The carry propagation of
the successor function

Jacques Sakarovitch

CNRS / Université de Paris and Telecom Paris, IPP

Joint work with
Valérie Berthé, Christiane Frougny, and Michel Rigo

One World Numeration Seminar, 17 November 2020



Based on the paper

The carry propagation of the successor function,

Advances in Applied Mathematics 120 (2020)



Part I

What is the carry propagation?



Adding machine

The Pascaline (1642)

featured the first carry propagation mechanism
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Carry propagation prevents addition to be parallelable
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Theorem (von Neumann et al. 63, Knuth 78, Pippenger 02)

Average carry propagation length for addition of
two uniformly distributed n-digit binary numbers =

log,(n) + O (1)
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CPy = limpy_yo0 7 Z,N:_ol cpa(/)
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Amortized carry propagation (in base 2)

CP, = IimN—)oo% ZIN:_Ol cpy(f) if it exists!
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Carry propagation for successor function in base p
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Carry propagation for successor function in base Fibonacci

55 13 8 5 3 2 1

10010101 4
=+ 1

10100000 4

cpr(46) =6

Amortized carry propagation in base Fibonacci

CPr = limy oo 10 cpr(i) if it exists!
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Part 11

A first observation and its 3 consequences
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What we learn from the primal observation

» A framework:
the Abstract Numeration System model

» A general working hypothesis:
Prefix-closed Extendable Languages

» An essential parameter:
The local growth rate
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» A framework:
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Definition (Lecomte & Rigo 2001)
e A finite totally ordered alphabet eg A= {0,1}

= A" equipped with the radix ordering

i.e. ordered first by length, and then,
for words of equal length, ordered lexicographically o

eg. A* =¢,0,1,00,01,10,11,000,001,...
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» A framework:
the Abstract Numeration System model

Definition (Lecomte & Rigo 2001)

e A finite totally ordered alphabet eg A= {0,1}
= A* equipped with the radix ordering

e | C A" any language over A*
ordered by radix ordering

= Natural integers are given representations

by means of words of L

ie. (n)y = (n+ 1)-th word of L in the radix ordering
eg. (6)F =1001



What we learn from the primal observation: the ANS model

» A framework:
the Abstract Numeration System model

Definition (Lecomte & Rigo 2001)
e A finite totally ordered alphabet eg A= {0,1}

= A" equipped with the radix ordering

e | C A" any language over A*
ordered by radix ordering

= Natural integers are given representations
by means of words of L

L C A* (together with the order on A) defines an ANS

Fact: All “classical’ numeration systems are ANS
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All “classical’ numeration systems are ANS
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What we learn from the primal observation: the ANS model

Any language can be seen as an ANS
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Notation
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v (0) = card (LN ASY) = Zf:o ug (i)

VL(K)f].

The formula we want: Z cp () = vi(9)
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What we learn from the primal observation: a new parameter
» A framework: the Abstract Numeration System model

» A general working hypothesis:
Prefix-Closed Extendable Languages

» An essential parameter: the local growth rate

vi(6)-1
From Z cpr (i) = v ()
i=v;(¢—1)
v (£)—1 L
follows Z cp (i) = ZVLU)
i=0 Jj=0
=

hence, if CP; = Ilimy_so

¢

1
th CP, =i oo ' ist
en L= limy_, o JZ_;VL(J) exists
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What we learn from the primal observation: a new parameter
» A framework: the Abstract Numeration System model

» A general working hypothesis:
Prefix-Closed Extendable Languages

» An essential parameter: the local growth rate

Proposition

N—1
. 1 . .
If CP.=limyooo N EO cp. (i) exists,
i

UL(E + 1)
UL(K)

then the local growth rate  limy_, =7 exists

L
-1

and CP; =
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A natural question

Proposition
=
If  CPL=limy_oo N cp (i) exists,
i=0
1
then the local growth rate  limy_ M =
u.(€)

and CP, = n
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exists



A natural question

Proposition

=
-

1

— cpy (7 exists,
N : PL( )

If CPL = |im/\/%oo

Il
o

u(¢+1)

then the local growth rate  limy_ =y
u(¢)

and CP; = o
v —1

Question
Is the existence of the local growth rate sufficient

exists

to insure the existence of the carry propagation?
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An unbalanced tree
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A first conclusion

The existence of the carry propagation
is more difficult to prove
than the computation of the carry propagation itself
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Definition
LC A* g,(z) generating function of L

g.(z) = Z u.(¢) Zf
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L rational language ==  g;(z) rational function
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Generating functions of rational languages

L rational language =  g,(z) rational function

g;(z) uniquely written as

5(2)
Q(z)

with degS < deg @ and Q(0) #0

g(z) = T(2) + T(2),5(2), Q(2) € Z[z]

P, is the reciprocal polynomial of Q: P.(z)= Q(1)ze?

The eigenvalues of L are the zeroes A1, Ap,..., Ay of P, and
t
VEEN  u(0) =) X Pi0)
j=1

where deg P; = multiplicity of A; in P, minus 1



Positive rational functions

Theorem (Berstel 71)
f(z) Ry -rational function (not a polynomial)
A maximum of the moduli of its eigenvalues.

(i) A\ is an eigenvalue of f(z) (hence an eigenvalue in R )

(ii) Every eigenvalue of f(z) of modulus X

is of the form \e'? | where ¢'? is a root of the unity

(iii) The multiplicity of any eigenvalue of modulus \
is at most that of A



Positive rational functions

Theorem (Berstel 71)

f(z) Ry -rational function (not a polynomial)
A maximum of the moduli of its eigenvalues.

(i) A\ is an eigenvalue of f(z) (hence an eigenvalue in R )

(ii) Every eigenvalue of f(z) of modulus X

is of the form \e'? | where ¢'? is a root of the unity

(iii) The multiplicity of any eigenvalue of modulus \
is at most that of A

Definition
(i) f(z) isDEV if X\ is the only eigenvalue of modulus A
(i) f(z) is ADEV if the multiplicity of X is greater
than the multiplicity of the other eigenvalues of modulus A



Some examples
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Some examples

O is neither DEV nor ADEV uo(f)=32+1

V' is DEV uy(¢)

D is ADEV but not DEV  up({) = (30+ £)2° + 3 (-2)°



Theorem
A rational language L is ADEV iff the local growth rate -y, exists.

In this case, the modulus of L is equal to ~, .



Theorem
L ADEV rational PCE and )\ its modulus.

If every quotient of L whose modulus is equal to A\ is ADEV,

then CP| exists and CP| = %



Theorem
L ADEV rational PCE and )\ its modulus.

If every quotient of L whose modulus is equal to A is ADEV,

then CP| exists and CP| = %
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An unmistakable fit

Our problem

=
Does limy_oo N cpy (i) exist ?
i=0
A rewriting
= '
Does  limy_00 N cp;(Succj(e))  exist ?
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An unmistakable fit

Our problem

N—-1
1 ,
Does IimNHOON E cpy(Succj(e))  exist ?
i=0

The Ergodic Theorem
Theorem (Birkhoff 31)

Let (IC,7) be a dynamical system, ;i a T-invariant measure on K
and f:KC—R in LY(u) (f is absolutely y-integrable).
If (IC,7) is ergodic, then, for i-almost all s in K,

N—1
|imNW%iZ;f(T"(s)):/deu . (*)

If (IC,7) is uniquely ergodic and if f and T are continuous,
then (*) holds for every s in IC .
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Dynamical system (K, 7) = compact set K
equipped with 7: £ — K

v

Probability measure 1 on K is 7-invariant
if 7 measurable and VB measurable, ;i(771(B)) = u(B)
(IC,7) is ergodic if 771(B) = B implies ;(B) =0 or 1
for every T-invariant measure u
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(KC,7) is uniquely ergodic if
it admits a unique T-invariant measure

Theorem (Birkhoff 31)

Let (IC,7) be a dynamical system, ;i a T-invariant measure on K
and f: KK —R in LY(p) . If (K,7) is ergodic then

for p-almost all s € K limy_oots Soivg F(7(5)) = [ic Fdp (¥)

If (IC,7) is uniquely ergodic and if f and T are continuous,
then (*) holds for every s in K .
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Turning a numeration system into a dynamical system
» A=1{0,1,...,r—1}
» LC(A\ {0})A": noword of L ‘begins’ with 0

» “A = set of left infinite words over A
s=--5s5 and s =SS-10 S

w — “0Ow induces a bijection between L and “0L

» “A with the 'right factor distance' topology is a compact set

Basis: cylinders [w] = “Aw

» Compactification of L : K =<«0L

K= {s €A ‘ vjieN 3wl eo*L sjj,0) right factor of W(j)}
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Turning a numeration system into a dynamical system

Definition of the odometer

» Since L C (A\ {0})A*, Succ, defined on “0L by
Succy (YOw) = “0 Succy(w)

» Odometer T on K; = any extension of Succ;

» Succ; continuous «—
T, unique continuous extension of Succ;

Extension of the carry propagation

Proposition
If T, s continuous,
then cp, Is continuous at any point where it takes finite values.
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Definition of the odometer

» Since L C (A\ {0})A*, Succ, defined on “0OL by
Succy (“0w) = “0 Succy(w)

» Odometer T on K; = any extension of Succ;

» Succ; continuous «—
T, unique continuous extension of Succ;
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We write 0 = %0

N—-1
. 1 ;
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Turning a numeration system into a dynamical system

Definition of the odometer

» Since L C (A\ {0})A*, Succ, defined on “0OL by
Succy (“0w) = “0 Succy(w)

» Odometer T on K; = any extension of Succ;

» Succ; continuous «—
T, unique continuous extension of Succ;

Where Birkhoff Theorem leads us

We want to show that 0 is a point such that
N—1

, 1 i
|ImN_>00N Z cp (71(0)) = / cp, dp

i=0 Kt
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Greedy numeration systems

» Basis = strictly increasing sequence of integers

G = (Gg)geN with Gy =1

» Le={(nc|neN}

» If r= Iimsup(Gé—Zﬂ is finite

L C AL with Ag={0,1,...,r—1}
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Greedy numeration systems

Basis = strictly increasing sequence of integers

G = (Gg)geN with Gy =1

LG:{<I‘I>G’I‘I€N}

If r=1Ilim sup(%—f} is finite

L C AL with Ag={0,1,...,r—1}

0*L¢ is closed under right factor and
Ke=%0Llg={s€“A|VjeN  s;q€0Ls}
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Theorem (Barat-Grabner 16, Grabner—Liardet-Tichy 95)

Let G be a GNS.
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Ergodicity of greedy numeration systems

Theorem (Barat—Grabner 16, Grabner—Liardet—Tichy 95)

Let G be a GNS.
Forevery s in K¢, limj_o SuccG(sU7O]) exists
and defines the odometer 7¢: Kg — K¢ :

Vs € K¢ 76(s) = limj500 SUCCG(SU,O])

Definition
A GNS G is said to be exponential
if there exist two real constants o« >1 and C >0
such that Gy ~ Ca’ when ¢ tends to infinity.

Theorem (Barat-Downarowicz—Liardet 02)

If G is an exponential GNS,
then the dynamical system (Kg,7¢g) is uniquely ergodic.
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Corollary

Let G be an exponential GNS with G, ~ Cal .
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Carry propagation in greedy numeration systems

Theorem
If G is an exponential GNS, then CPs exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

» (Kg,7¢g) is uniquely ergodic  jic the Tg-invariant measure.

» 0 is a generic point

=2

-1
% ) X (76(0)) = pe([w]) ://c X[w] dkG

limpy oo
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Carry propagation in greedy numeration systems

Theorem

If G is an exponential

GNS, then CP¢ exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

» (Kg,7¢) is uniquely ergodic

» 0 is a generic point

1 N—1 )
My o0 N X[w] (T'G(O))
i=0
=N
» Implies lim-so0 5 f(76(0)) =

1

Il
o

¢ the Tg-invariant measure.
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Carry propagation in greedy numeration systems

Theorem
If G is an exponential GNS, then CPs exists.

Proof essentially based on the work [Barat-Grabner 16]

G exponential GNS implies

» (Kg,7¢) is uniquely ergodic ¢ the Tg-invariant measure.

» 0 is a generic point

N—
limpy— o0 Z Xpw) (76(0)) = pe([w]) :/K X[w] 9bG
i—0 19

N-1 :
» Does not imply IimN_m% Z f(75(0)) = / fdug for any f
i=0 K

G
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Carry propagation in greedy numeration systems

Theorem
If G is an exponential GNS, then CPs exists.

How the proof goes

» cpg Is not Riemann-integrable

should be treated as an improper integral

_ [ epg(s) if cpg(s) < k+1
> vk fu(s) = { 0 otherwise

> / cpe dpg exists and Iimk_m/ fkdp(;:/ cpe dug
/C(; KG

G
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How the proof goes

» cpe isin LY(ug)

N-1 N-1
. : N
> YN < Gray > A(76(0) = > fiea(750) + {GkJ (k+1)
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Theorem
If G is an exponential GNS, then CPg exists.

How the proof goes

» cpe isin LY(ug)

N—1 _ N—1 _ N
> VN < Grpq Z fi(76(0)) = Z fie1(76(0)) + {GkJ (k+1)
i=0 =

» Key result

N—-1
YN €N PR kalTG(O { J(k+1)
i=0

> /fdeG < ||mN—)ooN pe(r6(0)) < /fdeG+Mk+1
Ke Ke
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Comme il y a une infinité de choses sages
qui sont menées de maniere tres folle,

il y a aussi des folies qui sont menées de maniére trés sage.

MONTESQUIEU

Just as wise ends are oftentimes sought
in the most foolish way,

so foolishness is sometimes sought with great wisdom.

Translation by REUBEN THOMAS



