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Valérie Berthé, Christiane Frougny , and Michel Rigo

One World Numeration Seminar, 17 November 2020



Based on the paper

The carry propagation of the successor function,

Advances in Applied Mathematics 120 (2020)



Part I

What is the carry propagation?



Adding machine

The Pascaline (1642)

featured the first carry propagation mechanism
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Carry propagation prevents addition to be parallelable
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Theorem (von Neumann et al. 63, Knuth 78, Pippenger 02)

Average carry propagation length for addition of
two uniformly distributed n-digit binary numbers =

log2(n) +O (1)
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Amortized carry propagation (in base 2)

CP2 = limN→∞ 1
N

∑N−1
i=0 cp2(i) if it exists!
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N

∑N−1
i=0 cpF (i) if it exists!
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Part II

A first observation and its 3 consequences
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Definition (Lecomte & Rigo 2001)

• A finite totally ordered alphabet e.g. A = {0, 1}
⇒ A∗ equipped with the radix ordering

i.e. ordered first by length, and then,
for words of equal length, ordered lexicographically

e.g. A∗ = ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .
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⇒ A∗ equipped with the radix ordering

• L ⊆ A∗ any language over A∗

ordered by radix ordering

e.g. F = ε ∪ 1A∗ \ A∗11A∗

F = ε, 1, 10, 100, 101, 1000, . . .
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i.e. 〈n〉L = (n + 1)-th word of L in the radix ordering

e.g. 〈6〉F = 1001
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Definition (Lecomte & Rigo 2001)

• A finite totally ordered alphabet e.g. A = {0, 1}
⇒ A∗ equipped with the radix ordering

• L ⊆ A∗ any language over A∗

ordered by radix ordering

⇒ Natural integers are given representations
by means of words of L

L ⊆ A∗ (together with the order on A) defines an ANS

Fact: All ‘classical’ numeration systems are ANS
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requires L prefix-closed and extendable
i.e. to be a pce language
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Intermede: a freshperson calculus lemma

Lemma

(x�)�∈N x� ∈ R+ ∀� y� =
�−1∑
j=0

xj γ > 1

TFAE

(i) lim�→∞
x�+1

x�
= γ

(ii) lim�→∞
y�+1

y�
= γ

(iii) lim�→∞
y�
x�

=
γ

γ − 1
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uF (�)
= γF = ϕ
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What we learn from the primal observation: a new parameter

.
b
c
d
db
dc
ad
bd
cd
dd
adb
bdb
cdb
ddb
adc
bdc
cdc

10 11 12 13 14 15 16 17 18 19 20 21

4 5 6 7 8 9

1 2 3

0

b c d

d d a b c d

a b c d a b c d d d d d

V uV (�) = 32�−1 γV = 2
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A natural question

Proposition

If CPL = limN→∞
1

N

N−1∑
i=0

cpL(i) exists,

then the local growth rate lim�→∞
uL(�+ 1)

uL(�)
= γL exists

and CPL =
γL

γL − 1

Question
Is the existence of the local growth rate sufficient

to insure the existence of the carry propagation?
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An unbalanced tree

U ⊆ {a, b, c}∗
a c

a b c b

a b c a b c b b

a b c a b c a b c a b c
b b b b

lim�→∞
1

v′U(�)

v′U(�)−1∑
j=0

cpU(j) =
11

6
�= 2



An unbalanced tree

U ⊆ {a, b, c}∗
a c

a b c b

a b c a b c b b

a b c a b c a b c a b c
b b b b

CPU = limN→∞
1

N

N−1∑
i=0

cpU(i) does not exist



A first conclusion

The existence of the carry propagation
is more difficult to prove

than the computation of the carry propagation itself
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Surprise !

d
b, c

d

a, b, c , d d

a, b, c , d

V

uV (�) = 3 .2�−1

lim inf
N→∞

1

N

N−1∑
i=0

cpV (i) � 28

15
<

13

6
� lim sup

N→∞
1

N

N−1∑
i=0

cpV (i)

γV exists but CPV does not exists
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Definition
L ⊆ A∗ gL(z) generating function of L

gL(z) =
∞∑
�=0

uL(�)z
�

L rational language =⇒=⇒=⇒ gL(z) rational function

gL(z) =
R(z)

Q(z)
R(z),Q(z) ∈ Z[z ]
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Generating functions of rational languages

L rational language =⇒=⇒=⇒ gL(z) rational function

gL(z) uniquely written as

gL(z) = T (z) +
S(z)

Q(z)
T (z),S(z),Q(z) ∈ Z[z ]

with deg S < degQ and Q(0) �= 0

PL is the reciprocal polynomial of Q : PL(z) = Q( 1z )z
degQ

The eigenvalues of L are the zeroes λ1, λ2,. . . , λt of PL and

∀� ∈ N uL(�) =
t∑

j=1

λ�
j Pj(�)

where degPj = multiplicity of λj in PL minus 1



Positive rational functions

Theorem (Berstel 71)

f (z) R+ -rational function (not a polynomial)
λ maximum of the moduli of its eigenvalues.

(i) λ is an eigenvalue of f (z) (hence an eigenvalue in R+ )

(ii) Every eigenvalue of f (z) of modulus λ
is of the form λei θ , where ei θ is a root of the unity

(iii) The multiplicity of any eigenvalue of modulus λ
is at most that of λ



Positive rational functions

Theorem (Berstel 71)

f (z) R+ -rational function (not a polynomial)
λ maximum of the moduli of its eigenvalues.

(i) λ is an eigenvalue of f (z) (hence an eigenvalue in R+ )

(ii) Every eigenvalue of f (z) of modulus λ
is of the form λei θ , where ei θ is a root of the unity

(iii) The multiplicity of any eigenvalue of modulus λ
is at most that of λ

Definition

(i) f (z) is dev if λ is the only eigenvalue of modulus λ

(ii) f (z) is adev if the multiplicity of λ is greater
than the multiplicity of the other eigenvalues of modulus λ



Some examples

d

a, b, c , d
O

MO =

(
0 1
4 0

)
PO = X 2 − 4

uO(�) =
3

4
2� +

1

4
(−2)�

c , d

a, b
C

MC =

(
0 2
2 0

)
PC = X 2 − 4

uC (�) = 2� PC = X − 2

c , d

a, b

ba, b
D

MD =


0 2 1
2 0 0
0 0 2


 PD = (X 2−4)(2−X )

uD(�) = (
1

4
�+

7

8
)2� +

1

8
(−2)�



Some examples

� O is neither dev nor adev uO(�) =
3
4 2

� + 1
4 (−2)�

� V is dev uV (�) =
3
2 2

�

� D is adev but not dev uD(�) = (14 �+
7
8)2

� + 1
8 (−2)�



Theorem
A rational language L is adev iff the local growth rate γL exists.

In this case, the modulus of L is equal to γL .
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Theorem
L adev rational pce and λ its modulus.

If every quotient of L whose modulus is equal to λ is adev,

then CPL exists and CPL =
λ

λ− 1

d
b, c

d

a, b, c , d d

a, b, c , d

V
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An unmistakable fit

Our problem

Does limN→∞
1

N

N−1∑
i=0

cpL(Succ
i
L(ε)) exist ?

The Ergodic Theorem

Theorem (Birkhoff 31)

Let (K, τ) be a dynamical system, µ a τ -invariant measure on K
and f : K → R in L1(µ) (f is absolutely µ-integrable).

If (K, τ) is ergodic, then, for µ-almost all s in K ,

limN→∞
1

N

N−1∑
i=0

f (τ i (s)) =

∫
K
f dµ . (*)

If (K, τ) is uniquely ergodic and if f and τ are continuous,
then (*) holds for every s in K .
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A bunch of definitions

� Dynamical system (K, τ) = compact set K
equipped with τ : K → K

� Probability measure µ on K is τ -invariant
if τ measurable and ∀B measurable, µ(τ−1(B)) = µ(B)

� (K, τ) is ergodic if τ−1(B) = B implies µ(B) = 0 or 1
for every τ -invariant measure µ

� (K, τ) is uniquely ergodic if
it admits a unique τ -invariant measure

Theorem (Birkhoff 31)

Let (K, τ) be a dynamical system, µ a τ -invariant measure on K
and f : K → R in L1(µ) . If (K, τ) is ergodic, then

for µ-almost all s ∈ K limN→∞ 1
N

∑N−1
i=0 f (τ i (s)) =

∫
K f dµ (*)

If (K, τ) is uniquely ergodic and if f and τ are continuous,
then (*) holds for every s in K .
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Turning a numeration system into a dynamical system

� A = {0, 1, . . . , r − 1}

� L ⊆ (A \ {0})A∗ : no word of L ‘begins’ with 0

� ωA = set of left infinite words over A
s = · · · s2s1s0 and s[�,j ] = s�s�−1 · · · sj

w �→ ω0w induces a bijection between L and ω0L

� ωA with the ‘right factor distance’ topology is a compact set

Basis: cylinders [w ] = ωAw

� Compactification of L : KL = ω0L

KL =
{
s ∈ ωA

∣∣∣ ∀j ∈ N ∃w (j) ∈ 0∗L s[j ,0] right factor of w
(j)
}
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Turning a numeration system into a dynamical system

Definition of the odometer

� Since L ⊆ (A \ {0})A∗ , SuccL defined on ω0L by

SuccL(
ω0w) = ω0 SuccL(w)

� Odometer τL on KL = any extension of SuccL

� SuccL continuous =⇒=⇒=⇒
τL unique continuous extension of SuccL

Extension of the carry propagation

∆(s, t) =

{
min

{
j ∈ N

∣∣ s[∞,j ] = t[∞,j ]

}
if such j exist

+∞ otherwise

∀s ∈ ωA cpL(s) = ∆(s, τL(s))



Turning a numeration system into a dynamical system

Definition of the odometer

� Since L ⊆ (A \ {0})A∗ , SuccL defined on ω0L by

SuccL(
ω0w) = ω0 SuccL(w)

� Odometer τL on KL = any extension of SuccL

� SuccL continuous =⇒=⇒=⇒
τL unique continuous extension of SuccL

Extension of the carry propagation

Proposition

If τL is continuous,
then cpL is continuous at any point where it takes finite values.
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Definition of the odometer

� Since L ⊆ (A \ {0})A∗ , SuccL defined on ω0L by

SuccL(
ω0w) = ω0 SuccL(w)

� Odometer τL on KL = any extension of SuccL

� SuccL continuous =⇒=⇒=⇒
τL unique continuous extension of SuccL

Where we are

We write 0 = ω0

CPL = limN→∞
1
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Turning a numeration system into a dynamical system

Definition of the odometer

� Since L ⊆ (A \ {0})A∗ , SuccL defined on ω0L by

SuccL(
ω0w) = ω0 SuccL(w)

� Odometer τL on KL = any extension of SuccL

� SuccL continuous =⇒=⇒=⇒
τL unique continuous extension of SuccL

Where Birkhoff Theorem leads us

We want to show that 0 is a point such that

limN→∞
1

N

N−1∑
i=0

cpL(τ
i
L(0)) =

∫
KL

cpL dµ
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Greedy numeration systems

� Basis = strictly increasing sequence of integers

G = (G�)�∈N with G0 = 1

� LG = {〈n〉G | n ∈ N}

� If r = lim sup�G�+1

G�
� is finite

LG ⊆ A∗
G with AG = {0, 1, . . . , r − 1}

� 0∗LG is closed under right factor and

KG = ω0LG =
{
s ∈ ωA

∣∣ ∀j ∈ N s[j ,0] ∈ 0∗LG
}



Ergodicity of greedy numeration systems

Theorem (Barat–Grabner 16, Grabner–Liardet–Tichy 95)

Let G be a GNS.
For every s in KG , limj→∞ SuccG

(
s[j ,0]

)
exists

and defines the odometer τG : KG → KG :

∀s ∈ KG τG (s) = limj→∞ SuccG
(
s[j ,0]

)
.
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Ergodicity of greedy numeration systems

Theorem (Barat–Grabner 16, Grabner–Liardet–Tichy 95)

Let G be a GNS.
For every s in KG , limj→∞ SuccG

(
s[j ,0]

)
exists

and defines the odometer τG : KG → KG :

∀s ∈ KG τG (s) = limj→∞ SuccG
(
s[j ,0]

)
.

Definition
A GNS G is said to be exponential

if there exist two real constants α > 1 and C > 0
such that G� ∼ Cα� when � tends to infinity.

Theorem (Barat–Downarowicz–Liardet 02)

If G is an exponential GNS,
then the dynamical system (KG , τG ) is uniquely ergodic.
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Theorem
If G is an exponential GNS, then CPG exists.

Corollary

Let G be an exponential GNS with G� ∼ C α� .

If LG is pce, then CPG exists and CPG =
α

α− 1
.
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Theorem
If G is an exponential GNS, then CPG exists.

Proof essentially based on the work [Barat–Grabner 16]

G exponential GNS implies

� (KG , τG ) is uniquely ergodic µG the τG -invariant measure.

� 0 is a generic point

limN→∞
1

N

N−1∑
i=0

χ[w ]

(
τ iG (0)

)
= µG ([w ]) =

∫
KG

χ[w ] dµG

� Does not imply limN→∞
1

N

N−1∑
i=0

f
(
τ iG (0)

)
=

∫
KG

f dµG for any f
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Theorem
If G is an exponential GNS, then CPG exists.

How the proof goes

� cpG is not Riemann-integrable

should be treated as an improper integral

� ∀k fk(s) =

{
cpG (s) if cpG (s) � k + 1
0 otherwise

�
∫
KG

cpG dµG exists and limk→∞
∫
KG

fk dµG =

∫
KG

cpG dµG
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If G is an exponential GNS, then CPG exists.

How the proof goes

� cpG is in L1(µG )

� ∀N < Gk+1

N−1∑
i=0

fk
(
τ iG (0)

)
=

N−1∑
i=0

fk−1

(
τ iG (0)

)
+

⌊
N

Gk

⌋
(k + 1)

� Key result

∀N ∈ N

N−1∑
i=0

fk
(
τ iG (0)

)
=

N−1∑
i=0

fk−1

(
τ iG (0)

)
+

⌊
N

Gk

⌋
(k + 1)

�
∫
KG

fk dµG � limN→∞
1

N

N−1∑
i=0

cpG (τ
i
G (0)) �

∫
KG

fk dµG +Mk+1
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Let G be an exponential GNS with G� ∼ C α� .

If LG is pce, then CPG exists and CPG =
α

α− 1
.
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Comme il y a une infinité de choses sages
qui sont menées de manière très folle,

il y a aussi des folies qui sont menées de manière très sage.

Montesquieu

Just as wise ends are oftentimes sought
in the most foolish way,

so foolishness is sometimes sought with great wisdom.

Translation by Reuben Thomas


