $D_{N,H} \ll \frac{\log^2(N)}{\sqrt{N}}$.

Main Result

Theorem, R., 2022:

For every irreducible polynomial $P(t) \in \mathbb{F}_p[t]$, there is an injection from Bad(t, q) into Bad(P(t), q).

Conjecture: Levin, 2022. Theorem: R. 2024.

Let $\Theta(t) \in \mathbf{Bad}(t,q)$. Additionally, let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial and let $\Phi(t) \in \mathbf{Bad}(P(t),q)$ be induced from $\Theta(t)$. Then, the 2-dimensional hybrid sequence $(\mathbf{H}_n(\Phi(t), P(t))_{n \ge 0} = (K_n(\Phi(t)), V_n(P(t)))_{n \ge 0}$ satisfies $D_{N,\mathbf{H}} \ll \frac{\log^2(N)}{N}.$

Proof of Main Result

э

< □ > < 同 > < 回 > < 回 > < 回 >

Main Idea

• Recall:

$$D_N(\mathbf{z}) = \sup_{\mathcal{B} \subset [0,1)^d} \left| \frac{\#(\mathcal{B}, \mathbf{z}, N)}{N} - \mu_d(\mathcal{B}) \right|.$$
• Let

$$\gamma := \sum_{i=1}^{\infty} \gamma_i p^{-i} \text{ and } \lambda := \sum_{i=1}^{\infty} \lambda_i p^{-i}.$$

• Define the box $\mathcal{B} = (0, \gamma] \times (0, \lambda]$.

• The plan is to cover \mathcal{B} in $\ll \log^2(N)$ disjoint boxes \mathcal{B}_i , and show that for any $N \in \mathbb{N}$,

$$|\#(\mathcal{B}_i, \mathbf{z}, \mathcal{N}) - \mathcal{N} \cdot \mu_d(\mathcal{B}_i)| \ll 1,$$

where the implicit constant is independent to γ and λ .

• For $j \in \mathbb{N}$, define $j = \sum_{i=1}^{j} \gamma_i p^{-i}$ and $\Lambda_j := \sum_{i=1}^{j} \lambda_i p^{-i}$. • For $j, k \in \mathbb{N}$, define $I_{j,k}^{i=1} := [\Gamma_j, \Gamma_{j+1}) \times [\Lambda_k, \Lambda_{k+1}^{i+1})$. • Clearly, $\mathcal{B} = | | I_{j,k}$.

i,*k*∈ℕ

• For $j \in \mathbb{N}$, define $j = \sum_{i=1}^{j} \gamma_i p^{-i}$ and $\Lambda_j := \sum_{i=1}^{j} \lambda_i p^{-i}$. • For $j, k \in \mathbb{N}$, define $I_{j,k}^{i=1} := [\Gamma_j, \Gamma_{j+1}) \times [\Lambda_k, \Lambda_{k+1}^{i+1})$. • Clearly, $\mathcal{B} = | | I_{j,k}$.

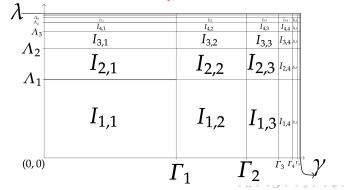
i,*k*∈ℕ

• For $j \in \mathbb{N}$, define $j = \sum_{i=1}^{j} \gamma_i p^{-i}$ and $\Lambda_j := \sum_{i=1}^{j} \lambda_i p^{-i}$. • For $j, k \in \mathbb{N}$, define $I_{j,k}^{i=1} := [\Gamma_j, \Gamma_{j+1}) \times [\Lambda_k, \Lambda_{k+1}^{i+1})$. • Clearly, $\mathcal{B} = | | I_{j,k}$.

i,*k*∈ℕ

• For $j \in \mathbb{N}$, define $j = \sum_{i=1}^{j} \gamma_i p^{-i}$ and $\Lambda_j := \sum_{i=1}^{j} \lambda_i p^{-i}$. • For $j, k \in \mathbb{N}$, define $I_{j,k}^{i=1} := [\Gamma_j, \Gamma_{j+1}) \times [\Lambda_k, \Lambda_{k+1}^{i=1})$. • Clearly,

 $\mathcal{B} = \bigsqcup_{j,k \in \mathbb{N}} I_{j,k}.$



Covering $\ensuremath{\mathcal{B}}$ in Finitely Many Boxes

• Let $M := \log_p(N)$ and define

$$S':=\bigsqcup_{j,k\leq M}I_{j,k}\subset S.$$

• Recall, if $\Theta(t) \in \text{Bad}(t, p)$ then there exists $D(\Theta(t)) \in \mathbb{N}$ such that $|N(t)| \cdot |\langle \Theta(t) \cdot t^k \cdot N(t) \rangle| > p^{-D(\Theta(t))}$

for every $N(t) \in \mathbb{F}_p[t] \setminus \{0\}$ and every $k \in \mathbb{N}$.

Define the sets

$$S_{1} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 \leq M-D(\Theta)}} I_{j,k} \qquad S_{2} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 > M-D(\Theta)}} I_{j,k}$$

• Clearly, $S' = S_1 \sqcup S_2$.

25 / 34

Recall

$$S_1 = \bigsqcup_{\substack{j,k \le M \\ j+k+2 \le M-D(\Theta)}} I_{j,k} \qquad S_2 = \bigsqcup_{\substack{j,k \le M \\ j+k+2 > M-D(\Theta)}} I_{j,k}$$

イロト イボト イヨト イヨト

э

Recall

$$S_{1} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 \leq M-D(\Theta)}} I_{j,k} \qquad S_{2} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 > M-D(\Theta)}} I_{j,k}$$

I _{M-2,M-5}	I _{M-2,M-4}	I _{M-2,M-3}	I _{M-2,M-2}
Ţ	Ţ	L	, I
I _{M-3,M-5}	I _{M-3,M-4}	I _{M-3,M-3}	I _{M-3,M-2}
$I_{M-4,M-5}$	$I_{M-4,M-4}$	I _{M-4,M-3}	$I_{M-4,M-2}$

Recall

$$S_{1} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 \leq M-D(\Theta)}} I_{j,k} \qquad S_{2} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 > M-D(\Theta)}} I_{j,k}$$
$$S_{3} = \bigsqcup_{j < M} [\Gamma_{j}, \Gamma_{j+1}) \times \left[\Lambda_{M+1}, \Lambda_{M+1} + \lambda_{M+1} p^{-(M+1)} \right).$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

$$S_3 = \bigsqcup_{j < M} [\Gamma_j, \Gamma_{j+1}) \times \left[\Lambda_{M+1}, \Lambda_{M+1} + \lambda_{M+1} \rho^{-(M+1)} \right).$$

-3.M-4 I _{M-3,M-3}	3 І _{м-3,м-2}
-4,M-4 I _{M-4,M} -	-3 I _{M-4,M-2}

イロト イポト イヨト イヨト

э

Recall

$$S_{1} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 \leq M-D(\Theta)}} I_{j,k} \qquad S_{2} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 > M-D(\Theta)}} I_{j,k}$$
$$S_{3} = \bigsqcup_{\substack{j < M \\ j < M}} [\Gamma_{j}, \Gamma_{j+1}) \times \left[\Lambda_{M+1}, \Lambda_{M+1} + \lambda_{M+1} p^{-(M+1)} \right).$$

1 1

$$S_4 = \bigsqcup_{k < M} \left[\Gamma_{M+1}, \Gamma_{M+1} + \gamma_{M+1} p^{-(M+1)} \right] \times [\Lambda_k, \Lambda_{k+1}).$$

イロト イボト イヨト イヨト

э

$$S_4 = \bigsqcup_{k < M} \left[\Gamma_{M+1}, \Gamma_{M+1} + \gamma_{M+1} p^{-(M+1)} \right) \times [\Lambda_k, \Lambda_{k+1}).$$

I _{M-2,M-5}	I _{M-2,M-4}	I _{M-2,M-3}	I _{M-2,M-2}	
I _{M-3,M-5}	I _{M-3,M-4}	<i>I</i> _{<i>M</i>-3,<i>M</i>-3}	$I_{M-3,M-2}$	
I _{M-4,M-5}	$I_{M-4,M-4}$	I _{M-4,M-3}	$I_{M-4,M-2}$	
				≣ no
pertson (Manchester University)	Low Discrepancy Digital Hybrid Sequence	es Octob	er 11, 2024	26 /

Steven Robertson (Manchester University) Low Discrepancy Digital Hybrid Sequences October 11, 2024 Covering $\ensuremath{\mathcal{B}}$ in Finitely Many Boxes

Recall

$$S_{1} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 \leq M-D(\Theta)}} I_{j,k} \qquad S_{2} = \bigsqcup_{\substack{j,k \leq M \\ j+k+2 > M-D(\Theta)}} I_{j,k}$$
$$S_{3} = \bigsqcup_{j < M} [\Gamma_{j}, \Gamma_{j+1}) \times \left[\Lambda_{M+1}, \Lambda_{M+1} + \lambda_{M+1}p^{-(M+1)} \right].$$
$$S_{4} = \bigsqcup_{k < M} \left[\Gamma_{M+1}, \Gamma_{M+1} + \gamma_{M+1}p^{-(M+1)} \right] \times [\Lambda_{k}, \Lambda_{k+1}].$$

$$S_{5} = \left[\Gamma_{M+1}, \Gamma_{M+1} + \gamma_{M+1} p^{-(M+1)} \right) \times \left[\Lambda_{M+1}, \Lambda_{M+1} + \lambda_{M+1} p^{-(M+1)} \right).$$

イロン 不聞 とくほとう ほとう

2

$$S_{5} = \left[\Gamma_{M+1}, \Gamma_{M+1} + \gamma_{M+1} p^{-(M+1)} \right] \times \left[\Lambda_{M+1}, \Lambda_{M+1} + \lambda_{M+1} p^{-(M+1)} \right].$$

	$I_{M-2,M-5}$	$I_{M-2,M-4}$	<i>I</i> _{<i>M</i>-2,<i>M</i>-3}	$I_{M-2,M-2}$	
	<i>I</i> _{M-3,M-5}	$I_{M-3,M-4}$	<i>I</i> _{<i>M</i>-3,<i>M</i>-3}	$I_{M-3,M-2}$	
	$I_{M-4,M-5}$	$I_{M-4,M-4}$	I _{M-4,M-3}	I _{M-4,M-2}	
	•		• • • • • • • •	문에서 문에 가 문	Э (
obertso	on (Manchester University	Low Discrepancy Digital Hybrid Sequenc	es Octo	ber 11, 2024	26 /

Steven Robertson (Manchester University) Low Discrepancy Digital Hybrid Sequences

Counting Points in $I_{j,k}$

• The box \mathcal{B} has been covered by $\ll \log^2(N)$ sub-boxes, $I_{j,k}$.

Recallfor
$$j \in \mathbb{N}$$
, define $\Gamma_j := \sum_{i=1}^{j} \gamma_i p^{-i}$ and $\Lambda_j := \sum_{i=1}^{j} \lambda_i p^{-i}$.For $j, k \in \mathbb{N}$, define $I_{j,k} := [\Gamma_j, \Gamma_{j+1}) \times [\Lambda_k, \Lambda_{k+1})$.

- Sub-box $I_{j,k}$ has width $\gamma_{j+1}p^{-(j+1)}$ and height $\lambda_{k+1}p^{-(k+1)}$.
- Trivially, $\gamma_{j+1}, \lambda_{k+1} < q$.
- Therefore, $I_{j,k}$ is the disjoint union of at most p^2 boxes of the form

$$\mathit{l}_1 imes \mathit{l}_2 := \left[rac{a}{p^{j+1}}, rac{a+1}{p^{j+1}}
ight) imes \left[rac{b}{p^{k+1}}, rac{b+1}{p^{k+1}}
ight)$$

for some $a < p^{j+1}$ and $b < p^{k+1}$.

Main Lemma

- Recall that μ_2 is 2-dimensional Lebesgue measure.
- Clearly, $\mu_2(I_1 \times I_2) = p^{-(j+k+2)}$.

Main Lemma

For every choice of box $l_1 \times l_2$ and for every $N \in N$

 $|\#(I_1 \times I_2, \mathbf{H}(\Theta(t), t), N) - N\mu_2(I_1 \times I_2)| \leq p^{D(\Theta(t))}.$

- Goal: Calculate $\#(I_1 \times I_2, \mathbf{H}(\Theta(t), t), N)$.
- This amounts to counting how many n < N satisfy both

$$V_n(t) \in \left[rac{a}{p^{j+1}}, rac{a+1}{p^{j+1}}
ight)$$
 and $K_n(\Theta(t)) \in \left[rac{b}{p^{k+1}}, rac{b+1}{p^{k+1}}
ight)$

• Assume $I_1 \times I_2 \subset S_1$.

Lemma 1

Let $j, a \in \mathbb{N}$ such that $a < p^j$. Then every choice of $n \in \mathbb{N}$ such that

$$V_n(t) \in \left[\frac{a}{p^j}, \frac{a+1}{p^j}\right)$$

has the same first j coefficients in its base p expansion.

Definition:

An $n \times m$ matrix $B = (b_{i,j})_{0 \le i \le n, 0 \le j \le m}$ is **Hankel** if $b_{i,j} = b_{i+1,j-1}$ for all $0 \le i \le n-1, 0 \le j \le m-1$.

• Example:
$$\begin{pmatrix} a & b & c & d \\ b & c & d & e \\ c & d & e & f \\ d & e & f & g \end{pmatrix}$$

Hankel Matrix from a Sequence

э

∃ →

< □ > < 同 >

Hankel Matrix from a Sequence

- Let $A = (a_i)_{i \in \mathbb{Z}}$ be an infinite sequence, $k \in \mathbb{Z}$ and $m, n \in \mathbb{N}$.
- Let $\Theta(t) = \sum_{i=0}^{\infty} a_i t^{-i}$.

Definition:

Define the Hankel matrix $H_{\Theta}(k, m, n) := (a_{j+i+k})_{0 \le i \le m, 0 \le j \le n}$, viz.

$$H_{\Theta}(n,m) := \begin{pmatrix} a_k & a_{k+1} & a_{k+2} & \dots & a_{k+n-1} & a_{k+n} \\ a_{k+1} & a_{k+2} & a_{k+3} & \dots & \dots & a_{k+n+1} \\ a_{k+2} & a_{k+3} & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{k+m-1} & \vdots & \ddots & \ddots & \ddots & \ddots & a_{k+n+m-1} \\ a_{k+m} & a_{k+m+1} & \dots & \dots & a_{k+n+m-1} & a_{k+n+m} \end{pmatrix}$$

Lemma 2:

Let $\Theta(t) = \sum_{i=0}^{\infty} a_i t^{-i} \in \mathbb{F}_p((t^{-1}))$ be a Laurent series. Furthermore, let $n \in \mathbb{N}$, define $m = \lfloor \log_q(n) \rfloor$ and expand $n = \sum_{i=0}^{m} n_i p^i$. Then, $K_n(\Theta(t)) \in \left[\frac{b}{p^k}, \frac{b+1}{p^k}\right]$ if and only if there exists some fixed $\mathbf{z} \in \mathbb{F}_p^k$ such that

$$H_{\Theta}(1, l-1, m) \left(\begin{array}{c} \vdots \\ n_m \end{array} \right) = \mathbf{z}.$$

Above, the precise value of z depends only on k.

• Let
$$\Theta = \sum_{i=1}^{\infty} a_i t^{-i}$$
 and let $n \in \mathbb{N}$ be such that
 $(\mathcal{K}_n(\Theta(t)), \mathcal{V}_n(P(t))) \in \left[\frac{a}{p^{j+1}}, \frac{a+1}{p^{j+1}}\right) \times \left[\frac{b}{p^{k+1}}, \frac{b+1}{p^{k+1}}\right)$.

• By Lemma 2, the base-p coefficients of n satisfy

$$\begin{pmatrix} a_1 & \dots & a_{k+1} & a_{k+2} & \dots & a_{M+1} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{j+1} & \dots & a_{j+k+1} & a_{j+k+2} & \dots & a_{M+j} \end{pmatrix} \begin{pmatrix} n_0 \\ \vdots \\ n_k \\ n_{k+1} \\ \vdots \\ n_M \end{pmatrix} = \mathbf{z}.$$

• By Lemma 1, the coefficients in red are fixed.

• Let
$$\Theta = \sum_{i=1}^{\infty} a_i t^{-i}$$
 and let $n \in \mathbb{N}$ be such that
 $(\mathcal{K}_n(\Theta(t)), \mathcal{V}_n(P(t))) \in \left[\frac{a}{p^{j+1}}, \frac{a+1}{p^{j+1}}\right) \times \left[\frac{b}{p^{k+1}}, \frac{b+1}{p^{k+1}}\right)$.

• By Lemma 2, the base-p coefficients of n satisfy

$$\begin{pmatrix} a_1 & \dots & a_{k+1} & a_{k+2} & \dots & a_{M+1} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{j+1} & \dots & a_{j+k+1} & a_{j+k+2} & \dots & a_{M+j} \end{pmatrix} \begin{pmatrix} n_0 \\ \vdots \\ n_k \\ n_{k+1} \\ \vdots \\ n_M \end{pmatrix} = \mathbf{z}.$$

• By Lemma 1, the coefficients in red are fixed.

• Let
$$\Theta = \sum_{i=1}^{\infty} a_i t^{-i}$$
 and let $n \in \mathbb{N}$ be such that
 $(\mathcal{K}_n(\Theta(t)), \mathcal{V}_n(P(t))) \in \left[\frac{a}{p^{j+1}}, \frac{a+1}{p^{j+1}}\right) \times \left[\frac{b}{p^{k+1}}, \frac{b+1}{p^{k+1}}\right).$

• By Lemma 2, the base-p coefficients of n satisfy

$$\begin{pmatrix} a_1 & \dots & a_{k+1} & a_{k+2} & \dots & a_{M+1} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{j+1} & \dots & a_{j+k+1} & a_{j+k+2} & \dots & a_{M+j} \end{pmatrix} \begin{pmatrix} n_0 \\ \vdots \\ n_k \\ n_{k+1} \\ \vdots \\ n_M \end{pmatrix} = \mathbf{z}.$$

• By Lemma 1, the coefficients in red are fixed.

• Let
$$\Theta = \sum_{i=1}^{\infty} a_i t^{-i}$$
 and let $n \in \mathbb{N}$ be such that
 $(K_n(\Theta(t)), V_n(P(t))) \in \left[\frac{a}{p^{j+1}}, \frac{a+1}{p^{j+1}}\right) \times \left[\frac{b}{p^{k+1}}, \frac{b+1}{p^{k+1}}\right).$

• By Lemma 2, the base-p coefficients of n satisfy

$$\begin{pmatrix} a_{k+2} & \dots & a_{M+1} \\ \vdots & & \vdots \\ a_{j+k+2} & \dots & a_{M+j} \end{pmatrix} \begin{pmatrix} n_{k+1} \\ \vdots \\ n_M \end{pmatrix} = \mathbf{z} - \begin{pmatrix} a_1 & \dots & a_{k+1} \\ \vdots & & \vdots \\ a_{j+1} & \dots & a_{j+k+1} \end{pmatrix} \begin{pmatrix} n_0 \\ \vdots \\ n_k \end{pmatrix}$$

• By Lemma 1, the coefficients in red are fixed.

32 / 34

Lemma 3 (Adiceam, Nesharim, Lunnon, 2020):

Let $\Theta(t) \in \mathbb{F}_q((t^{-1}))$. Then $\Theta(t) \in \text{Bad}(t, p)$ with deficiency $D(\Theta)$ if and only if for any positive $k, l \in \mathbb{N}$, the Hankel matrix $H_{\Theta}(k, l, l + D(\Theta))$ has full rank over \mathbb{F}_p .

• If $I_1 imes I_2 \subset S_1$,

$$\underbrace{\begin{pmatrix} a_{k+2} & \dots & a_{M+1} \\ \vdots & & \vdots \\ a_{j+k+2} & \dots & a_{M+j} \end{pmatrix}}_{\text{full rank}} \begin{pmatrix} n_{k+1} \\ \vdots \\ n_M \end{pmatrix} = \mathbf{z} - \begin{pmatrix} a_1 & \dots & a_{k+1} \\ \vdots & & \vdots \\ a_{j+1} & \dots & a_{j+k+1} \end{pmatrix} \begin{pmatrix} n_0 \\ \vdots \\ n_k \end{pmatrix}$$

• Let $N = \sum_{i=0}^{M} N_i p^i$ and recall $n = \sum_{i=0}^{m} n_i p^i < N$. • Hence, $n_i \le N_i$.

Open Problems and Conjectures

3.5 3

< 47 ▶

Open Problems and Conjectures

Conjecture 1:

For any choice of irreducible polynomial $P(t) \in \mathbb{F}_p[t]$, the set **Bad**(P(t), q) is non-empty unless q = 2.

Conjecture 2:

Let $P(t) \in \mathbb{F}_p[t]$ be an irreducible polynomial. Then the hybrid sequence $(K_n(\Theta), V_n(P(t)))$ generated from some $\Theta(t) \in$ **Bad**(P(t), q) is low discrepancy.

Conjecture 3:

Let $\Theta(t) \in \mathbb{F}_p((t^{-1}))$ be a Laurent series, let $k \in \mathbb{N}$ and let $P_1(t), \ldots, P_k(t) \in \mathbb{F}_p[t]$ be coprime irreducible polynomials. Assume that $\Theta(t) \in \text{Bad}(P_i(t), q)$ for all $1 \le i \le k$. Then the (k+1)-dimensional digital Kronecker-Halton sequence defined by $\Theta(t)$ and the polynomials $P_i(t)$ is low discrepancy.