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Factorization

Integer factorization is in A"P N co-NP.

The most efficient known factorization algorithm is the General
Number Field Sieve, with a heuristic running time of

exp < Y 654 + o(l)) (In N)Y3(InIn N)?/3

Used in public-key cryptography:
® RSA (1976)
® Rabin cryptosystem (1979)
¢ Goldwasser—Micali cryptosystem (1982)
e Paillier cryptosystem (1999)



Continued fractions

A simple continued fraction is an expression of the form

1
aO+ 1 — [30731)327337"']7
a +
1
ap+——:
a3 _|_ 000
where ag € Z and a; € N>, for i > 0. The terms ag, a1, ap, . .. are

called partial quotients of the continued fraction.



Continued fraction of a real number

Given xo € R, we have xg = [ao, a1, a2, . . .], where the partial
quotients are computed as follows

aj = x|
Xi+1 = ﬁ

5 if a,-;éx,-, VIZO

Definition

A periodic continued fraction is an infinite continued fraction such
that

aj = ajtr

for a fixed positive integer 7 and all i > ¢, for some £ > 0. The
minimum 7 that satisfies the equality is called period.



The expansion of v/N

Theorem

Given N € N9, the continued fraction expansion of \/ N is of the
form

\/N = [ao, di,daz2,...,az,dai, 230].
We denote by T the length of period of the expansion of v/N.

¢ (Stanton, Sudler, Williams)

We have 7 < 0.72v/NIn N for N > 7.
¢ (Littlewood)

Under the GRH, if N is square-free we have 7 < V/Ninln N.
¢ (Vijayaraghavan)

For any € > 0, infinitely many N satisfy = > N1/2—¢,



The sequences {Qx}x>0 and {Px}x>0

Definition (Lagrange's algorithm)
Let N € N>0 non-square and xg = V/N. We define P, and Q, for

k>0, as
ak = | x«]
P N
Pi+1 = akQx — P« ,  Wwhere x; = %\/_, k > 0.
K

Q1= (N —P7,1)/Qx

e 0< Qu< -2+Nand 0< P, <N for all k> 0.

Ak+1
® {Pr}i>1 and {Qx} k>0 are periodic of period 7.



How to find a factor

We will assume N € N>0 to be composite and non-square.

Theorem (Elia)

If 7w is even, then Q> is a non-trivial factor of 2N.

Theorem

If  is even, then Q> # 2 if and only if the integer equations
X? - NY?>=2 and X?>-—NY?=-2
are both unsolvable.

Proposition

If 7 is odd and (%) = —1, then Q(11)/2 contains a nontrivial
factor of N.



Even period and non-trivial factorization

Let N be an RSA modulus: N = pq, where p # g are primes.

p (mod 8) | g (mod 8) | ® (mod 2) Qr/2

3 3

0 £2

0 =2o0r#2

Oorl If = even, then # 2

Ol Rk R Pk R 01 o1 N W
Ol 01 R W N W NN~




Starting idea

We want to reach Q; /> or Q(r41)/2 as fast as possible.
We can compute Qq, @1, @2, Q3, ... until we find a factor ...
... but 7 can be too large!

We need a way to move through {Qx}x>0 making long jumps.
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Quadratic forms

Let T = {Fx}«>0, where

Fr(x,y) = (—1)*Qux® 4+ 2Pk 1xy + (— 1) Quy1y®.

A quadratic form F(x,y) = ax? + bxy + cy? is reduced if
‘\/Z—2|a|’ < b< VA,
where A = b? — 4ac is the discriminant of F.

® The discriminant of Fy is A = 4N for all kK > 0.
® F, reduced for all kK > 0.



Quadratic forms: periodicity

Definition
Let T = {Fx}«>0, where

Fr(x,y) = (—1)*Qux® 4+ 2Pk 1xy + (— 1) Quy1y®.

Fron i
Fo=4 Ktm TTEEN ol k>0,
Fiior if modd

We want to reach F, 5 or F(;_1)/ in a fast way.
F7r/2 = ((*1)7r/2Q7r/272P7r/2+17 (*1)7r/2+107r/2+1)
Fir1y/2 = (1) Y2Q0 1) 2, 2P 1) 2, (1) H/2Q 11y 2)

We will refer to T as the cycle.



The cycle T if m even




Reduction operator p

Let F = (a, b, c) be a form with ac # 0. If its discriminant A > 0
is a non-square integer, we define the reduction operator p as

r(—b,c)? — A)

p(a, b, c) = <c, r(—b, c), e
where r(—b, c) is the unique r such that r + b =0 (mod 2c¢) and
—le| < r<lc] if VA<|c
VA —2lc| < r< VA if |c] < VA.

® There exists n > 0 such that p”(F) is reduced.
® p(Fx) = Fyyq for all k > 0.



Inverse reduction operator p—?

Let F = (a, b, c) be a form with ac # 0. If its discriminant A > 0

is a non-square integer, we define the p~! as

p~Ya,b,c) = (M, r(—b, a),a) :

43

® If F reduced, then p(p~1(F)) = p~1(p(F)) = F.
(Fk) = Fy_q for all kK > 0.



The cycle T if m even

Frjo01= p(Fr)2) Fro1=p '(Frp)



Gauss composition

Definition

The Gauss composition F o G of two quadratic forms
F = (a1, b1, c1) and G = (ap, bp, &), both having discriminant A,
is

aiaz 2a1 t(b2 = bl) b% - A
R R e
(a3, b3, c3) < o= b+ — ( 5 avl=im )

where 8 = (b1 + b2)/2, n = ged(a1, a2, 8), ait + au + Bv = n,
and do = ged(a1, a2, 3, c1, 2, (b1 — b2)/2).

F = (a,b,c) «— Ip = aZ + =527 ideal of Oy 5,

FoG<+— Iglg



Giant step

The giant step of F, and F,, is the composition
Fo,eF, = pt(Fn © Fm)a

realized through the Gauss composition F, o F,;, followed by the

minimum number t of reduction operations p to obtain a reduced
form.

® F,oF, may not be reduced.

® The number of applications of p needed to reduce F,oF,, is

O(In(N)).
® For all n,m> 0 we have F,eF,, € T.



Distance of forms

Given a quadratic form F = (a, b, ¢) with discriminant A, and
n > 0, we define the distance § as follows:

b+ VA

1
2" b—vA

5(F,p(F)) = 31

9

and
n

8(F,p"(F)) =Y 8(p" X(F), ' (F))-

Important

—_

0 is not a metric distance!



0-length of a cycle

Definition
We define

RT(N) = In(x + yV'N),

where X + y\/N is the minimal solution of the Pell’s equation
X% - NY? =1.

Theorem
If w even, then 6(Fo,Fr) = R*(N) and 6(Fo,F./>) = RT(N)/2.

Theorem
If © odd, then §(Fq, Far) = RT(N), 5(Fo,F) = RT(N)/2, and
(S(Fo, F(wfl)/2) = R+(N)/4 + O(ln N)




Properties of o

Theorem (H. Lenstra)
LetF,,F,e T, and F, = F,eF,,. Then,

(S(Fo, Fr) = 5(F07 Fn) + 5(F07 Fm) + 5(Fn oFm, Fr)a
and [5(Fp o Fm, F,)| < 21n(4N).

® 5(Fx,Frp1) < SInN
L4 (S(Fk, Fk+2) > In2

Corollary

If 3(F;, Fj) = D, then gy < =il < 5 + 1.



The cycle T if m even

Fo=F: p, JO(Fo,Fy)
F},6(Fo, Fy)

F; 0(Fo,Fy)

F} 6(Fo, F})

RT(N)

F7"/2 5 5(F07 Fﬂ'/Z) = 9
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Idea of our method for even period

We assume 7 even.

Operations
® pand p! steps: length-one jump in the cycle.
® Giant step: long jump in the cycle.

Use giant steps to compute F, an approximation of Fr/2

Reach F/, computing the forms near F.



Algorithm scheme, part @

» N > 0 non-square such that 7 =0 (mod 2)
> RT(N)

Starting from Fg, compute the forms F; for i = 0,..., ¢, until
(5(F0, Fg) > 2 |n(4N) + 1.

Compute the quadratic forms F%i, using giant steps, and their
distance d; < 6(Fo,F?), for i = 1,...,7, with 7 such that
d;,—1 < RT(N)/2 < d,.



Algorithm scheme, part @

Set F «+ F§T71 and d —dr1.
Fori=7-2,...,0: if d + di < R"(N)/2, then update
l:_el:_oF% and d «+ d + d;.

F € T. Compute p(F), p?(F), p*(F),.
p YF),p~2(F), p~3(F),... until a non- tr|V|a| factor of 2N is
found.



The cycle T if 7 even

Fo=F, F, 5(Fo, F))
F},6(Fo, F})

F; s 5(F0, F?)

F} 6(F,F})

FTr/2 E

diy1 = 2dx + O(InN) for k >0 and 8(Fo, F) = d + O(In N).



Computational complexity

Theorem (Murru, S.)

The value of T in the algorithm is at most [Iog2 R+2(N)-‘ = O(In N).

Theorem (Murru, S.)

The form F obtained at the end of the first phase of the method
satisfies

6(Fo, Fry2) = 6(Fo, F)| = O((In N)?).

The computational complexity of our algorithm is O((In V)?).



Multiple of R™(N) and regulator

Since T is periodic, and our goal is to find the quadratic form in
the middle of some period, the method can be adapted to take in
input aR*(N) for some a € N>°,

If a odd, a factor of 2NN is found in the position at distance
M from the beginning.

. .. . +(N) . .
If a even, in a position at distance aR 2(N) is found F. In this
case, the procedure is repeated with target the position at

(V)

. R
distance %

. The process is iterated ¢ times until 2% odd.

We have that RT(N) = kR(N) for k < 6, where R(N) is the
regulator of Q(v/N).



Computing the regulator

We look for a fast algorithm that computes an integral multiple of
R(N), or a good approximation of it.

Vollmer’s method to compute R(N):

® Monte Carlo algorithm

¢ Cost (under GRH): O <exp (% InNinin N))

Main factorization algorithms that make use of continued fractions
or quadratic forms:

e CFRAC: O(exp(v2In Nlinln N))
* SQUFOF: O(V'N)



Table of Contents

@ Research directions



Future research: Class Number Formula

Theorem (Class Number Formula)

Let N > 0 square-free. The following holds:

H)RON) = VL1 (1 x) = fi( )2

X=
where:

e h(N) is the class number,
® v is the Kronecker symbol (Q>

e [ (1,x) is the L-function associated to ¥,
e D=Nif N=1 (mod 4) and D = 4N otherwise.

-1
D\ 1
L(1,x) = H (1 - (p) p) Euler Product

prime p



Future research: approximation of h(N)R(N)

Two methods to estimating h(N)R(N) by approximating L (1, x).

Bach’s method:
e Cost: O(NY/5F°),
® Error (assuming ERH): O(N2/5+6),

® |dea: Weighted average of truncated Euler Products to
compute S(Q, N), an approximation of L (1, x).

Bibliography
Eric Bach (1995)
“Improved Approximations for Euler Products”




Future research: approximation of h(N)R(N)

Two methods to estimating h(N)R(N) by approximating L (1, x).

Srinivasan’s method:
* Expected time: O(N/5+¢),
® Error: O(N2/5+6),

® |dea: The Random Summation Technique, i.e., taking
random terms in the Euler Product expansion of L (1, x).

Bibliography
Anitha Srinivasan (1998)
“Computations of class numbers of real quadratic fields”




Srinivasan’s method: key points

L(1,x) = (1 - (%) ;) B 2 x odd <g> o

. B D) 1
Approximate 5 =, 44 and x<D2 (?) X!

M = [DY/>] i.i.v. Y; taking any odd integer value 1 < n < D?
IP’(Y;:n):% for 1 < n < D? and n odd,
Let X; be the random variable (%) forl << M,

Then, S = FE(X1 + - + Xum),

@ Approximate S with /\LM Z,’\il X;.



Future research: Analytic Formula

The following holds:

where
2n+1

o erfe(z) =1- 2 5, Ll
o El(z):—’y—lnz—zrolew

n-n!

o = floo <—% + ﬁ) is the Euler—Mascheroni constant.



Thank you for your attention!
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