The carry propagation of the successor function

Jacques Sakarovitch

CNRS / Université de Paris and Telecom Paris, IPP

Joint work with Valérie Berthé, Christiane Frougny, and Michel Rigo

One World Numeration Seminar, 17 November 2020

Based on the paper

The carry propagation of the successor function, Advances in Applied Mathematics **120** (2020)

Part I

What is the carry propagation?

Adding machine

The Pascaline (1642)

featured the first carry propagation mechanism

1 1 0 0 1 0 1 1 203 1 1 0 0 1 1 0 102

1 1 0 0 1 0 1 1 203 - 1 1 0 0 1 1 0 102

Carry propagation prevents addition to be parallelable

Theorem (von Neumann et al. 63, Knuth 78, Pippenger 02) Average carry propagation length for addition of two uniformly distributed n-digit binary numbers = $\log_2(n) + O(1)$

1 1 0 0 1 0 1 1 203

1 1 0 0 1 0 1 1 203 - <u>1</u> 0

1 1 0 0 1 0 1 1 203 1 0 0

1 1 0 0 1 0 1 1 203 1 1 0 0

1 1 0 0 1 0 1 1 203 1 1 1 0 0 1 1 0 0

1 1 0 0 1 0 1 1 203 11001100 204 $cp_2(203) = 3$

1 1 0 0 1 0 1 1203 1 1 0 0 1 1 0 0 204 $cp_2(203) = 3$ Amortized carry propagation (in base 2)

 $CP_2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_2(i)$

11001011 203 1 1 0 0 1 1 0 0 204 $cp_2(203) = 3$ Amortized carry propagation (in base 2) $CP_2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_2(i)$ if it exists!

•	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15
10000	16
10001	17

•	0	1
1	1	2
10	2	
11	3	
100	4	
101	5	
110	6	
111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	
10000	16	
10001	17	

•	0	1
1	1	2
10	2	1
11	3	
100	4	
101	5	
110	6	
111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	
10000	16	
10001	17	

•	0	1
1	1	2
10	2	1
11	3	3
100	4	1
10 <mark>1</mark>	5	2
110	6	1
11 <mark>1</mark>	7	4
1000	8	1
100 <mark>1</mark>	9	2
10 10	10	1
101 <mark>1</mark>	11	3
1100	12	1
110 <mark>1</mark>	13	2
1110	14	1
111 <mark>1</mark>	15	5
10000	16	1
1000 <mark>1</mark>	17	2

•	0	1
1	1	11
10	2	1
11	3	111
100	4	1
101	5	11
110	6	1
111	7	1 1 1 1
1000	8	1
1001	9	11
1010	10	1
101 1	11	111
1100	12	1
110 <mark>1</mark>	13	11
1110	14	1
1111	15	11111
10000	16	1
10001	17	11

		0	1
	1	1	11
	10	2	1
	11	3	111
	100	4	1
1 1 1 2	10 <mark>1</mark>	5	11
$CP_2 = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{2^{n-1}} = 2$	110	6	1
	11 <mark>1</mark>	7	1111
	1000	8	1
	1001	9	11
	10 10	10	1
	101 <mark>1</mark>	11	111
	1100	12	1
	110 <mark>1</mark>	13	11
	1110	14	1
	111 <mark>1</mark>	15	11111
	10000	16	1
	10001	17	11

		0	1
	1	1	11
	10	2	1
	11	3	111
	100	4	1
1 1 1 2	10 1	5	11
$CP_2 = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{2^{n-1}} = 2$	110	6	1
$2 2^{2} 2^{3} 2^{-1}$	1 1 1	7	1111
	1000	8	1
1 1 1 p	100 <mark>1</mark>	9	11
$CP_p = 1 + \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots = \frac{p}{p-1}$	10 10	10	1
p p^2 p^2 p^{-1}	101 <mark>1</mark>	11	111
	1100	12	1
	110 <mark>1</mark>	13	11
	1110	14	1
	111 1	15	11111
	10000	16	1
	1000 1	17	11

1

Carry propagation for successor function in base Fibonacci 34 21 13 8 5 3 2 1

Carry propagation for successor function in base Fibonacci 34 21 13 8 5 3 2 1

Carry propagation for successor function in base Fibonacci 34 21 13 8 5 3 2 1 $cp_{F}(46) = 6$

Carry propagation for successor function in base Fibonacci 34 21 13 8 5 3 2 1 55 10010101 46 10100000 47 $cp_{r}(46) = 6$

Amortized carry propagation in base Fibonacci

 $\mathsf{CP}_F = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \mathsf{cp}_F(i)$ if it exists!

•	0
1	1
10	2
100	3
101	4
1000	5
1001	6
1010	7
10000	8
$1 \ 0 \ 0 \ 0 \ 1$	9
10010	10
10100	11
10101	12
100000	13
100001	14
100010	15
100100	16
100101	17

•	0	1
1	1	2
10	2	3
100	3	1
1 0 <mark>1</mark>	4	4
1000	5	1
100 <mark>1</mark>	6	2
1 0 <mark>1 0</mark>	7	5
10000	8	1
1000 <mark>1</mark>	9	2
100 <mark>10</mark>	10	3
10100	11	1
1010 <mark>1</mark>	12	6
100000	13	1
10000 <mark>1</mark>	14	2
1000 <mark>10</mark>	15	3
100100	16	1
10010 <mark>1</mark>	17	4

•	0	1
1	1	2
10	2	3
100	3	1
101	4	4
1000	5	1
1001	6	2
1 0 1 0	7	5
10000	8	1
1000 <mark>1</mark>	9	2
1 0 0 1 0	10	3
10100	11	1
1010 <mark>1</mark>	12	6
10000	13	1
100001	14	2
1000 <mark>10</mark>	15	3
100100	16	1
100101	17	4

CP*F* ?

	•	0	1
	1	1	2
	10	2	3
	100	3	1
	101	4	4
	1000	5	1
CP _F ?	1001	6	2
	1010	7	5
	10000	8	1
φ	10001	9	2
$F = \frac{1}{(\rho - 1)}$	10010	10	3
γ -	10100	11	1
	1010 <mark>1</mark>	12	6
	10000	13	1
	100001	14	2
	1000 <mark>10</mark>	15	3
	100 100	16	1
	100101	17	4

$$\mathsf{CP}_F = rac{\varphi}{\varphi - 1}$$
 ?

Part II

A first observation and its 3 consequences

 $cp_F(8) = 1$

 $cp_F(8) = 1$ $cp_F(9) = 2$

 $cp_F(8) = 1$ $cp_F(9) = 2$ $cp_F(10) = 3$

 $cp_F(8) = 1$ $cp_F(9) = 2$ $cp_F(10) = 3$ $cp_F(11) = 1$

 $cp_F(8) = 1$ $cp_F(9) = 2$ $cp_F(10) = 3$ $cp_F(11) = 1$

 $cp_{F}(12) = 6$

$$\sum_{i=8}^{i=12} \mathsf{cp}_F(i) = 13$$

What we learn from the primal observation

• A framework:

the Abstract Numeration System model

 A general working hypothesis: Prefix-closed Extendable Languages

 An essential parameter: The local growth rate

• A framework:

the Abstract Numeration System model Definition (Lecomte & Rigo 2001)

- A finite totally ordered alphabet e.g. $A = \{0, 1\}$
- \Rightarrow A^* equipped with the *radix ordering*

i.e. ordered first *by length*, and then, for words of equal length, ordered *lexicographically* •

e.g. $A^* = \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots$

• A framework:

the Abstract Numeration System model Definition (Lecomte & Rigo 2001)

- A finite totally ordered alphabet e.g. $A = \{0, 1\}$
- \Rightarrow A^* equipped with the *radix ordering*
- L ⊆ A* any *language* over A* ordered by radix ordering

e.g.
$$\textit{F} = arepsilon \cup 1 \textit{A}^* \setminus \textit{A}^* 11\textit{A}^*$$

 $F = \varepsilon, 1, 10, 100, 101, 1000, \dots$

• A framework:

the Abstract Numeration System model Definition (Lecomte & Rigo 2001)

- A finite *totally ordered* alphabet *e.g.* $A = \{0, 1\}$
- \Rightarrow A^* equipped with the *radix ordering*
- L ⊆ A* any *language* over A* ordered by radix ordering
- ⇒ Natural integers are given *representations* by means of words of *L*

i.e. $\langle n \rangle_L = (n+1)$ -th word of L in the radix ordering e.g. $\langle 6 \rangle_F = 1001$

• A framework:

the Abstract Numeration System model Definition (Lecomte & Rigo 2001)

- A finite totally ordered alphabet e.g. $A = \{0, 1\}$
- \Rightarrow A^* equipped with the *radix ordering*
- L ⊆ A* any *language* over A* ordered by radix ordering
- \Rightarrow Natural integers are given *representations* by means of words of *L*

 $L \subseteq A^*$ (together with the order on A) defines an ANS

Fact: All 'classical' numeration systems are ANS

What we learn from the primal observation: the ANS model All 'classical' numeration systems are ANS

	•	0
	1	1
	10	2
	11	3
	100	4
N. de	101	5
.)*	110	6
	111	7
	1000	8
	1001	9
	1010	10
	1011	11
	1100	12
	1101	13
	1110	14
	1111	15
	10000	16

$$L_2 = 1(0,1)^*$$

What we learn from the primal observation: the ANS model All 'classical' numeration systems are ANS

	•	•	0
	1	1	1
	10	10	2
	100	11	3
	101	100	4
	1000	101	5
$L_F = 1(0,1)^* \setminus (0,1)^* 11(0,1)^*$	1001	110	6
	1010	111	7
	10000	1000	8
	10001	1001	9
	10010	1010	10
	10100	1011	11
	10101	1100	12
1	L00000	1101	13
1	L00001	1110	14
1	L00010	1111	15
1	L00100	10000	16

What we learn from the primal observation: the ANS model Any language can be seen as an ANS

What we learn from the primal observation: the ANS model Any language can be seen as an ANS

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

• A framework:

the Abstract Numeration System model

 A general working hypothesis: Prefix-Closed Extendable Languages

• A framework:

the Abstract Numeration System model

 A general working hypothesis: Prefix-Closed Extendable Languages

 $L \subseteq A^*$ an ANS

• A framework:

the Abstract Numeration System model

 A general working hypothesis: Prefix-Closed Extendable Languages

 $L \subseteq A^*$ an ANS

• A framework:

the Abstract Numeration System model

 A general working hypothesis: Prefix-Closed Extendable Languages

 $L \subseteq A^*$ an ANS

Notation

$$\begin{aligned} \mathbf{u}_L(\ell) &= \mathsf{card}\left(L \cap A^\ell\right) \\ \mathbf{v}_L(\ell) &= \mathsf{card}\left(L \cap A^{\leqslant \ell}\right) = \sum_{i=0}^{\ell} \mathbf{u}_L(i) \end{aligned}$$

• A framework:

the Abstract Numeration System model

 A general working hypothesis: Prefix-Closed Extendable Languages

 $L \subseteq A^*$ an ANS

Notation

$$\begin{aligned} \mathbf{u}_L(\ell) &= \mathsf{card} \left(L \cap A^\ell \right) \\ \mathbf{v}_L(\ell) &= \mathsf{card} \left(L \cap A^{\leqslant \ell} \right) = \sum_{i=0}^{\ell} \mathbf{u}_L(i) \end{aligned}$$

The formula we want:

$$\sum_{i=\mathsf{v}_L(\ell-1)}^{\mathsf{v}_L(\ell)-1} \operatorname{cp}_L(i) = \mathsf{v}_L(\ell)$$

the Abstract Numeration System model

 A general working hypothesis: Prefix-Closed Extendable Languages

 $L \subseteq A^*$ an ANS

Notation

$$\begin{aligned} \mathbf{u}_L(\ell) &= \mathsf{card} \left(L \cap A^\ell \right) \\ \mathbf{v}_L(\ell) &= \mathsf{card} \left(L \cap A^{\leqslant \ell} \right) = \sum_{i=0}^{\ell} \mathbf{u}_L(i) \end{aligned}$$

The formula we want:

$$\sum_{i=\mathbf{v}_L(\ell-1)}^{\mathbf{v}_L(\ell)-1} \operatorname{cp}_L(i) = \mathbf{v}_L(\ell)$$

requires *L prefix-closed* and *extendable*

i.e. to be a PCE language

A framework:

the Abstract Numeration System model

A general working hypothesis: Prefix-Closed Extendable Languages

 $L \subset A^*$ an ANS

Notation

$$\begin{aligned} \mathbf{u}_L(\ell) &= \mathsf{card} \left(L \cap A^\ell \right) \\ \mathbf{v}_L(\ell) &= \mathsf{card} \left(L \cap A^{\leqslant \ell} \right) = \sum_{i=0}^{\ell} \mathbf{u}_L(i) \end{aligned}$$

The formula we want:

$$\sum_{i=\mathbf{v}_L(\ell-1)}^{\mathbf{v}_L(\ell)-1} \operatorname{cp}_L(i) = \mathbf{v}_L(\ell)$$

Fact:

'All' 'classical' ANS are PCE

What we learn from the primal observation: an hypothesis 'All' 'classical' ANS are $_{\rm PCE}$

 L_2
What we learn from the primal observation: an hypothesis The ANS we consider are $\ensuremath{\mathsf{PCE}}$

What we learn from the primal observation: an hypothesis The ANS we consider are $\ensuremath{\mathsf{PCE}}$

bd c d da d b d c d d bda bdb bdc bdd cda cdb cdc

. b c d

- ► A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

- ► A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

From

$$\sum_{i=\mathbf{v}_L(\ell-1)}^{\mathbf{v}_L(\ell)-1} \operatorname{cp}_L(i) = \mathbf{v}_L(\ell)$$

- A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

From

$$\begin{split} \sum_{i=\mathbf{v}_{L}(\ell-1)} \mathrm{cp}_{L}(i) &= \mathbf{v}_{L}(\ell) \\ \text{follows} \qquad \sum_{i=0}^{\mathbf{v}_{L}(\ell)-1} \mathrm{cp}_{L}(i) &= \sum_{j=0}^{\ell} \mathbf{v}_{L}(j) \end{split}$$

 $\mathbf{v}_{l}(\ell) - 1$

- A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

- A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

Intermede: a freshperson calculus lemma

- ► A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

If
$$CP_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_L(i)$$
 exists,

Proposition

exists

- A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

1.11

Proposition
If
$$CP_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_L(i)$$
 exists,
then the local growth rate $\lim_{\ell \to \infty} \frac{\mathbf{u}_L(\ell+1)}{\mathbf{u}_L(\ell)} = \gamma_L$

exists

- A framework: the Abstract Numeration System model
- A general working hypothesis: Prefix-Closed Extendable Languages
- An essential parameter: the local growth rate

Proposition
If
$$CP_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_L(i)$$
 exists,
then the local growth rate $\lim_{\ell \to \infty} \frac{\mathbf{u}_L(\ell+1)}{\mathbf{u}_L(\ell)} =$

then the local growth rate $\mathsf{lim}_{\ell\to\infty}$

1.11

and
$$CP_L = \frac{\gamma_L}{\gamma_L - 1}$$

db d c d d dad dbd dcd d d d dada dadb dadc dadd dbda dbdb dbdc

d

٠ b С d bd c d d a d b d c d d bda bdb bdc bdd cda cdb cdc

A natural question

Proposition
If
$$CP_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_L(i)$$
 exists,
then the local growth rate $\lim_{\ell \to \infty} \frac{\mathbf{u}_L(\ell+1)}{\mathbf{u}_L(\ell)} = \gamma_L$ exists
and $CP_L = \frac{\gamma_L}{\gamma_L - 1}$

A natural question

Proposition
If
$$CP_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} cp_L(i)$$
 exists,
then the local growth rate $\lim_{\ell \to \infty} \frac{\mathbf{u}_L(\ell+1)}{\mathbf{u}_L(\ell)} = \gamma_L$ exists
and $CP_L = \frac{\gamma_L}{\gamma_L - 1}$

Question

Is the existence of the local growth rate sufficient

to insure the existence of the carry propagation?

A first conclusion

The *existence* of the carry propagation is more difficult to prove than the *computation* of the carry propagation itself

Roadmap

Roadmap

Part III

Algebra

Surprise !

 $\mathbf{u}_V(\ell) = 3.2^{\ell-1}$

 $\mathbf{u}_V(\ell) = 3.2^{\ell-1}$

 $\liminf_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_{V}(i) \leq \frac{28}{15} < \frac{13}{6} \leq \limsup_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_{V}(i)$

 $\mathbf{u}_V(\ell) = 3.2^{\ell-1}$

 γ_V exists but CP_V does not exists

Generating functions

Definition

 $L \subseteq A^*$ $g_L(z)$ generating function of L $g_L(z) = \sum_{\ell=0}^{\infty} u_L(\ell) z^{\ell}$

Generating functions

Definition

 $L \subseteq A^*$ $g_L(z)$ generating function of L $g_L(z) = \sum_{\ell=0}^{\infty} u_L(\ell) z^{\ell}$

L rational language \implies $g_L(z)$ rational function $g_L(z) = \frac{R(z)}{Q(z)}$ $R(z), Q(z) \in \mathbb{Z}[z]$

Generating functions of rational languages

L rational language \implies $\mathsf{g}_L(z)$ rational function $\mathsf{g}_L(z) \quad uniquely \text{ written as}$

$$egin{aligned} \mathsf{g}_L(z) &= T(z) + rac{S(z)}{Q(z)} & T(z), S(z), Q(z) \in \mathbb{Z}[z] \end{aligned}$$
 with $\deg S < \deg Q$ and $Q(0)
eq 0$

Generating functions of rational languages

L rational language \implies $\mathsf{g}_L(z)$ rational function $\mathsf{g}_L(z) \quad uniquely \text{ written as}$

$$\mathsf{g}_L(z) = T(z) + rac{S(z)}{Q(z)}$$
 $T(z), S(z), Q(z) \in \mathbb{Z}[z]$

with deg $S < \deg Q$ and $Q(0) \neq 0$

 P_L is the reciprocal polynomial of Q: $P_L(z) = Q(\frac{1}{z}) z^{\deg Q}$

Generating functions of rational languages

L rational language \implies ${\rm g}_L(z)$ rational function ${\rm g}_L(z) \ \ uniquely \ {\rm written \ as}$

$$\mathsf{g}_L(z) = T(z) + rac{S(z)}{Q(z)}$$
 $T(z), S(z), Q(z) \in \mathbb{Z}[z]$

with deg $S < \deg Q$ and $Q(0) \neq 0$

 P_L is the *reciprocal polynomial* of Q: $P_L(z) = Q(\frac{1}{z}) z^{\deg Q}$

The eigenvalues of L are the zeroes $\lambda_1, \lambda_2, \ldots, \lambda_t$ of P_L and

$$\forall \ell \in \mathbb{N}$$
 $\mathbf{u}_L(\ell) = \sum_{j=1}^t \lambda_j^\ell P_j(\ell)$

where $\deg P_j =$ multiplicity of λ_j in P_L minus 1

Positive rational functions

Theorem (Berstel 71) $f(z) \mathbb{R}_+$ -rational function (not a polynomial) λ maximum of the moduli of its eigenvalues. (i) λ is an eigenvalue of f(z) (hence an eigenvalue in \mathbb{R}_+) (ii) Every eigenvalue of f(z) of modulus λ is of the form $\lambda e^{i\theta}$, where $e^{i\theta}$ is a root of the unity (iii) The multiplicity of any eigenvalue of modulus λ is at most that of λ

Positive rational functions

Theorem (Berstel 71) $f(z) \mathbb{R}_+$ -rational function (not a polynomial) λ maximum of the moduli of its eigenvalues. (i) λ is an eigenvalue of f(z) (hence an eigenvalue in \mathbb{R}_+) (ii) Every eigenvalue of f(z) of modulus λ is of the form $\lambda e^{i\theta}$, where $e^{i\theta}$ is a root of the unity (iii) The multiplicity of any eigenvalue of modulus λ is at most that of λ

Definition

(i) f(z) is DEV if λ is the only eigenvalue of modulus λ
(ii) f(z) is ADEV if the multiplicity of λ is greater than the multiplicity of the other eigenvalues of modulus λ

Some examples

 $\mathbf{u}_D(\ell) = (\frac{1}{4}\ell + \frac{7}{8})2^\ell + \frac{1}{8}(-2)^\ell$

b

a.b

 \mathcal{D}

Some examples

• *O* is neither DEV nor ADEV $u_O(\ell) = \frac{3}{4}2^\ell + \frac{1}{4}(-2)^\ell$

• V is DEV $\mathbf{u}_V(\ell) = \frac{3}{2}2^\ell$

• *D* is ADEV but not DEV $u_D(\ell) = (\frac{1}{4}\ell + \frac{7}{8})2^\ell + \frac{1}{8}(-2)^\ell$

Theorem A rational language L is ADEV iff the local growth rate γ_L exists. In this case, the modulus of L is equal to γ_L .

Theorem

L ADEV rational PCE and λ its modulus.

If every quotient of L whose modulus is equal to λ is ADEV, then CP_L exists and CP_L = $\frac{\lambda}{\lambda - 1}$

Theorem

L ADEV rational PCE and λ its modulus.

If every quotient of L whose modulus is equal to λ is ADEV, then CP_L exists and $CP_L = \frac{\lambda}{\lambda - 1}$

$Part \ IV$

Ergodic Theory

Our problem

Does
$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_L(i)$$
 exist ?

Our problem

Does
$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_L(i)$$
 exist ?

A rewriting
Does
$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_L(\operatorname{Succ}_L^i(\varepsilon))$$
 exist ?

Our problem

Does
$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_L(\operatorname{Succ}_L^i(\varepsilon))$$
 exist ?

Our problem

Does
$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \operatorname{cp}_L(\operatorname{Succ}_L^i(\varepsilon))$$
 exist ?

The Ergodic Theorem

Theorem (Birkhoff 31)

Let (\mathcal{K}, τ) be a dynamical system, μ a τ -invariant measure on \mathcal{K} and $f: \mathcal{K} \to \mathbb{R}$ in $L^1(\mu)$ (f is absolutely μ -integrable). If (\mathcal{K}, τ) is ergodic, then, for μ -almost all s in \mathcal{K} ,

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau^i(s)) = \int_{\mathcal{K}} f \, d\mu \quad . \tag{*}$$

If (\mathcal{K}, τ) is uniquely ergodic and if f and τ are continuous, then (*) holds for every s in \mathcal{K} .

► Dynamical system $(\mathcal{K}, \tau) = compact set \mathcal{K}$ equipped with $\tau : \mathcal{K} \to \mathcal{K}$

- ► Dynamical system $(\mathcal{K}, \tau) = compact set \mathcal{K}$ equipped with $\tau : \mathcal{K} \to \mathcal{K}$
- ▶ Probability measure μ on \mathcal{K} is τ -invariant if τ measurable and $\forall B$ measurable, $\mu(\tau^{-1}(B)) = \mu(B)$

- ► Dynamical system $(\mathcal{K}, \tau) = compact set \mathcal{K}$ equipped with $\tau : \mathcal{K} \to \mathcal{K}$
- ▶ Probability measure μ on \mathcal{K} is τ -invariant
 - if au measurable and $\forall B$ measurable, $\mu(\tau^{-1}(B)) = \mu(B)$
- (\mathcal{K}, τ) is ergodic if $\tau^{-1}(B) = B$ implies $\mu(B) = 0$ or 1 for every τ -invariant measure μ

- ► Dynamical system $(\mathcal{K}, \tau) = compact set \mathcal{K}$ equipped with $\tau : \mathcal{K} \to \mathcal{K}$
- ▶ Probability measure μ on \mathcal{K} is τ -invariant if τ measurable and $\forall B$ measurable, $\mu(\tau^{-1}(B)) = \mu(B)$
- (\mathcal{K}, τ) is ergodic if $\tau^{-1}(B) = B$ implies $\mu(B) = 0$ or 1 for every τ -invariant measure μ
- (\mathcal{K}, τ) is uniquely ergodic if

it admits a *unique* τ -invariant measure

- ► Dynamical system $(\mathcal{K}, \tau) = compact set \mathcal{K}$ equipped with $\tau : \mathcal{K} \to \mathcal{K}$
- ▶ Probability measure μ on \mathcal{K} is τ -invariant if τ measurable and $\forall B$ measurable, $\mu(\tau^{-1}(B)) = \mu(B)$
- (\mathcal{K}, τ) is ergodic if $\tau^{-1}(B) = B$ implies $\mu(B) = 0$ or 1 for every τ -invariant measure μ

•
$$(\mathcal{K}, \tau)$$
 is uniquely ergodic if
it admits a *unique* τ -invariant measure

Theorem (Birkhoff 31)

Let (\mathcal{K}, τ) be a dynamical system, $\mu \ a \ \tau$ -invariant measure on \mathcal{K} and $f: \mathcal{K} \to \mathbb{R}$ in $L^1(\mu)$. If (\mathcal{K}, τ) is ergodic, then for μ -almost all $s \in \mathcal{K}$ $\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau^i(s)) = \int_{\mathcal{K}} f \ d\mu$ (*) If (\mathcal{K}, τ) is uniquely ergodic and if f and τ are continuous, then (*) holds for every s in \mathcal{K} .

Turning a numeration system into a dynamical system

Turning a numeration system into a dynamical system

•
$$A = \{0, 1, \dots, r-1\}$$
•
$$A = \{0, 1, \dots, r-1\}$$

• $L \subseteq (A \setminus \{0\})A^*$: no word of L 'begins' with 0

•
$$A = \{0, 1, \dots, r-1\}$$

• $L \subseteq (A \setminus \{0\})A^*$: no word of L 'begins' with 0

►
$${}^{\omega}\!A$$
 = set of left infinite words over A
 $s = \cdots s_2 s_1 s_0$ and $s_{[\ell,j]} = s_\ell s_{\ell-1} \cdots s_j$
 $w \mapsto {}^{\omega} 0 w$ induces a bijection between L and ${}^{\omega} 0 L$

•
$$A = \{0, 1, \dots, r-1\}$$

• $L \subseteq (A \setminus \{0\})A^*$: no word of L 'begins' with 0

►
$${}^{\omega}\!A$$
 = set of left infinite words over A
 $s = \cdots s_2 s_1 s_0$ and $s_{[\ell,j]} = s_{\ell} s_{\ell-1} \cdots s_j$
 $w \mapsto {}^{\omega} 0 w$ induces a bijection between L and ${}^{\omega} 0 L$

▶ ${}^{\omega}\!\!A$ with the 'right factor distance' topology is a *compact set* Basis: *cylinders* $[w] = {}^{\omega}\!\!A w$

•
$$A = \{0, 1, \dots, r-1\}$$

• $L \subseteq (A \setminus \{0\})A^*$: no word of L 'begins' with 0

►
$${}^{\omega}\!A$$
 = set of left infinite words over A
 $s = \cdots s_2 s_1 s_0$ and $s_{[\ell,j]} = s_\ell s_{\ell-1} \cdots s_j$
 $w \mapsto {}^{\omega} 0 w$ induces a bijection between L and ${}^{\omega} 0 L$

▶ "A with the 'right factor distance' topology is a compact set Basis: cylinders $[w] = {}^{\omega}\!Aw$

► Compactification of L : $\mathcal{K}_L = \overline{w0L}$ $\mathcal{K}_L = \left\{ s \in \mathcal{A} \mid \forall j \in \mathbb{N} \quad \exists w^{(j)} \in 0^*L \quad s_{[j,0]} \text{ right factor of } w^{(j)} \right\}$

Definition of the odometer

Definition of the odometer

► Since
$$L \subseteq (A \setminus \{0\})A^*$$
, Succ_L defined on ${}^{\omega}0L$ by
Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

Definition of the odometer

► Since
$$L \subseteq (A \setminus \{0\})A^*$$
, $Succ_L$ defined on ${}^{\omega}0L$ by
 $Succ_L({}^{\omega}0w) = {}^{\omega}0Succ_L(w)$

• Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

- Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$
- Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

• Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$

• Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Extension of the carry propagation

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

• Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$

• Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Extension of the carry propagation

$$\Delta(s,t) = \begin{cases} \min \left\{ j \in \mathbb{N} \mid s_{[\infty,j]} = t_{[\infty,j]} \right\} & \text{if such } j \text{ exist} \\ +\infty & \text{otherwise} \end{cases}$$

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

• Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$

• Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Extension of the carry propagation

$$\Delta(s,t) = \begin{cases} \min \left\{ j \in \mathbb{N} \mid s_{[\infty,j]} = t_{[\infty,j]} \right\} & \text{if such } j \text{ exist} \\ +\infty & \text{otherwise} \end{cases}$$

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

- Odometer τ_L on $\mathcal{K}_L =$ any extension of Succ_L
- Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Extension of the carry propagation

Proposition

If τ_L is continuous,

then cp_L is continuous at any point where it takes finite values.

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

• Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$

• Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Where we are

We write $0 = {}^{\omega}0$

$$\mathsf{CP}_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \mathsf{cp}_L(\tau_L^i(0))$$

Definition of the odometer

► Since $L \subseteq (A \setminus \{0\})A^*$, Succ_L defined on ${}^{\omega}0L$ by Succ_L(${}^{\omega}0w$) = ${}^{\omega}0$ Succ_L(w)

- Odometer τ_L on $\mathcal{K}_L =$ any extension of $Succ_L$
- Succ_L continuous \implies τ_L unique continuous extension of Succ_L

Where Birkhoff Theorem leads us

We want to show that 0 is a point such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=0}^{N-1}\operatorname{cp}_{L}(\tau_{L}^{i}(0))=\int_{\mathcal{K}_{L}}\operatorname{cp}_{L}d\mu$$

▶ Basis = strictly increasing sequence of integers $G = (G_{\ell})_{\ell \in \mathbb{N}}$ with $G_0 = 1$

▶ Basis = strictly increasing sequence of integers $G = (G_{\ell})_{\ell \in \mathbb{N}}$ with $G_0 = 1$

► Greedy algorithm yields greedy G-expansion of integer n

- ▶ Basis = strictly increasing sequence of integers $G = (G_{\ell})_{\ell \in \mathbb{N}}$ with $G_0 = 1$
- ► Greedy algorithm yields greedy G-expansion of integer n
 - k defined by $G_k \leq n < G_{k+1}$

set $x_k = q(n, G_k)$ and $r_k = r(n, G_k)$

- ▶ Basis = strictly increasing sequence of integers $G = (G_\ell)_{\ell \in \mathbb{N}}$ with $G_0 = 1$
- ► Greedy algorithm yields greedy G-expansion of integer n

• k defined by
$$G_k \leqslant n < G_{k+1}$$

set $x_k = q(n, G_k)$ and $r_k = r(n, G_k)$

• for every i , $k-1 \geqslant i \geqslant 0$, set

 $x_i = q(r_{i+1}, G_i)$ and $r_i = r(r_{i+1}, G_i)$

- ▶ Basis = strictly increasing sequence of integers $G = (G_\ell)_{\ell \in \mathbb{N}}$ with $G_0 = 1$
- ► Greedy algorithm yields greedy G-expansion of integer n

• k defined by
$$G_k \leq n < G_{k+1}$$

set $x_k = q(n, G_k)$ and $r_k = r(n, G_k)$

• for every
$$i$$
, $k-1 \ge i \ge 0$, set
 $x_i = q(r_{i+1}, G_i)$ and $r_i = r(r_{i+1}, G_i)$

•
$$n = x_k G_k + x_{k-1} G_{k-1} + \dots + x_0 G_0$$

- ▶ Basis = strictly increasing sequence of integers $G = (G_\ell)_{\ell \in \mathbb{N}}$ with $G_0 = 1$
- ► Greedy algorithm yields greedy G-expansion of integer n

• k defined by
$$G_k \leq n < G_{k+1}$$

set $x_k = q(n, G_k)$ and $r_k = r(n, G_k)$

• for every i, $k-1 \ge i \ge 0$, set $x_i = q(r_{i+1}, G_i)$ and $r_i = r(r_{i+1}, G_i)$

•
$$n = x_k G_k + x_{k-1} G_{k-1} + \dots + x_0 G_0$$

•
$$L_G = \{ \langle n \rangle_G \mid n \in \mathbb{N} \}$$

▶ Basis = strictly increasing sequence of integers $G = (G_\ell)_{\ell \in \mathbb{N}}$ with $G_0 = 1$

• $L_G = \{ \langle n \rangle_G \mid n \in \mathbb{N} \}$

- ▶ Basis = strictly increasing sequence of integers $G = (G_\ell)_{\ell \in \mathbb{N}}$ with $G_0 = 1$
- $L_G = \{ \langle n \rangle_G \mid n \in \mathbb{N} \}$
- If $r = \limsup \left\lceil \frac{G_{\ell+1}}{G_{\ell}} \right\rceil$ is finite $L_G \subseteq A_G^*$ with $A_G = \{0, 1, \dots, r-1\}$

- ▶ Basis = strictly increasing sequence of integers $G = (G_\ell)_{\ell \in \mathbb{N}}$ with $G_0 = 1$
- $L_G = \{ \langle n \rangle_G \mid n \in \mathbb{N} \}$

• If
$$r = \limsup \left\lceil \frac{G_{\ell+1}}{G_{\ell}} \right\rceil$$
 is finite
 $L_G \subseteq A_G^*$ with $A_G = \{0, 1, \dots, r-1\}$

► 0^{*}*L*_{*G*} is closed under right factor and $\mathcal{K}_{G} = \overline{{}^{\omega} 0 L_{G}} = \left\{ s \in {}^{\omega}\!A \mid \forall j \in \mathbb{N} \qquad s_{[j,0]} \in 0^{*}L_{G} \right\}$

Ergodicity of greedy numeration systems

Theorem (Barat–Grabner 16, Grabner–Liardet–Tichy 95) Let G be a GNS. For every s in \mathcal{K}_G , $\lim_{j\to\infty} \operatorname{Succ}_G(s_{[j,0]})$ exists

and defines the odometer $au_{\mathsf{G}} \colon \mathcal{K}_{\mathsf{G}} o \mathcal{K}_{\mathsf{G}}$:

 $\forall s \in \mathcal{K}_G \qquad \tau_G(s) = \lim_{j \to \infty} \operatorname{Succ}_G(s_{[j,0]})$.

Ergodicity of greedy numeration systems

Theorem (Barat–Grabner 16, Grabner–Liardet–Tichy 95) Let G be a GNS. For every s in \mathcal{K}_G , $\lim_{j\to\infty} \operatorname{Succ}_G(s_{[j,0]})$ exists and defines the odometer $\tau_G \colon \mathcal{K}_G \to \mathcal{K}_G$:

 $\forall s \in \mathcal{K}_G \qquad \tau_G(s) = \lim_{j \to \infty} \operatorname{Succ}_G(s_{[j,0]})$.

Definition

A GNS *G* is said to be *exponential* if there exist two real constants $\alpha > 1$ and C > 0such that $G_{\ell} \sim C \alpha^{\ell}$ when ℓ tends to infinity.

Ergodicity of greedy numeration systems

Theorem (Barat–Grabner 16, Grabner–Liardet–Tichy 95) Let G be a GNS. For every s in \mathcal{K}_G , $\lim_{j\to\infty} \operatorname{Succ}_G(s_{[j,0]})$ exists and defines the odometer $\tau_G \colon \mathcal{K}_G \to \mathcal{K}_G$: $\forall s \in \mathcal{K}_G$ $\tau_G(s) = \lim_{j\to\infty} \operatorname{Succ}_G(s_{[j,0]})$. Definition A GNS G is said to be exponential if there exist two real constants $\alpha > 1$ and C > 0

such that $G_{\ell} \sim C \alpha^{\ell}$ when ℓ tends to infinity.

Theorem (Barat–Downarowicz–Liardet 02)

If G is an exponential GNS, then the dynamical system (\mathcal{K}_G, τ_G) is uniquely ergodic.

Theorem

If G is an exponential GNS, then CP_G exists.

Theorem

If G is an exponential GNS, then CP_G exists.

Corollary Let G be an exponential GNS with $G_{\ell} \sim C \alpha^{\ell}$. If L_G is PCE, then CP_G exists and $CP_G = \frac{\alpha}{\alpha - 1}$.

Theorem

If G is an exponential GNS, then CP_G exists.

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

- G exponential GNS implies
 - (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

- G exponential GNS implies
 - (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.
 - ▶ 0 is a generic point

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

- (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.
- ▶ 0 is a generic point

 $\lim_{N\to\infty}\frac{1}{N}\operatorname{card}\left(\left\{i \mid \tau_{G}^{i}(0) \in [w]\right\}\right) = \mu_{G}([w])$

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

- (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.
- ▶ 0 is a generic point

$$\lim_{N\to\infty}\frac{1}{N}\operatorname{card}\left(\left\{i \mid \tau_{G}^{i}(0) \in [w]\right\}\right) = \mu_{G}([w]) = \int_{\mathcal{K}_{G}} \chi_{[w]} \, d\mu_{G}$$

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

- (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.
- ▶ 0 is a generic point

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[w]}(\tau_G^i(0)) = \mu_G([w]) = \int_{\mathcal{K}_G} \chi_{[w]} d\mu_G$$
Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

- (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.
- 0 is a generic point

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[w]}(\tau_G^i(0)) = \mu_G([w]) = \int_{\mathcal{K}_G} \chi_{[w]} d\mu_G$$

► Implies $\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau_G^i(0)) = \int_{\mathcal{K}_G} f d\mu_G$ for Riemann-integrable f

Theorem

If G is an exponential GNS, then CP_G exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

- (\mathcal{K}_G, τ_G) is *uniquely ergodic* μ_G the τ_G -invariant measure.
- 0 is a generic point

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \chi_{[w]}(\tau_G^i(0)) = \mu_G([w]) = \int_{\mathcal{K}_G} \chi_{[w]} d\mu_G$$

► Does not imply $\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau_G^i(0)) = \int_{\mathcal{K}_G} f d\mu_G$ for any f

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

► cp_G is not *Riemann-integrable*

should be treated as an *improper integral*

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

► cp_G is not *Riemann-integrable*

should be treated as an *improper integral*

$$\blacktriangleright \quad \forall k \qquad f_k(s) = \left\{ \begin{array}{ll} \operatorname{cp}_G(s) & \text{if } \operatorname{cp}_G(s) \leqslant k+1 \\ 0 & \text{otherwise} \end{array} \right.$$

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

•
$$cp_G$$
 is not *Riemann-integrable*

should be treated as an *improper integral*

$$\blacktriangleright \quad \forall k \qquad f_k(s) = \left\{ \begin{array}{ll} \operatorname{cp}_G(s) & \text{if } \operatorname{cp}_G(s) \leqslant k+1 \\ 0 & \text{otherwise} \end{array} \right.$$

•
$$\int_{\mathcal{K}_G} \operatorname{cp}_G d\mu_G$$
 exists and $\lim_{k \to \infty} \int_{\mathcal{K}_G} f_k d\mu_G = \int_{\mathcal{K}_G} \operatorname{cp}_G d\mu_G$

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

• cp_G is in $L^1(\mu_G)$

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

• cp_G is in $L^1(\mu_G)$

•
$$\forall N < G_{k+1}$$
 $\sum_{i=0}^{N-1} f_k(\tau_G^i(0)) = \sum_{i=0}^{N-1} f_{k-1}(\tau_G^i(0)) + \left\lfloor \frac{N}{G_k} \right\rfloor (k+1)$

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

• cp_G is in $L^1(\mu_G)$

•
$$\forall N < G_{k+1}$$
 $\sum_{i=0}^{N-1} f_k(\tau_G^i(0)) = \sum_{i=0}^{N-1} f_{k-1}(\tau_G^i(0)) + \left\lfloor \frac{N}{G_k} \right\rfloor (k+1)$

► Key result $\forall N \in \mathbb{N}$ $\sum_{i=0}^{N-1} f_k(\tau_G^i(0)) = \sum_{i=0}^{N-1} f_{k-1}(\tau_G^i(0)) + \left\lfloor \frac{N}{G_k} \right\rfloor (k+1)$

Theorem

If G is an exponential GNS, then CP_G exists.

How the proof goes

• cp_G is in $L^1(\mu_G)$

•
$$\forall N < G_{k+1}$$
 $\sum_{i=0}^{N-1} f_k(\tau_G^i(0)) = \sum_{i=0}^{N-1} f_{k-1}(\tau_G^i(0)) + \left\lfloor \frac{N}{G_k} \right\rfloor (k+1)$

► Key result $\forall N \in \mathbb{N}$ $\sum_{i=0}^{N-1} f_k(\tau_G^i(0)) = \sum_{i=0}^{N-1} f_{k-1}(\tau_G^i(0)) + \left\lfloor \frac{N}{G_k} \right\rfloor (k+1)$

Theorem

If G is an exponential GNS, then CP_G exists.

Corollary Let G be an exponential GNS with $G_{\ell} \sim C \alpha^{\ell}$. If L_G is PCE, then CP_G exists and $CP_G = \frac{\alpha}{\alpha - 1}$.

Roadmap

Comme il y a une infinité de choses sages qui sont menées de manière très folle, il y a aussi des folies qui sont menées de manière très sage. MONTESQUIEU

Just as wise ends are oftentimes sought in the most foolish way, so foolishness is sometimes sought with great wisdom. Translation by REUBEN THOMAS