Continued Fractions and Quadratic Forms: A Novel Factorization Method

> Giulia Salvatori Politecnico di Torino

joint work with Nadir Murru (Università di Trento)

One World Numeration Seminar February 4, 2025

Goal and bibliography

Goal

Develop a novel factorization method based on two works by Michele Elia.

Bibliography

Michele Elia (2019) "Continued Fractions and Factoring"

Michele Elia (2021)

"Continued Fractions, Quadratic Fields, and Factoring: Some Computational Aspects"

Nadir Murru and Giulia Salvatori (2025) "Integer Factorization via Continued Fractions and Quadratic Forms"

Table of Contents

Research directions

Table of Contents

1 Introduction and continued fractions

2 Quadratic forms

3 Factorization algorithm

Factorization

Integer factorization is in $\mathcal{NP} \cap \text{co-}\mathcal{NP}$.

The most efficient known factorization algorithm is the **General Number Field Sieve**, with a heuristic running time of

$$\exp\left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)(\ln N)^{1/3}(\ln\ln N)^{2/3}\right)$$

Used in public-key cryptography:

- RSA (1976)
- Rabin cryptosystem (1979)
- Goldwasser-Micali cryptosystem (1982)
- Paillier cryptosystem (1999)

Definition

A simple continued fraction is an expression of the form

$$a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{a_3 + \cdots}}} = [a_0, a_1, a_2, a_3, \ldots],$$

where $a_0 \in \mathbb{Z}$ and $a_i \in \mathbb{N}^{>0}$, for i > 0. The terms a_0, a_1, a_2, \ldots are called partial quotients of the continued fraction.

Continued fraction of a real number

Given $x_0 \in \mathbb{R}$, we have $x_0 = [a_0, a_1, a_2, ...]$, where the partial quotients are computed as follows

$$\begin{cases} a_i = \lfloor x_i \rfloor \\ x_{i+1} = \frac{1}{x_i - a_i} \end{cases}, & \text{if } a_i \neq x_i, \quad \forall i \ge 0. \end{cases}$$

Definition

A periodic continued fraction is an infinite continued fraction such that

$$a_i = a_{i+\tau}$$

for a fixed positive integer τ and all $i \ge \ell$, for some $\ell \ge 0$. The minimum τ that satisfies the equality is called period.

The expansion of \sqrt{N}

Theorem

Given $N \in \mathbb{N}^{>0}$, the continued fraction expansion of \sqrt{N} is of the form

$$\sqrt{N} = [a_0, \overline{a_1, a_2, \ldots, a_2, a_1, 2a_0}].$$

We denote by π the length of period of the expansion of \sqrt{N} .

- (Stanton, Sudler, Williams) We have $\pi < 0.72\sqrt{N} \ln N$ for N > 7.
- (Littlewood) Under the GRH, if N is square-free we have $\pi \ll \sqrt{N} \ln \ln N$.
- (Vijayaraghavan)
 For any ε > 0, infinitely many N satisfy π > N^{1/2-ε}.

The sequences $\{Q_k\}_{k\geq 0}$ and $\{P_k\}_{k\geq 0}$

Definition (Lagrange's algorithm)

Let $N \in \mathbb{N}^{>0}$ non-square and $x_0 = \sqrt{N}$. We define P_k and Q_k , for $k \ge 0$, as

$$\begin{cases} a_k = \lfloor x_k \rfloor \\ P_{k+1} = a_k Q_k - P_k \\ Q_{k+1} = (N - P_{k+1}^2)/Q_k \end{cases}, \quad \text{where} \quad x_k = \frac{P_k + \sqrt{N}}{Q_k}, \quad k \ge 0. \end{cases}$$

- $0 < Q_k < \frac{2}{a_{k+1}}\sqrt{N}$ and $0 \le P_k < \sqrt{N}$ for all $k \ge 0$.
- $\{P_k\}_{k\geq 1}$ and $\{Q_k\}_{k\geq 0}$ are periodic of period π .

How to find a factor

We will assume $N \in \mathbb{N}^{>0}$ to be composite and non-square.

Theorem (Elia)

If π is even, then $Q_{\pi/2}$ is a non-trivial factor of 2N.

Theorem

If π is even, then $Q_{\pi/2}
eq 2$ if and only if the integer equations

$$X^2 - NY^2 = 2$$
 and $X^2 - NY^2 = -2$

are both unsolvable.

Proposition

If
$$\pi$$
 is odd and $\left(\frac{-1}{N}\right) = -1$, then $Q_{(\pi+1)/2}$ contains a nontrivial factor of N .

Even period and non-trivial factorization

Let N be an RSA modulus: N = pq, where $p \neq q$ are primes.

p (mod 8)	q (mod 8)	$\pi \pmod{2}$	$Q_{\pi/2}$
3	3		
3	7		
7	7	0	$\neq 2$
5	7		
5	3		
1	7	0	-2 or -2
1	3	0	$= 2$ or $\neq 2$
1	1		
1	5	0 or 1	If π even, then $ eq 2$
5	5		

We want to reach $Q_{\pi/2}$ or $Q_{(\pi+1)/2}$ as fast as possible.

We can compute $Q_0, Q_1, Q_2, Q_3, \ldots$ until we find a factor \ldots

 \dots but π can be too large!

We need a way to move through $\{Q_k\}_{k\geq 0}$ making long jumps.

Table of Contents

1 Introduction and continued fractions

Quadratic forms

3 Factorization algorithm

Quadratic forms

Definition

Let
$$\mathbf{\Upsilon} = \{\mathbf{F}_k\}_{k\geq 0}$$
, where

$$\mathbf{F}_k(x,y) = (-1)^k Q_k x^2 + 2P_{k+1} x y + (-1)^{k+1} Q_{k+1} y^2.$$

Definition

A quadratic form $F(x, y) = ax^2 + bxy + cy^2$ is reduced if

$$\left|\sqrt{\Delta}-2\left|a\right|\right| < b < \sqrt{\Delta},$$

where $\Delta = b^2 - 4ac$ is the discriminant of *F*.

- The discriminant of \mathbf{F}_k is $\Delta = 4N$ for all $k \ge 0$.
- \mathbf{F}_k reduced for all $k \ge 0$.

Quadratic forms: periodicity

Definition

Let
$$\mathbf{\Upsilon} = \{\mathbf{F}_k\}_{k\geq 0}$$
, where

$$\mathbf{F}_k(x,y) = (-1)^k Q_k x^2 + 2P_{k+1} x y + (-1)^{k+1} Q_{k+1} y^2.$$

$$\mathbf{F}_{k} = \begin{cases} \mathbf{F}_{k+\pi} & \text{if } \pi \text{ even} \\ \mathbf{F}_{k+2\pi} & \text{if } \pi \text{ odd} \end{cases} \quad \text{for all } k \ge 0.$$

We want to reach $\mathbf{F}_{\pi/2}$ or $\mathbf{F}_{(\pi-1)/2}$ in a fast way. $\mathbf{F}_{\pi/2} = ((-1)^{\pi/2} \mathbf{Q}_{\pi/2}, 2P_{\pi/2+1}, (-1)^{\pi/2+1} Q_{\pi/2+1})$ $\mathbf{F}_{(\pi-1)/2} = ((-1)^{(\pi-1)/2} Q_{(\pi-1)/2}, 2P_{(\pi+1)/2}, (-1)^{(\pi+1)/2} \mathbf{Q}_{(\pi+1)/2})$

We will refer to Υ as the cycle.

The cycle $\pmb{\Upsilon}$ if π even

Reduction operator ρ

Definition

Let F = (a, b, c) be a form with $ac \neq 0$. If its discriminant $\Delta > 0$ is a non-square integer, we define the reduction operator ρ as

$$\rho(a,b,c) = \left(c,r(-b,c),\frac{r(-b,c)^2-\Delta}{4c}\right),$$

where r(-b,c) is the unique r such that $r + b \equiv 0 \pmod{2c}$ and

$$-|c| < r \le |c|$$
 if $\sqrt{\Delta} < |c|,$
 $\sqrt{\Delta} - 2|c| < r < \sqrt{\Delta}$ if $|c| < \sqrt{\Delta}.$

• There exists $n \ge 0$ such that $\rho^n(F)$ is reduced.

•
$$\rho(\mathbf{F}_k) = \mathbf{F}_{k+1}$$
 for all $k \ge 0$.

Inverse reduction operator ρ^{-1}

Definition

Let F = (a, b, c) be a form with $ac \neq 0$. If its discriminant $\Delta > 0$ is a non-square integer, we define the ρ^{-1} as

$$\rho^{-1}(a,b,c) = \left(\frac{r(-b,a)^2 - \Delta}{4a}, r(-b,a), a\right)$$

- If *F* reduced, then $\rho(\rho^{-1}(F)) = \rho^{-1}(\rho(F)) = F$.
- $\rho^{-1}(\mathbf{F}_k) = \mathbf{F}_{k-1}$ for all k > 0.

The cycle Υ if π even

Gauss composition

Definition

The Gauss composition $F \circ G$ of two quadratic forms $F = (a_1, b_1, c_1)$ and $G = (a_2, b_2, c_2)$, both having discriminant Δ , is

$$(a_3, b_3, c_3) = \left(d_0 \frac{a_1 a_2}{n^2}, b_1 + \frac{2a_1}{n} \left(\frac{t(b_2 - b_1)}{2} - c_1 v\right), \frac{b_3^2 - \Delta}{4a_3}\right),$$

where $\beta = (b_1 + b_2)/2$, $n = \gcd(a_1, a_2, \beta)$, $a_1t + a_2u + \beta v = n$, and $d_0 = \gcd(a_1, a_2, \beta, c_1, c_2, (b_1 - b_2)/2)$.

$$F = (a, b, c) \longleftrightarrow I_F = a\mathbb{Z} + \frac{-b+\sqrt{\Delta}}{2}\mathbb{Z}$$
 ideal of $\mathcal{O}_{\mathbb{Q}(\sqrt{\Delta})}$
 $F \circ G \longleftrightarrow I_F I_G$

Giant step

Definition

The giant step of \mathbf{F}_n and \mathbf{F}_m is the composition

$$\mathbf{F}_n \bullet \mathbf{F}_m = \rho^t (\mathbf{F}_n \circ \mathbf{F}_m),$$

realized through the Gauss composition $\mathbf{F}_n \circ \mathbf{F}_m$, followed by the minimum number t of reduction operations ρ to obtain a reduced form.

- $\mathbf{F}_n \circ \mathbf{F}_m$ may not be reduced.
- The number of applications of ρ needed to reduce $\mathbf{F}_n \circ \mathbf{F}_m$ is $O(\ln(N))$.
- For all $n, m \ge 0$ we have $\mathbf{F}_n \bullet \mathbf{F}_m \in \mathbf{\Upsilon}$.

Distance of forms

Definition

Given a quadratic form F = (a, b, c) with discriminant Δ , and n > 0, we define the distance δ as follows:

$$\delta(F, \rho(F)) = rac{1}{2} \ln \left| rac{b + \sqrt{\Delta}}{b - \sqrt{\Delta}} \right|,$$

and

$$\delta(F,\rho^n(F)) = \sum_{i=1}^n \delta(\rho^{i-1}(F),\rho^i(F)).$$

Important

 δ is not a metric distance!

$\delta\text{-length}$ of a cycle

Definition

We define

$$R^+(N) = \ln(\bar{x} + \bar{y}\sqrt{N}),$$

where $\bar{x} + \bar{y}\sqrt{N}$ is the minimal solution of the Pell's equation $X^2 - NY^2 = 1$.

Theorem

If
$$\pi$$
 even, then $\delta(\mathbf{F}_0, \mathbf{F}_{\pi}) = R^+(N)$ and $\delta(\mathbf{F}_0, \mathbf{F}_{\pi/2}) = R^+(N)/2$.

Theorem

If π odd, then $\delta(\mathbf{F}_0, \mathbf{F}_{2\pi}) = R^+(N)$, $\delta(\mathbf{F}_0, \mathbf{F}_{\pi}) = R^+(N)/2$, and $\delta(\mathbf{F}_0, \mathbf{F}_{(\pi-1)/2}) = R^+(N)/4 + O(\ln N)$.

Properties of δ

Theorem (H. Lenstra)

Let $\mathbf{F}_n, \mathbf{F}_m \in \mathbf{\Upsilon}$, and $\mathbf{F}_r = \mathbf{F}_n \bullet \mathbf{F}_m$. Then,

 $\delta(\mathbf{F}_0,\mathbf{F}_r) = \delta(\mathbf{F}_0,\mathbf{F}_n) + \delta(\mathbf{F}_0,\mathbf{F}_m) + \delta(\mathbf{F}_n \circ \mathbf{F}_m,\mathbf{F}_r),$

and $|\delta(\mathbf{F}_n \circ \mathbf{F}_m, \mathbf{F}_r)| < 2 \ln(4N)$.

- $\delta(\mathbf{F}_k, \mathbf{F}_{k+1}) < \frac{1}{2} \ln N$
- $\delta(\mathbf{F}_k, \mathbf{F}_{k+2}) > \ln 2$

Corollary

If
$$\delta(\mathbf{F}_i, \mathbf{F}_j) = D$$
, then $\frac{2D}{\ln(4N)} < |j-i| < \frac{2D}{\ln 2} + 1$.

The cycle Υ if π even

1 Introduction and continued fractions

2 Quadratic forms

Idea of our method for even period

We assume π even.

Operations

- ρ and ρ^{-1} steps: length-one jump in the cycle.
- Giant step: long jump in the cycle.

1 Use giant steps to compute \overline{F} , an approximation of $\mathbf{F}_{\pi/2}$.

2 Reach $\mathbf{F}_{\pi/2}$ computing the forms near \overline{F} .

Input N > 0 non-square such that $\pi \equiv 0 \pmod{2}$ $R^+(N)$

- Starting from \mathbf{F}_0 , compute the forms \mathbf{F}_i for $i = 0, ..., \ell$, until $\delta(\mathbf{F}_0, \mathbf{F}_\ell) \ge 2 \ln(4N) + 1$.
- 2 Compute the quadratic forms $\mathbf{F}_{\ell}^{2'}$, using giant steps, and their distance $d_i \leftarrow \delta(\mathbf{F}_0, \mathbf{F}_{\ell}^{2'})$, for $i = 1, ..., \tau$, with τ such that $d_{\tau-1} \leq R^+(N)/2 < d_{\tau}$.

Algorithm scheme, part (2)

3 Set
$$\overline{F} \leftarrow \mathbf{F}_{\ell}^{2^{\tau-1}}$$
 and $\overline{d} \leftarrow d_{\tau-1}$.
For $i = \tau - 2, \dots, 0$: if $\overline{d} + d_i < R^+(N)/2$, then update $\overline{F} \leftarrow \overline{F} \bullet \mathbf{F}_{\ell}^{2^{\tau}}$ and $\overline{d} \leftarrow \overline{d} + d_i$.

4 $\overline{F} \in \Upsilon$. Compute $\rho(\overline{F}), \rho^2(\overline{F}), \rho^3(\overline{F}), \ldots$ and $\rho^{-1}(\overline{F}), \rho^{-2}(\overline{F}), \rho^{-3}(\overline{F}), \ldots$ until a non-trivial factor of 2N is found.

The cycle Υ if π even

 $d_{k+1} = 2d_k + O(\ln N)$ for $k \ge 0$ and $\delta(\mathbf{F}_0, \overline{F}) = \overline{d} + O(\ln N)$.

Theorem (Murru, S.)

The value of τ in the algorithm is at most $\left[\log_2 \frac{R^+(N)}{2}\right] = O(\ln N)$.

Theorem (Murru, S.)

The form \overline{F} obtained at the end of the first phase of the method satisfies

$$\left|\delta(\mathbf{F}_0,\mathbf{F}_{\pi/2})-\delta(\mathbf{F}_0,ar{F})
ight|=O((\ln N)^2).$$

The computational complexity of our algorithm is $O((\ln N)^2)$.

Multiple of $R^+(N)$ and regulator

Since Υ is periodic, and our goal is to find the quadratic form in the middle of some period, the method can be adapted to take in input $aR^+(N)$ for some $a \in \mathbb{N}^{>0}$.

- If a odd, a factor of 2N is found in the position at distance $\frac{aR^+(N)}{2}$ from the beginning.
- 2 If *a* even, in a position at distance $\frac{aR^+(N)}{2}$ is found \mathbf{F}_{π} . In this case, the procedure is repeated with target the position at distance $\frac{aR^+(N)}{4}$. The process is iterated ℓ times until $\frac{a}{2\ell}$ odd.

We have that $R^+(N) = kR(N)$ for $k \le 6$, where R(N) is the regulator of $\mathbb{Q}(\sqrt{N})$.

We look for a fast algorithm that computes an integral multiple of R(N), or a good approximation of it.

Vollmer's method to compute R(N):

Monte Carlo algorithm

• Cost (under GRH):
$$O\left(\exp\left(\frac{3}{\sqrt{8}}\sqrt{\ln N \ln \ln N}\right)\right)$$

Main factorization algorithms that make use of continued fractions or quadratic forms:

- CFRAC: $O(\exp(\sqrt{2 \ln N \ln \ln N}))$
- SQUFOF: $O(\sqrt[4]{N})$

Table of Contents

1 Introduction and continued fractions

2 Quadratic forms

Future research: Class Number Formula

Theorem (Class Number Formula)

Let N > 0 square-free. The following holds:

$$h(N)R(N) = \frac{\sqrt{D}}{2}L(1,\chi) = \frac{\sqrt{D}}{2}\sum_{x=1}^{\infty} \left(\frac{D}{x}\right)\frac{1}{x},$$

where:

- h(N) is the class number,
- χ is the Kronecker symbol $\left(\frac{D}{\cdot}\right)$,
- $L(1,\chi)$ is the L-function associated to χ ,
- D = N if $N \equiv 1 \pmod{4}$ and D = 4N otherwise.

$$L(1,\chi) = \prod_{\text{prime } p} \left(1 - \left(\frac{D}{p}\right) \frac{1}{p} \right)^{-1} \text{ Euler Product}$$

Future research: approximation of h(N)R(N)

Two methods to estimating h(N)R(N) by approximating $L(1, \chi)$.

Bach's method:

- Cost: $O(N^{1/5+\epsilon})$,
- Error (assuming ERH): $O(N^{2/5+\epsilon})$,
- Idea: Weighted average of truncated Euler Products to compute S(Q, N), an approximation of L (1, χ).

Bibliography

Eric Bach (1995)

"Improved Approximations for Euler Products"

Future research: approximation of h(N)R(N)

Two methods to estimating h(N)R(N) by approximating $L(1, \chi)$.

Srinivasan's method:

- Expected time: $O(N^{1/5+\epsilon})$,
- Error: O(N^{2/5+ϵ}),
- Idea: The Random Summation Technique, i.e., taking random terms in the Euler Product expansion of L (1, χ).

Bibliography

Anitha Srinivasan (1998)

"Computations of class numbers of real quadratic fields"

Srinivasan's method: key points

1
$$L(1, \chi) = \left(1 - \left(\frac{D}{2}\right)\frac{1}{2}\right)^{-1} \sum_{x \text{ odd}} \left(\frac{D}{x}\right)\frac{1}{x},$$

2 Approximate $S = \sum_{x \text{ odd and } x \le D^2} \left(\frac{D}{x}\right)\frac{1}{x},$
3 $M = \lceil D^{1/5} \rceil$ i.i.v. Y_i taking any odd integer value $1 \le n \le D^2$
 $\mathbb{P}(Y_i = n) = \frac{\lambda}{n}$ for $1 \le n \le D^2$ and n odd,
4 Let X_i be the random variable $\left(\frac{D}{Y_i}\right)$ for $1 \le i \le M$,
5 Then, $S = \frac{1}{\lambda M} \mathbb{E}(X_1 + \dots + X_M),$

6 Approximate S with $\frac{1}{\lambda M} \sum_{i=1}^{M} X_i$.

Future research: Analytic Formula

Proposition

The following holds:

$$h(N)R(N) = \frac{1}{2}\sum_{x\geq 1} \left(\frac{D}{x}\right) \left(\frac{\sqrt{D}}{x} \operatorname{erfc}\left(x\sqrt{\frac{\pi}{D}}\right) + E_1\left(\frac{\pi x^2}{D}\right)\right),$$

where

•
$$\operatorname{erfc}(z) = 1 - \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n z^{n+1}}{n!(2n+1)},$$

• $E_1(z) = -\gamma - \ln z - \sum_{n=1}^{\infty} \frac{(-1)^n z^n}{n \cdot n!},$
• $\gamma = \int_1^{\infty} \left(-\frac{1}{x} + \frac{1}{\lfloor x \rfloor} \right)$ is the Euler-Mascheroni constant.

Thank you for your attention!