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One World Numeration Seminar
February 4, 2025



Goal and bibliography

Goal

Develop a novel factorization method based on two works by
Michele Elia.
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Factorization

Integer factorization is in NP ∩ co-NP.

The most efficient known factorization algorithm is the General
Number Field Sieve, with a heuristic running time of

exp

( 3

√
64

9
+ o(1)

)
(lnN)1/3(ln lnN)2/3

 .

Used in public-key cryptography:

• RSA (1976)

• Rabin cryptosystem (1979)

• Goldwasser–Micali cryptosystem (1982)

• Paillier cryptosystem (1999)



Continued fractions

Definition

A simple continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

= [a0, a1, a2, a3, . . .],

where a0 ∈ Z and ai ∈ N>0, for i > 0. The terms a0, a1, a2, . . . are
called partial quotients of the continued fraction.



Continued fraction of a real number

Given x0 ∈ R, we have x0 = [a0, a1, a2, . . .], where the partial
quotients are computed as followsai = ⌊xi⌋

xi+1 =
1

xi−ai

, if ai ̸= xi , ∀i ≥ 0.

Definition

A periodic continued fraction is an infinite continued fraction such
that

ai = ai+τ

for a fixed positive integer τ and all i ≥ ℓ, for some ℓ ≥ 0. The
minimum τ that satisfies the equality is called period.



The expansion of
√
N

Theorem

Given N ∈ N>0, the continued fraction expansion of
√
N is of the

form √
N = [a0, a1, a2, . . . , a2, a1, 2a0].

We denote by π the length of period of the expansion of
√
N.

• (Stanton, Sudler, Williams)
We have π < 0.72

√
N lnN for N > 7.

• (Littlewood)
Under the GRH, if N is square-free we have π ≪

√
N ln lnN.

• (Vijayaraghavan)
For any ϵ > 0, infinitely many N satisfy π > N1/2−ϵ.



The sequences {Qk}k≥0 and {Pk}k≥0

Definition (Lagrange’s algorithm)

Let N ∈ N>0 non-square and x0 =
√
N. We define Pk and Qk , for

k ≥ 0, as
ak = ⌊xk⌋
Pk+1 = akQk − Pk

Qk+1 = (N − P2
k+1)/Qk

, where xk =
Pk +

√
N

Qk
, k ≥ 0.

• 0 < Qk < 2
ak+1

√
N and 0 ≤ Pk <

√
N for all k ≥ 0.

• {Pk}k≥1 and {Qk}k≥0 are periodic of period π.



How to find a factor

We will assume N ∈ N>0 to be composite and non-square.

Theorem (Elia)

If π is even, then Qπ/2 is a non-trivial factor of 2N.

Theorem

If π is even, then Qπ/2 ̸= 2 if and only if the integer equations

X 2 − NY 2 = 2 and X 2 − NY 2 = −2

are both unsolvable.

Proposition

If π is odd and
(
−1
N

)
= −1, then Q(π+1)/2 contains a nontrivial

factor of N.



Even period and non-trivial factorization

Let N be an RSA modulus: N = pq, where p ̸= q are primes.

p (mod 8) q (mod 8) π (mod 2) Qπ/2

3 3

0 ̸= 2
3 7
7 7
5 7
5 3

1 7
0 = 2 or ̸= 2

1 3

1 1
0 or 1 If π even, then ̸= 21 5

5 5



Starting idea

We want to reach Qπ/2 or Q(π+1)/2 as fast as possible.

We can compute Q0,Q1,Q2,Q3, . . . until we find a factor . . .

. . . but π can be too large!

We need a way to move through {Qk}k≥0 making long jumps.
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Quadratic forms

Definition

Let Υ = {Fk}k≥0, where

Fk(x , y) = (−1)kQkx
2 + 2Pk+1xy + (−1)k+1Qk+1y

2.

Definition

A quadratic form F (x , y) = ax2 + bxy + cy2 is reduced if∣∣∣√∆− 2 |a|
∣∣∣ < b <

√
∆,

where ∆ = b2 − 4ac is the discriminant of F .

• The discriminant of Fk is ∆ = 4N for all k ≥ 0.

• Fk reduced for all k ≥ 0.



Quadratic forms: periodicity

Definition

Let Υ = {Fk}k≥0, where

Fk(x , y) = (−1)kQkx
2 + 2Pk+1xy + (−1)k+1Qk+1y

2.

Fk =

{
Fk+π if π even

Fk+2π if π odd
for all k ≥ 0.

We want to reach Fπ/2 or F(π−1)/2 in a fast way.

Fπ/2 = ((−1)π/2Qπ/2, 2Pπ/2+1, (−1)π/2+1Qπ/2+1)

F(π−1)/2 = ((−1)(π−1)/2Q(π−1)/2, 2P(π+1)/2, (−1)(π+1)/2Q(π+1)/2)

We will refer to Υ as the cycle.



The cycle Υ if π even



Reduction operator ρ

Definition

Let F = (a, b, c) be a form with ac ̸= 0. If its discriminant ∆ > 0
is a non-square integer, we define the reduction operator ρ as

ρ(a, b, c) =

(
c , r(−b, c), r(−b, c)

2 −∆

4c

)
,

where r(−b, c) is the unique r such that r + b ≡ 0 (mod 2c) and

−|c | < r ≤ |c | if
√
∆ < |c|,

√
∆− 2|c| < r <

√
∆ if |c| <

√
∆.

• There exists n ≥ 0 such that ρn(F ) is reduced.

• ρ(Fk) = Fk+1 for all k ≥ 0.



Inverse reduction operator ρ−1

Definition

Let F = (a, b, c) be a form with ac ̸= 0. If its discriminant ∆ > 0
is a non-square integer, we define the ρ−1 as

ρ−1(a, b, c) =

(
r(−b, a)2 −∆

4a
, r(−b, a), a

)
.

• If F reduced, then ρ(ρ−1(F )) = ρ−1(ρ(F )) = F .

• ρ−1(Fk) = Fk−1 for all k > 0.



The cycle Υ if π even



Gauss composition

Definition

The Gauss composition F ◦ G of two quadratic forms
F = (a1, b1, c1) and G = (a2, b2, c2), both having discriminant ∆,
is

(a3, b3, c3) =

(
d0

a1a2
n2

, b1 +
2a1
n

(
t(b2 − b1)

2
− c1v

)
,
b23 −∆

4a3

)
,

where β = (b1 + b2)/2, n = gcd(a1, a2, β), a1t + a2u + βv = n,
and d0 = gcd(a1, a2, β, c1, c2, (b1 − b2)/2).

F = (a, b, c)←→ IF = aZ+ −b+
√
∆

2 Z ideal of OQ(
√
∆)

F ◦ G ←→ IF IG



Giant step

Definition

The giant step of Fn and Fm is the composition

Fn •Fm = ρt(Fn ◦Fm),

realized through the Gauss composition Fn ◦Fm, followed by the
minimum number t of reduction operations ρ to obtain a reduced
form.

• Fn ◦Fm may not be reduced.

• The number of applications of ρ needed to reduce Fn ◦Fm is
O(ln(N)).

• For all n,m ≥ 0 we have Fn •Fm ∈ Υ.



Distance of forms

Definition

Given a quadratic form F = (a, b, c) with discriminant ∆, and
n > 0, we define the distance δ as follows:

δ(F , ρ(F )) =
1

2
ln

∣∣∣∣∣b +
√
∆

b −
√
∆

∣∣∣∣∣ ,
and

δ(F , ρn(F )) =
n∑

i=1

δ(ρi−1(F ), ρi (F )).

Important

δ is not a metric distance!



δ-length of a cycle

Definition

We define
R+(N) = ln(x̄ + ȳ

√
N),

where x̄ + ȳ
√
N is the minimal solution of the Pell’s equation

X 2 − NY 2 = 1.

Theorem

If π even, then δ(F0,Fπ) = R+(N) and δ(F0,Fπ/2) = R+(N)/2.

Theorem

If π odd, then δ(F0,F2π) = R+(N), δ(F0,Fπ) = R+(N)/2, and
δ(F0,F(π−1)/2) = R+(N)/4 + O(lnN).



Properties of δ

Theorem (H. Lenstra)

Let Fn,Fm ∈ Υ, and Fr = Fn •Fm. Then,

δ(F0,Fr ) = δ(F0,Fn) + δ(F0,Fm) + δ(Fn ◦Fm,Fr ),

and |δ(Fn ◦Fm,Fr )| < 2 ln(4N).

• δ(Fk ,Fk+1) <
1
2 lnN

• δ(Fk ,Fk+2) > ln 2

Corollary

If δ(Fi ,Fj) = D, then 2D
ln(4N) < |j − i | < 2D

ln 2 + 1.



The cycle Υ if π even
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Idea of our method for even period

We assume π even.

Operations

• ρ and ρ−1 steps: length-one jump in the cycle.

• Giant step: long jump in the cycle.

1 Use giant steps to compute F̄ , an approximation of Fπ/2.

2 Reach Fπ/2 computing the forms near F̄ .



Algorithm scheme, part 1

Input

▶ N > 0 non-square such that π ≡ 0 (mod 2)

▶ R+(N)

1 Starting from F0, compute the forms Fi for i = 0, . . . , ℓ, until
δ(F0,Fℓ) ≥ 2 ln(4N) + 1.

2 Compute the quadratic forms F2i

ℓ , using giant steps, and their

distance di ← δ(F0,F
2i

ℓ ), for i = 1, . . . , τ , with τ such that
dτ−1 ≤ R+(N)/2 < dτ .



Algorithm scheme, part 2

3 Set F̄ ← F2τ−1

ℓ and d̄ ← dτ−1.
For i = τ − 2, . . . , 0: if d̄ + di < R+(N)/2, then update

F̄ ← F̄ • F2i

ℓ and d̄ ← d̄ + di .

4 F̄ ∈ Υ. Compute ρ(F̄ ), ρ2(F̄ ), ρ3(F̄ ), . . . and
ρ−1(F̄ ), ρ−2(F̄ ), ρ−3(F̄ ), . . . until a non-trivial factor of 2N is
found.



The cycle Υ if π even

dk+1 = 2dk + O(lnN) for k ≥ 0 and δ(F0, F̄ ) = d̄ + O(lnN).



Computational complexity

Theorem (Murru, S.)

The value of τ in the algorithm is at most
⌈
log2

R+(N)
2

⌉
= O(lnN).

Theorem (Murru, S.)

The form F̄ obtained at the end of the first phase of the method
satisfies ∣∣∣δ(F0,Fπ/2)− δ(F0, F̄ )

∣∣∣ = O((lnN)2).

The computational complexity of our algorithm is O((lnN)2).



Multiple of R+(N) and regulator

Since Υ is periodic, and our goal is to find the quadratic form in
the middle of some period, the method can be adapted to take in
input aR+(N) for some a ∈ N>0.

1 If a odd, a factor of 2N is found in the position at distance
aR+(N)

2 from the beginning.

2 If a even, in a position at distance aR+(N)
2 is found Fπ. In this

case, the procedure is repeated with target the position at

distance aR+(N)
4 . The process is iterated ℓ times until a

2ℓ
odd.

We have that R+(N) = kR(N) for k ≤ 6, where R(N) is the
regulator of Q(

√
N).



Computing the regulator

We look for a fast algorithm that computes an integral multiple of
R(N), or a good approximation of it.

Vollmer’s method to compute R(N):

• Monte Carlo algorithm

• Cost (under GRH): O

(
exp

(
3√
8

√
lnN ln lnN

))

Main factorization algorithms that make use of continued fractions
or quadratic forms:

• CFRAC: O(exp(
√
2 lnN ln lnN))

• SQUFOF: O( 4
√
N)
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Future research: Class Number Formula

Theorem (Class Number Formula)

Let N > 0 square-free. The following holds:

h(N)R(N) =

√
D

2
L (1, χ) =

√
D

2

∞∑
x=1

(
D

x

)
1

x
,

where:

• h(N) is the class number,

• χ is the Kronecker symbol
(
D
·

)
,

• L (1, χ) is the L-function associated to χ,

• D = N if N ≡ 1 (mod 4) and D = 4N otherwise.

L(1, χ) =
∏

prime p

(
1−

(
D

p

)
1

p

)−1

Euler Product



Future research: approximation of h(N)R(N)

Two methods to estimating h(N)R(N) by approximating L (1, χ).

Bach’s method:

• Cost: O(N1/5+ϵ),

• Error (assuming ERH): O(N2/5+ϵ),

• Idea: Weighted average of truncated Euler Products to
compute S(Q,N), an approximation of L (1, χ).

Bibliography

Eric Bach (1995)
“Improved Approximations for Euler Products”



Future research: approximation of h(N)R(N)

Two methods to estimating h(N)R(N) by approximating L (1, χ).

Srinivasan’s method:

• Expected time: O(N1/5+ϵ),

• Error: O(N2/5+ϵ),

• Idea: The Random Summation Technique, i.e., taking
random terms in the Euler Product expansion of L (1, χ).

Bibliography

Anitha Srinivasan (1998)
“Computations of class numbers of real quadratic fields”



Srinivasan’s method: key points

1 L(1, χ) =

(
1−

(
D
2

)
1
2

)−1∑
x odd

(
D
x

)
1
x ,

2 Approximate S =
∑

x odd and x≤D2

(
D
x

)
1
x ,

3 M = ⌈D1/5⌉ i.i.v. Yi taking any odd integer value 1 ≤ n ≤ D2

P(Yi = n) = λ
n for 1 ≤ n ≤ D2 and n odd,

4 Let Xi be the random variable
(

D
Yi

)
for 1 ≤ i ≤ M,

5 Then, S = 1
λME(X1 + · · ·+ XM),

6 Approximate S with 1
λM

∑M
i=1 Xi .



Future research: Analytic Formula

Proposition

The following holds:

h(N)R(N) =
1

2

∑
x≥1

(
D

x

)√D
x

erfc

(
x

√
π

D

)
+ E1

(
πx2

D

) ,

where

• erfc(z) = 1− 2√
π

∑∞
n=0

(−1)nz2n+1

n!(2n+1) ,

• E1(z) = −γ − ln z −
∑∞

n=1
(−1)nzn

n·n! ,

• γ =
∫∞
1

(
− 1

x + 1
⌊x⌋

)
is the Euler–Mascheroni constant.



Thank you for your attention!
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