Rational self-affine tiles associated to standard and nonstandard digit systems

Lucía Rossi Joint work with Jörg Thuswaldner and Wolfgang Steiner

Montanuniversität Leoben, Austria

OWNS seminar Nov. 16 2021

Lucía Rossi - Montanuniversität Leoben, Austria

э

イロト 不得下 イヨト イヨト

A nonstandard digit system

Consider a digit system (α, \mathcal{D}) with *base* $\alpha = 4$ and *digits* $\mathcal{D} = \{0, 1, 8, 9\}.$

We say this digit system is **nonstandard** because \mathcal{D} is not a residue set of \mathbb{Z} modulo 4.

We can geometrically visualize that this digit system, despite being nonstandard, allows us to represent all the real numbers. Consider the set of integer parts given by

$$\Delta = \{ \pm (d_k \dots d_1 d_0)_4 \mid d_j \in \{0, 1, 8, 9\} \}.$$

It is easy to see that

$$\Delta = 4\mathbb{Z} \cup (4\mathbb{Z} + 1).$$

Since $\mathcal D$ is nonstandard, Δ is not a group.

We consider the set of fractional parts

$$\mathcal{F} := \{ (0.d_{-1}d_{-2}\dots)_4 \mid d_j \in \mathcal{D} \}.$$

We see next how to express this set as the solution of a set equation.

(B)

Let
$$x = (0.d_{-1}d_{-2}\dots)_4 \in \mathcal{F}, \ d_j \in \mathcal{D}$$
.

Multiplying x by the base $\alpha=4$ implies moving the "decimal point" one place to the right

$$4x = (d_{-1}.d_{-2}d_{-3}\dots)_4 \in \mathcal{F} + d_{-1}$$

Proposition

The set $\mathcal{F} = \mathcal{F}(\alpha, \mathcal{D})$ of fractional parts of the digit system (α, \mathcal{D}) is the only non empty compact subset of \mathbb{R} satisfying

$$\alpha \mathcal{F} = \bigcup_{d \in \mathcal{D}} \mathcal{F} + d$$

∃ ► < ∃ ►</p>

In our example we obtain

 $\mathcal{F}(\alpha, \mathcal{D}) = [0, 1] \cup [2, 3].$

 \mathcal{F} :

0 1 2 3 4 5 6 7 8 9 10 11 12

э

イロト イヨト イヨト イヨト

If we translate \mathcal{F} by the set of integer parts

 $\Delta = 4\mathbb{Z} \cup (4\mathbb{Z} + 1),$

we obtain a tiling of \mathbb{R} .

The existence of such a tiling implies that almost every $x \in \mathbb{R}$ can be uniquely decomposed as the sum of a point in Δ and a point in \mathcal{F} (integer part + fractional part).

This is always true for standard digit systems, but characterizing nonstandard digit systems that give rise to tilings is a hard open problem in number theory.

・ロト ・ 四ト ・ ヨト

The smallest lattice containing the digit set $\mathcal{D} = \{0, 1, 8, 9\}$ is \mathbb{Z} .

The collection $\mathbb{Z} + \mathcal{F}$ is a multiple tiling of order 2 of \mathbb{R} , meaning almost every point gets covered by exactly 2 translates of \mathcal{F}

												\rightarrow
0	1	2	3	4	5	6	7	8	9	10	11	12

- Standard digit systems: one lattice tiling.
- Nonstandard digit systems: one tiling, one lattice multiple tiling.

Next, we consider the analogous n-dimensional setting.

イロト イポト イヨト イヨト

Let $A \in \mathbb{Z}^{n \times n}$ be an expanding matrix, meaning that all its eigenvalues have modulus greater than 1.

Let $\mathcal{D} \subset \mathbb{Z}^n$ be a set of digits such that $|\mathcal{D}| = |\det A|$. We say that (A, \mathcal{D}) is a standard digit system if \mathcal{D} is a complete set of residues of $\mathbb{Z}^n / A\mathbb{Z}^n$. Otherwise we call it nonstandard.

Definition

We define the set $\mathcal{F}=\mathcal{F}(A,\mathcal{D})$ as the unique non empty compact set that satisfies the set equation

$$A\mathcal{F} = \bigcup_{d \in \mathcal{D}} \mathcal{F} + d.$$

If ${\mathcal F}$ has positive Lebesgue measure, it is called a *self-affine tile*.

イロト イボト イヨト イヨト

$$A\mathcal{F} = \bigcup_{d \in \mathcal{D}} \mathcal{F} + d.$$

In order to define a tiling, we want the union on the right to be essentially disjoint.

If λ is the Lebesgue measure, then $\lambda(A\mathcal{F}) = |\det A|\lambda(\mathcal{F})$, and that is why we require $|\mathcal{D}| = |\det A|$.

$$\mathcal{F} = \bigcup_{d \in \mathcal{D}} A^{-1}(\mathcal{F} + d).$$

The existence and uniqueness of \mathcal{F} is guaranteed by Hutchinson's theorem because A^{-1} is a contraction.

 ${\cal F}$ is called self-affine because it is equal to a union of contracted copies of itself.

イロト イボト イヨト イヨト

Without loss of generality we can assume $\mathbf{0} \in \mathcal{D}$ (we can always "shift" the tiling by shifting the digits).

An expansion of a vector $x \in \mathbb{R}^n$ in base A has the form

$$x = A^k d_k + \dots + d_0 + A^{-1} d_{-1} + \dots$$

where $d_j \in \mathcal{D}$, $d_k \neq \mathbf{0}$.

 \mathcal{F} corresponds to the set of fractional parts in base A.

イロト イポト イヨト イヨト

Lagarias and Wang considered integral self-affine tiles in \mathbb{R}^n associated to standard and nonstandard digit systems, and proved:

- Integral self-affine tiles are the closure of their interiors and their boundary has measure zero.
- Integral self-affine tiles give a tiling of \mathbb{R}^n .
- If *F* is an integral self-affine tile, the collection *F* + Zⁿ gives a multiple tiling of ℝⁿ.

Today I will present a generalization of these theorems.

Rational self-affine tiles associated to standard and nonstandard digit systems

Example of $\mathcal{F}(A, \mathcal{D})$ in \mathbb{R}^2

 $A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \mathcal{D} = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \end{pmatrix} \right\}.$

Image Credits: Lagarias and Wang

∃ ► < ∃ ►</p>

Rational self-affine tiles

Rational self-affine tiles were introduced by W. Steiner and J. Thuswaldner. They consider a base which is an algebraic number $\alpha \in \mathbb{C}$. They showed that it is equivalent to looking at digit systems where the base is the companion matrix A of the minimal polynomial of α .

They consider a digit set \mathcal{D} that is a residue set for $\mathbb{Z}[\alpha]/\alpha\mathbb{Z}[\alpha]$, and a certain representation space \mathbb{K}_{α} of the form $\mathbb{R}^n \times \prod_{\mathfrak{p}} K_{\mathfrak{p}}$, where each $K_{\mathfrak{p}}$ is a completion of $\mathbb{Q}(\alpha)$ w.r.t. a certain absolute value.

They defined rational-self affine tiles as subsets of \mathbb{K}_{α} , and proved that they always tile the space.

< ロト < 同ト < ヨト < ヨト

Our setting is a generalization of this, because we don't require A to have irreducible characteristic polynomial. We also define our representation space in a more general and simpler way.

Moreover, we allow digit systems that are nonstandard, and generalize the results obtained by Lagarias and Wang.

From here onwards we set $A \in \mathbb{Q}^{n \times n}$ to be an expanding rational matrix.

Suppose we wanted to consider a digit system (A, \mathcal{D}) for some digit set $\mathcal{D} \subset \mathbb{R}^n$.

Analogously as before, we would have a set $\mathcal{F}=\mathcal{F}(A,\mathcal{D})$ as the solution of the set equation

$$A\mathcal{F} = \bigcup_{d \in \mathcal{D}} \mathcal{F} + d.$$

If \mathcal{F} has positive measure and we require the union on the right to be essentially disjoint, this amounts to $|\mathcal{D}| = |\det A|$, which is not doable if the determinant is not an integer.

We will construct a space \mathbb{K}_A where A acts as an integer matrix, meaning that it scales the measure of sets by an integer factor. We will consider rational self-affine sets as subsets of \mathbb{K}_A .

イロト イロト イヨト

Consider the ring

$$\mathbb{Z}^{n}[A] := \bigcup_{k=1}^{\infty} \left(\mathbb{Z}^{n} + A\mathbb{Z}^{n} + \dots + A^{k-1}\mathbb{Z}^{n} \right)$$

Definition (Digit system)

Let $\mathcal{D} \subset \mathbb{Z}^n[A]$ be such that

$$|\mathcal{D}| = |\mathbb{Z}^n[A] / A \mathbb{Z}^n[A]|.$$

Then (A, \mathcal{D}) constitutes a *digit system*, where A is the *base* and \mathcal{D} is the *digit set*. When \mathcal{D} is a complete set of residue class representatives of $\mathbb{Z}^n[A]/A\mathbb{Z}^n[A]$, we say that (A, \mathcal{D}) is a *standard digit system*. Otherwise, we say it is *nonstandard*.

イロト イポト イヨト イヨト

From now on, set

$$B := A^{-1}$$

and

 $a := |\mathbb{Z}^n[A]/A\mathbb{Z}^n[A]| = |\mathcal{D}|, \qquad b := |\mathbb{Z}^n[B]/B\mathbb{Z}^n[B]|.$

We define on $\mathbb{Z}^n(B)$ the valuation $\nu : \mathbb{Z}^n(B) \to \mathbb{Z} \cup \{\infty\}$ as $\nu(y) := \inf\{k \in \mathbb{Z} \mid y \in B^k \mathbb{Z}^n[B] \setminus B^{k+1} \mathbb{Z}^n[B]\}.$

イロト イヨト イヨト イヨト

Consider the space $\mathbb{Z}^n((B))$ of Laurent series of powers of B with coefficients in \mathbb{Z}^n . That is, an element $y \in \mathbb{Z}^n((B))$ is of the form

$$y = \sum_{j=\nu(y)}^{\infty} B^j y_j, \quad y_j \in \mathbb{Z}^n,$$
(1)

where $y_{\nu(y)}$ is nonzero, and $\nu(0) := \infty$.

Then $\nu : \mathbb{Z}^n((B)) \to \mathbb{Z} \cup \{\infty\}$ is an extension of the valuation to all of $\mathbb{Z}^n((B))$. We will see that in the one dimensional case it coincides the the *b*-adic valuation (better known when *b* is a prime).

For this reason, we refer to series of the form (1) as B-adic series.

イロト イヨト イヨト イヨト

On $\mathbb{Z}^n((B))$ the *B*-adic metric is defined by

$$\mathbf{d}_B(y,y') := b^{-\nu(y-y')},$$

where $b = |\mathbb{Z}^n[B]/B\mathbb{Z}^n[B]|$, with the convention that $b^{-\infty} = 0$.

Back to the digit system, suppose we take series of the form

$$\sum_{j=k}^{\infty} A^{-j} d_j, \ d_j \in \mathcal{D}.$$

In some sense, \mathcal{D} has too many digits for the base A, which leads to different strings of digits converging to the same point.

▲日 → ▲圖 → ▲ 国 → ▲ 国 →

What we want to do is to consider a pair $(x,y) \in \mathbb{R}^n \times \mathbb{Z}^n((B))$, where

$$x = \sum_{j=k}^{\infty} A^{-j} d_j, \ d_j \in \mathcal{D}$$

and

$$y = \sum_{j=k}^{\infty} B^j d_j, \ d_j \in \mathcal{D}.$$

That is, they are both the same series but one converges in \mathbb{R}^n and the other one in $\mathbb{Z}^n((B))$.

In this way, we could achieve uniqueness of expansion almost everywhere and hence define a tiling.

イロト イヨト イヨト

A rational example

Suppose our base is
$$-\frac{3}{2}$$
 and let $\mathcal{D} = \{0, 1, 2\}$.

Then \mathcal{D} is a complete set of representatives of $\mathbb{Z}[-\frac{3}{2}]/(-\frac{3}{2})\mathbb{Z}[-\frac{3}{2}]$, meaning this is a standard digit system.

The set of integer parts is given by

$$\mathbb{Z}[\frac{1}{2}] = \Big\{ \sum_{j=0}^{k} (-\frac{3}{2})^{j} d_{j} \mid d_{j} \in \mathcal{D} \Big\}.$$

We want this to be the translation set for our tiling, but this is not possible because it is not discrete. However, note that the points of $\mathbb{Z}[\frac{1}{2}]$ that are close in the Euclidean distance, are far appart in the 2-adic metric.

For example,

$$|0 - \frac{1}{32}| = \frac{1}{32}$$
 but $|0 - \frac{1}{32}|_2 = 32$.

Consider the space

 $\mathbb{R} \times \mathbb{Q}_2.$

We can define a metric $\boldsymbol{\mathsf{d}}$ on $\mathbb{R}\times\mathbb{Q}_2$ given by

 $\mathbf{d}((x_1, x_2), (y_1, y_2)) := \max\{|x_1 - y_1|, |x_2 - y_2|_2\}.$

In fact, given $x, y \in \mathbb{Z}[\frac{1}{2}]$ we have that

$$\max\{|x - y|, |x - y|_2\} \ge 1.$$

伺下 イヨト イヨト

Consider the embedding

$$\varphi: \mathbb{Q} \to \mathbb{R} \times \mathbb{Q}_2, \quad x \mapsto (x, x).$$

It turns out that, under the metric **d**, the set $\varphi(\mathbb{Z}[\frac{1}{2}])$ is a discrete subgroup of $\mathbb{R} \times \mathbb{Q}_2$ (it is a lattice).

Note that the space \mathbb{Q}_2 is isomorphic to the space $\mathbb{Z}((-\frac{2}{3}))$ of series of the form

$$y = \left(-\frac{2}{3}\right)^{\nu(y)} y_{\nu(y)} + \dots + \left(-\frac{2}{3}\right)^{1} y_{1} + \left(-\frac{2}{3}\right)^{2} y_{2} + \dots,$$

 $y_j \in \mathbb{Z}$, where $\nu(y)$ is the 2-adic valuation. (More specifically, $-\frac{2}{3}$ is a *uniformizer* for \mathbb{Q}_2 .)

Back to the general case, consider the space $\mathbb{Z}^n((B))$ of *B*-adic series together with the *B*-adic metric \mathbf{d}_B defined before.

Definition (The representation space)

Given an expanding matrix $A \in \mathbb{Q}^{n \times n}$ and $B = A^{-1}$, define the representation space \mathbb{K}_A as

$$\mathbb{K}_A := \mathbb{R}^n \times \mathbb{Z}^n((B))$$

with component wise addition.

We define the metric

$$\mathbf{d}((x,y),(x',y')) := \max\{\|x-x'\|,\mathbf{d}_B(y,y')\},\$$

which turns \mathbb{K}_A into a locally compact group.

Note that $\mathbb{Z}^n((B))$ is an ultrametric space, meaning it satisfies the strong triangle inequality:

 $\mathbf{d}_B(y, y') \leqslant \max\{\mathbf{d}_B(y, y''), \mathbf{d}_B(y'', y')\}$

for every $y, y', y'' \in \mathbb{Z}^n((B))$.

We can interpret this by thinking that the elements of $\mathbb{Z}^n((B))$ have different "orders of magnitude" (given by the valuation).

Hence, the product $\mathbb{K}_A = \mathbb{R}^n \times \mathbb{Z}^n((B))$ can be seen as piling up layers of \mathbb{R}^n .

Also, every ball in \mathbb{K}_A can be decomposed as a product of balls in each respective space

$$\mathbf{B}_r(x,y) = \mathbf{B}_r(x) \times \mathbf{B}_r(y).$$

◆□ > → 御 > → 注 > → 注 > -

We define the embedding

$$\varphi: \mathbb{Z}^n[A, A^{-1}] \to \mathbb{K}_A$$
$$x \mapsto (x, x).$$

It turns out that $\varphi(\mathbb{Z}^n[A])$ is a **lattice** in \mathbb{K}_A .

We can define on $\mathbb{Z}^n((B))$ a Haar measure μ_B that is compatible with the topology, meaning that if M is a measurable set, then $\mu_B(BM) = \frac{1}{b} \mu_B(M)$.

イロト イポト イヨト イヨト

Let λ be the Lebesgue measure in \mathbb{R}^n .

We consider on \mathbb{K}_A the product measure $\mu := \lambda \times \mu_B$. Let $M = M_1 \times M_2 \subset \mathbb{K}_A$ be a measurable set. We have

 $\lambda(AM_1) = \frac{a}{b}\lambda(M_1), \qquad \mu_B(AM_2) = b\mu_B(M_2),$

This yields

$$\mu(A M) = \lambda(A M_1) \,\mu_B(A M_2) = a \,\mu(M).$$

Now our number system has "enough space" for a digits.

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト ・

Given $(x_1, x_2) \in \mathbb{K}_A$, we seek expansions of the form $(x_1, x_2) = A^k \varphi(d_k) + \dots + \varphi(d_0) + A^{-1} \varphi(d_{-1}) + \dots$ where $d_j \in \mathcal{D}$, $d_k \neq \mathbf{0}$.

The first coordinate is a convergent sequence in \mathbb{R}^n and the second one is a convergent sequence in $\mathbb{Z}^n((B))$.

<ロト < 回ト < 回ト < 回ト < 回ト

Definition (Rational self-affine tile)

Define $\mathcal{F} = \mathcal{F}(A, \mathcal{D}) \subset \mathbb{K}_A$ as the unique nonempty compact set satisfying the set equation

$$A\mathcal{F} = \bigcup_{d \in \mathcal{D}} (\mathcal{F} + \varphi(d)).$$

The set \mathcal{F} is given explicitly by

$$\mathcal{F} = \Big\{ \sum_{j=1}^{\infty} A^{-j} \varphi(d_j) \mid d_j \in \mathcal{D} \Big\}.$$

If $\mu(\mathcal{F}) > 0$ then \mathcal{F} is called a *rational self-affine tile*.

イロト イヨト イヨト イヨト

Let $\mathcal{H}(\mathbb{K}_A)$ be the family of nonempty compact subsets of \mathbb{K}_A , and consider the maps

$$\Psi_d : \mathcal{H}(\mathbb{K}_A) \to \mathcal{H}(\mathbb{K}_A); \quad X \mapsto A^{-1}(X + \varphi(d)).$$

Then \mathcal{F} is the attractor of the iterated function system

 $\{\Psi_d \mid d \in \mathcal{D}\}.$

When \mathcal{F} has zero measure, it is a (generalization of a) Cantor set.

イロト イボト イヨト イヨト

Rational self-affine tiles associated to standard and nonstandard digit systems

Example

The tile \mathcal{F} related to the digit system with base $\frac{4}{3}$ and digits $\{0, 1, 8, 9\}$. We represent the space $\mathbb{R} \times \mathbb{Q}_3$ in \mathbb{R}^2 .

- * ロ > * 個 > * 注 > * 注 > - 注 - の < ()

A natural question is: how do we know that $\mathcal{F}(\frac{4}{3}, \mathcal{D})$ has positive measure for $\mathcal{D} = \{0, 1, 8, 9\}$?

Note that \mathcal{D} can be decomposed as a direct sum $\mathcal{D}=\{0,1\}\oplus 4\,\{0,2\}.$

So

$$\mathcal{F}(\frac{4}{3}, \mathcal{D}) = \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0, 1\} \oplus 4\{0, 2\})$$
$$= \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0, 1\}) + 4 \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0, 2\})$$

御下 ・ヨト ・ヨト

Note that

$$4 \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0,2\}) = 3 \cdot \frac{4}{3} \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0,2\})$$
$$= 3 \sum_{j=0}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0,2\})$$
$$= 3 \left(\varphi(\{0,2\}) + \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0,2\})\right)$$
$$= \varphi(\{0,6\}) + \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0,6\}).$$

Lucía Rossi - Montanuniversität Leoben, Austria

3

イロト イヨト イヨト イヨト

Then

$$\mathcal{F}(\frac{4}{3}, \mathcal{D}) = \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0, 1\}) + 4 \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0, 2\})$$
$$= \varphi(\{0, 6\}) + \sum_{j=1}^{\infty} (\frac{4}{3})^{-j} \varphi(\{0, 1\}) \oplus \{0, 6\})$$
$$= \varphi(\{0, 6\}) + \mathcal{F}(\frac{4}{3}, \{0, 1, 6, 7\}).$$

But $(\frac{4}{3}, \{0, 1, 6, 7\})$ is a standard digit system, so the set $\mathcal{F}(\frac{4}{3}, \{0, 1, 6, 7\})$ has positive measure, and hence so does $\mathcal{F}(\frac{4}{3}, \mathcal{D})$.

그는 소프는

Example

Let

$$A = \begin{pmatrix} 2 & 1\\ 0 & \frac{5}{3} \end{pmatrix} \in \mathbb{Q}^{2 \times 2}.$$

Then det $A = \frac{10}{3}$, and it holds that a = 10 and b = 3.

It can be shown that the space $\mathbb{Z}^n((B))$ is isomorphic to \mathbb{Q}_3 . Consider

$$\mathcal{D} := \left\{ \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 0\\3 \end{pmatrix}, \begin{pmatrix} 0\\9 \end{pmatrix}, \begin{pmatrix} 2\\0 \end{pmatrix}, \begin{pmatrix} 2\\0 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 2\\3 \end{pmatrix}, \begin{pmatrix} 2\\9 \end{pmatrix} \right\}$$

Then (A, \mathcal{D}) is a nonstandard digit system.

We regard $\mathcal{F}(A, \mathcal{D})$ as a subset of $\mathbb{K}_A \simeq \mathbb{R}^2 \times \mathbb{Q}_3$. It turns out that $\mathcal{F}(A, \mathcal{D})$ has positive measure, that is, it is a **rational** self-affine tile.

イロト イポト イヨト イヨト

The tile $\mathcal{F}(A, \mathcal{D})$ represented in \mathbb{R}^3 .

イロト イヨト イヨト イヨト

Challenges of this theory

- We consider the n-dimensional setting, meaning we need tools of linear algebra when working with lattices or quotients. In particular, we use the Frobenius normal form of A to compute |Zⁿ[A]/AZⁿ[A]|.
- Our representation space in non-Euclidean, which makes it harder to visualize the tilings and to draw pictures.
- When working with nonstandard digit systems, we loose the structure of the set of integer expansions and it is harder to define tilings.

Computing $|\mathcal{D}|$

We now show how to to compute $a = |\mathbb{Z}^n[A]/A\mathbb{Z}^n[A]|$.

Every $A \in \mathbb{Q}^{n \times n}$ is similar to a block diagonal matrix $F = \text{diag}(C_1, \ldots, C_k)$ called the **Frobenius normal form** of A (also known as rational canonical form), where each C_i is the companion matrix of a polynomial p_i $(1 \le i \le k)$.

These polynomials $p_i \in \mathbb{Q}[t]$ are assumed to be monic and to have the divisibility properties $p_1 \mid p_2 \mid \ldots \mid p_k \mid \chi_A$.

With this assumption they are unique, and are the so-called *invariant factors* of A.

イロト イボト イヨト イヨト

Proposition

Let $A \in \mathbb{Q}^{n \times n}$ be given, let p_i $(1 \leq i \leq k)$ be the corresponding invariant factors, and consider the integer polynomials $q_i = c_i p_i \in \mathbb{Z}[t]$, where each $c_i \in \mathbb{Z}$ is chosen so that q_i has coprime coefficients. Then

$$a = \prod_{i=1}^{k} |q_i(0)|.$$

We generalize the results obtained by Lagarias and Wang for integral self-affine tiles to the rational case.

Let $A \in \mathbb{Q}^{n \times n}$ be an expanding matrix and (A, \mathcal{D}) a digit system. Consider the associated set of fractional parts $\mathcal{F} = \mathcal{F}(A, \mathcal{D}) \subset \mathbb{K}_A.$

Theorem

The following assertions are equivalent:

- \mathcal{F} has postitive measure.
- \mathcal{F} has nonempty interior.
- *F* is the closure of its interior and its boundary ∂*F* has measure zero.

For $k \ge 1$, let \mathcal{D}_k be the set of strings of k digits in base A, namely

$$\mathcal{D}_k := \left\{ d_0 + Ad_1 + \dots + A^{k-1}d_{k-1} \mid d_j \in \mathcal{D} \right\}$$

and let $\mathcal{D}_{\infty} := \bigcup_{k \geqslant 1} \mathcal{D}_k$.

So, $arphi(\mathcal{D}_\infty)$ is the set of integer parts.

Definition (Uniform discreteness)

We say that a set $M \subset \mathbb{K}_A$ is uniformly discrete if there exists r > 0 such that every open ball of radius r in \mathbb{K}_A contains at most one point of M.

イロト イヨト イヨト イヨト

Recall that $\mathcal{F}(A, \mathcal{D})$ is a rational self-affine tile if it has positive measure.

Theorem

 $\mathcal{F}(A, \mathcal{D})$ is a rational self-affine tile if and only if, for every $k \ge 1$, all a^k expansions in $\varphi(\mathcal{D}_k)$ are distinct and $\varphi(\mathcal{D}_\infty)$ is a uniformly discrete set.

Corollary

If (A, D) is a standard digit system, then $\mathcal{F}(A, D)$ has positive measure.

イロト イヨト イヨト イヨト

For any $k \ge 1$ consider the difference sets

$$\mathcal{D}_k - \mathcal{D}_k = \{ \bar{d} - \bar{d}' \mid \bar{d}, \bar{d}' \in \mathcal{D}_k \}$$

and define

$$\Delta := \bigcup_{k=1}^{\infty} \varphi(\mathcal{D}_k - \mathcal{D}_k).$$

Theorem

Suppose $\mathcal{F} = \mathcal{F}(A, \mathcal{D})$ is a rational self-affine tile. Then:

- There exists a set of translations $\Gamma \subset \Delta$ such that $\mathcal{F} + \Gamma$ tiles \mathbb{K}_A .
- If **0** is an interior point of \mathcal{F} we can consider $\Gamma = \varphi(\mathcal{D}_{\infty})$.
- If Δ is a lattice then Δ is a tiling set for \mathcal{F} .

ヘロト ヘ節ト ヘヨト ヘヨト

For the example $\alpha = -\frac{3}{2}$ and $\mathcal{D} = \{0, 1, 2\}$, the set of integer parts $\varphi(\mathcal{D}_{\infty}) = \varphi(\mathbb{Z}[\frac{1}{2}])$ is a lattice, and the collection $\mathcal{F}(\alpha, \mathcal{D}) + \varphi(\mathbb{Z}[\frac{1}{2}])$ gives a tiling of $\mathbb{R} \times \mathbb{Q}_2$.

Our final result is the existence of a multiple tiling. It is fairly easy to prove for standard digit systems, but in our setting we made use of character theory of locally compact abelian groups.

Theorem
If $\mathcal{F} = \mathcal{F}(A, \mathcal{D})$ is a rational self-affine tile, then $\mathcal{F} + \varphi(\mathbb{Z}^n[A])$ is a
multiple tiling of \mathbb{K}_A .

Idea of proof: Consider the torus $\mathbb{T} := \mathbb{K}_A / \varphi(\mathbb{Z}^n[A])$ and let π be the canonical projection. Define

$$\Phi(x,y) := |\pi^{-1}(x,y) \cap \mathcal{F}|.$$

meaning Φ counts the points on \mathcal{F} that are congruent to (x, y) modulo $\varphi(\mathbb{Z}^n[A])$.

Lucía Rossi - Montanuniversität Leoben, Austria

To prove that $\mathcal{F} + \varphi(\mathbb{Z}^n[A])$ is a multiple tiling, it suffices to show that $\Phi(x, y)$ is constantly equal to some $k \ge 1$ almost everywhere. The value k is the order of the multiple tiling.

Let $\bar{\mu}$ be the Haar measure on the torus. It suffices to show that every $S\subset \mathbb{T}$ satisfies

$$\int_{S} \Phi(x, y) \, d\bar{\mu}(x, y) = k \, \bar{\mu}(S).$$

Denote the multiplication by A on \mathbb{T} as

 $\tau_A : \mathbb{T} \to \mathbb{T}; \quad (x, y) \mapsto A(x, y) \mod \varphi(\mathbb{Z}^n[A]).$

イロト イロト イヨト

Using the set equation of ${\mathcal F}$ on doing some change of variables we see that

$$\int_S \Phi(x,y) d\bar{\mu}(x,y) = \int_{\tau_A^{-1}(S)} \Phi(x,y) d\bar{\mu}(x,y).$$

It holds that Φ is constant a.e. if τ_A is ergodic.

To prove that τ_A is ergodic, we give an explicit formula for all the characters of \mathbb{K}_A and of \mathbb{T} and show that the trivial character $\chi = 1$ is the only character of \mathbb{T} that satisfies $\chi \circ \tau_A^k = \chi$ for some $k \ge 1$. (This implies ergodicity).

イロト イボト イヨト イヨト

Open questions

- Let $a \in \mathbb{Z}$ and $\mathcal{D} \subset \mathbb{Z}$. Suppose $\mathcal{F}(a, \mathcal{D})$ is a self-affine tile in \mathbb{R} . Let $2 \leq b < a$ such that a and b are coprime. Is $\mathcal{F}(\frac{a}{b}, \mathcal{D})$ a rational self-affine tile in $\mathbb{R} \times \mathbb{Q}_b$?
- Given $\frac{a}{b}$, can we classify all digit sets \mathcal{D} such that $\mathcal{F}(\frac{a}{b}, \mathcal{D})$ is a rational self-affine tile when a is a prime power, a product of two primes, etc.?
- Can we give an analytic criterion in terms of \mathcal{D} to determine whether $\mathcal{F}(A,\mathcal{D})$ is a rational self-affine tile?

留下 くほと くほど

Thank you!

Lucía Rossi - Montanuniversität Leoben, Austria

< ∃ >

3

4 □ > < /□ >