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Limit theorems for counting large continued fraction digits
Introduction
Notation

Consider the unique continued fraction (CF) expansion of an irrational,
positive x given by

x = [a0 (x) ; a1 (x) , a2 (x) , . . .] := a0 (x) +
1

a1 (x) +
1

a2 (x) +
. . .

.

In case that x ∈ [0, 1) we write

x = [a1 (x) , a2 (x) , . . .] :=
1

a1 (x) +
1

a2 (x) +
. . .

.
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Limit theorems for counting large continued fraction digits
Introduction
Notation

We may consider a1, a2, . . . as random variables obtained by a dynamical
system. Define

G : [0, 1)→ [0, 1) , χ : [0, 1)→ R>0

x 7→

{
1/x mod 1, x 6= 0,
0, x = 0

x 7→ b1/xc .
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Then an (x) = χ ◦ G n−1 (x) with G 0 := id and G n := G ◦ G n−1, n ≥ 1.
G is also called Gauss map. For rational numbers x there exists n ∈ N
such that G n(x) = 0 which yields a finite CF expansion.
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Limit theorems for counting large continued fraction digits
Introduction
A classical CF result: The Borel-Bernstein Theorem

The following is standard material, see for example [Khinchin, 1997,
Dajani and Kraaikamp, 2002, Iosifescu and Kraaikamp, 2009].
Gauss found a G -invariant measure m which is equivalent to the
Lebesgue measure λ with density h(x) = 1/((x + 1)log 2),
x ∈ [0, 1), i.e. we have for each measurable set A that

m (A) =

∫
A

h(x)dλ (x) =
1

log 2
·
∫
A

1
x + 1

dx .

In particular, for each measurable set A it holds that

λ (A)

log 2
≤ m (A) ≤ 2 · λ (A)

log 2
.
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Limit theorems for counting large continued fraction digits
Introduction
A classical CF result: The Borel-Bernstein Theorem

The dynamical system ([0, 1),B,G ,m) is in fact ergodic.
In particular, by Birkhoff’s ergodic theorem this implies for any
subset A ⊂ N that

lim
n→∞

1
n
card {k ≤ n : ak ∈ A} = m (A) a.s.

We can conclude that for a.e. x every fixed digit k ∈ N will be
realized in the CF expansion (an(x)) infinitely often.
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Limit theorems for counting large continued fraction digits
Introduction
A classical CF result: The Borel-Bernstein Theorem

Will an ≥ kn still be realized infinitely often if (kn) is an increasing
sequence?

Theorem 1.1 (Borel-Bernstein Theorem,
[Borel, 1909, Bernstein, 1911, Bernstein, 1912])

Consider a sequence of positive reals (bn). Then an ≥ bn holds infinitely
often with Lebesgue measure 0 or 1, according as the series

∑
n∈N 1/bn

converges or diverges.

We are interested in a refinement of this theorem concerning an hitting
more general intervals. The refinements we will give are inspired by
[Galambos, 1972] who considered the independent case of entries of the
classical Lüroth series.
(For those who don’t know Lüroth expansions: Those are numeration
systems related to the continued fraction systems, i.e. the digits obey, up
to a constant, the same distribution function. But the entries behave like
i.i.d. random variables.)
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Limit theorems for counting large continued fraction digits
Introduction
A second classical CF result: A central limit theorem (CLT) by Philipp

To state the next theorem by Philipp we let E (X ) denote the expectation
and V (X ) := E

(
(X − E (X ))2 ) denote the variance of a random variable

X .

Theorem 1.2 (Theorem 2 of [Philipp, 1970])

Consider a sequence of positive reals (bn)n∈N. If

lim
n→∞

bn =∞ and
∑
n∈N

1
bn

=∞,

then for Sn :=
∑n

k=1 1{ak>bk} we have

lim
n→∞

m

(
Sn − E (Sn)√

V (Sn)
< z

)
=

1√
2π

∫ z

−∞
e−t

2/2dt.

We remember that by the Borel-Bernstein theorem
∑

n∈N
1
bn

=∞
already implied that an ≥ bn holds infinitely often with Lebesgue 1.
We are intrigued to ask if the condition limn→∞ bn =∞ is indeed a
necessary condition for Philipp’s CLT to hold.
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Introduction
A second classical CF result: A central limit theorem (CLT) by Philipp

Compare the assumptions of Theorem 1.2 with the necessary
conditions for the CLT to hold in the case that (Xi ) := (1{ai>bi}) is
a sequence of independent random variables with the same
distribution function.
In this case the statement could be proven using Lindeberg’s
condition, i.e. we assume that for all ε > 0

lim
n→∞

1
V (Sn)

·
n∑

i=1

E
(

(Xi − E (Xi ))2 · 1{
|Xi−E(Xi )|>ε·

√
V(Sn)

}) = 0.

For the distribution function of the CF digits this condition is in fact
equivalent to limn→∞ V (Sn) =∞.
In the i.i.d. case this is equivalent to
limn→∞

∑n
k=1 m (ak > bk) ·m (ak ≤ bk) =∞.

Since m (ak ≤ bk) ≤ m (ak ≤ 1) = m (ak = 1), we have that
limn→∞V (Sn) =∞ is in the i.i.d. case equivalent to∑

n→∞m (ak > bk) =∞.
This is equivalent to

∑∞
k=1 1/bk =∞.

We will show that despite of the lack of independence the additional
condition limn→∞ bn =∞ is not necessary.
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Theorem 2.1 ([Kesseböhmer and S., 2020])

Let (cn)n∈N be a sequence of positive real numbers and (dn)n∈N be a
sequence of positive integers both tending to infinity. Then

dn ≤ an ≤ dn ·
(
1 +

1
cn

)
(1)

holds infinitely often with Lebesgue measure 0 or 1, according as

max

{∑
n∈N

1
cndn

,
∑
n∈N

1
d2
n

}
(2)

is finite or not.

Let us now choose cn := 2dn, then (1) simplifies to dn ≤ an ≤ dn + 1/2
and (2) becomes

∑
n∈N 1/(2d2

n ).
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This gives the following corollary:

Corollary 2.2

Let (dn)n∈N be a sequence of positive integers tending to infinity. Then

an = dn

holds infinitely often with Lebesgue measure 0 or 1, according as∑
n∈N

1
d2
n

is finite or not.

For dn := b
√
n log(n)c there are almost surely infinitely many values

of n such that an = dn.
For en := b

√
n log(n)c there are almost surely only finitely many

values of n such that an = en.
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Main results

We state a slightly different version of the previous Theorem 2.1.

Theorem 2.3

Let (cn)n∈N be a sequence of positive real numbers and (dn)n∈N be a
sequences of positive integers both tending to infinity. Then

dn<an ≤ dn ·
(
1 +

1
cn

)
holds infinitely often with Lebesgue measure 0 or 1, according as∑

n : cn≤dn

1
cndn

is finite or not.
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Limit theorems for counting large continued fraction digits
First main results: 0-1 laws
Mixing theory for CF digits I

Definition 2.4

Let (Ω,A,P) be a probability space and C,D ⊂ A two σ-fields, then the
following quantities measure the dependence of the sub-σ-fields:

φ (C,D) := sup
C ,D
|P (D | C )− P (D)| ,C ∈ C,D ∈ D,P (C ) > 0,

ψ (C,D) := sup
C ,D

∣∣∣∣ P (C ∩ D)

P (C ) · P (D)
− 1
∣∣∣∣ ,C ∈ C,D ∈ D,P (C ) ,P (D) > 0.

Let (Xn)n∈N be a (not necessarily stationary) sequence of random
variables. For 1 ≤ J ≤ L ≤ ∞ we can define a σ-field by

AL
J := σ (Xk , k ∈ N ∩ [J, L]) .

With that the dependence coefficients are defined by

φ (n) := sup
k∈N

φ
(
Ak

0 ,A∞k+n

)
and ψ (n) := sup

k∈N
ψ
(
Ak

0 ,A∞k+n

)
.

(Xn) is said to be φ-(or ψ-)mixing if φ(n)→ 0 (or ψ(n)→ 0) as n→∞.
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Limit theorems for counting large continued fraction digits
First main results: 0-1 laws
Mixing theory for CF digits I

φ-mixing is weaker than ψ-mixing, indeed φ (n) ≤ 1
2ψ (n), for all

n ∈ N.
Let ψm (φm) be the ψ (φ)-mixing coefficient for the Gauss system,
[Iosifescu and Kraaikamp, 2009, Chapter 2.3.4] gives the estimate
ψm (n) ≤ ρ θn−2 for n ≥ 2, where ρ = π2 log 2/6− 1 and θ is a
constant less than 0.30367, and ψm (1) = 2 log 2− 1.
In particular we have

∑∞
n=1 φm (n) <∞.
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Limit theorems for counting large continued fraction digits
First main results: 0-1 laws
Proof of 0-1 laws

As the ideas are similar, we only give a proof for Theorem 2.1 for the
intervals An := [dn, dn(1 + 1/cn)].
The first direction is easy and does not need any mixing theory.
Remember that λ (A) / log 2 ≤ m (A) ≤ 2 · λ (A) / log 2.
We have that

λ (An) =
1
dn
− 1

dn + bdn/cnc+ 1
.

An easy calculation shows that

λ (An) ≤ 1
dn
− 1

dn + dn/cn + 1
<

1
cndn

+
1
d2
n

.

Hence, if the sum of the right hand sides is finite, the first
Borel-Cantelli implies m (lim supn→∞ An) = 0.
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Limit theorems for counting large continued fraction digits
First main results: 0-1 laws
Proof of 0-1 laws

In the i.i.d. case one would use the second Borel-Cantelli lemma to obtain
the other direction which due to the dependence of the CF digits is not
immediately applicable here.
However, all our zero-one laws can be proven by the following lemma
which is a simplified version of [Philipp, 1967, Theorem 3].

Lemma 2.5

Let (Γn)n∈N be a sequence of measurable sets in any probability space
(Ω,A, µ). Suppose that there exists a function q : N→ R≥0 fulfilling∑∞

n=1 q(n) <∞ such that for all integers n > m we have

µ (Γm ∩ Γn) ≤ µ (Γm) · µ (Γn) + q (n −m) · µ (Γn) .

Then Γn holds infinitely often with Lebesgue measure 0 or 1 according as∑∞
n=1 µ (Γn) is finite or not.

We can set q as the φ-mixing coefficient and use
∑∞

n=1 φm (n) <∞.
It would also be possible to directly use a dynamical Borel-Cantelli lemma
like [Kim, 2007].
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First main results: 0-1 laws
Proof of 0-1 laws

For the following we denote by σ (an) the σ-algebra generated by the nth
continued fraction digit.
The previous calculations give the following lemma:

Lemma 2.6

Let (Dn) be a sequence of events such that Dn ∈ σ (an), for all n ∈ N. If∑∞
n=1 m (Dn) =∞, then m (lim supn→∞Dn) = 1.

Remember λ (An) = 1/dn − 1/(dn + bdn/cnc+ 1).

Hence, λ (An) >
1
dn
− 1

dn + dn/cn
>

1
2cndn

,

i.e.
∑

n∈N λ (An) =∞ if
∑

n∈N 1/ (cndn) =∞.
On the other hand An ⊃ {an = dn} and thus

λ(An) ≥ λ (an = dn) =
1
dn
− 1

dn + 1
≥ 1

2d2
n

,

i.e.
∑∞

n=1 λ(An) diverges if
∑∞

n=1 1/d
2
n does.

An application of Lemma 2.6 gives the desired statement.
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Main results

Theorem 3.1 ([Kesseböhmer and S., 2020])

Let (An)n∈N be a sequence of events such that An ∈ σ (an) for all n ∈ N.
Suppose

Vn :=
n∑

k=1

m (Ak) ·m (Ac
k)→∞.

Then for Sn :=
∑n

k=1 1Ak
we have

lim
n→∞

m

(
Sn − E (Sn)√

V (Sn)
< z

)
=

1√
2π

∫ z

−∞
e−t

2/2dt. (3)

We remark here that to provide error terms as in [Philipp, 1970] and
[Zuparov, 1986] or to prove that for Sn a functional CLT as in
[Philipp and Webb, 1973] holds follows along the same lines as in the
original papers.
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Corollary 3.2

Let (bn) and (cn)n∈N be arbitrarily chosen sequences of positive real
numbers and (dn)n∈N be a sequences of positive integers. Suppose that
either
(A) An := {an ≥ bn} with

∑
n:bn>1 1/bn =∞,

(B) An := {an = dn} with
∑

n∈N 1/d2
n =∞,

(C) An :=
{
dn ≤ an ≤ dn ·

(
1 + 1

cn

)}
with

∑
n∈N 1/(cndn) =∞

or
∑

n:dn>1 1/d
2
n =∞,

(D) An :=
{
dn < an ≤ dn ·

(
1 + 1

cn

)}
with

∑
n : cn≤dn 1/(cndn) =∞,

then for Sn :=
∑n

k=1 1Ak
the CLT in (3) holds.

We see that indeed the condition limn→∞ bn =∞ in (A) is not necessary.
The other results correspond to our previously proven zero-one laws.
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Limit theorems for counting large continued fraction digits
Second main results: Central limit theorems (CLT)
Main idea of proof

To prove Theorem 3.1 we can make use of [Philipp, 1970, Theorem
3].
Beside some technical conditions one assumption of this theorem is

lim
n→∞

V

(
n∑

k=1

1Ak

)
=∞.

We will prove the following lemma:

Lemma 3.3

There exists ε > 0 such that for all n ∈ N

V

(
n∑

i=1

1Ai

)
> ε ·

n∑
i=1

V (1Ai ) .

This lemma implies
limn→∞

∑n
i=1 V (1Ai ) =∞⇒ limn→∞V

(∑n
i=1 1Ai

)
=∞ and we

thus only need the condition as in the i.i.d. case.
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Main idea of proof

Notice that

V

(
n∑

i=1

1Ai

)
=

n∑
i=1

V (1Ai ) + 2
n∑

j=i+1

Cov
(
1Ai ,1Aj

)
≥

n∑
i=1

V (1Ai )− 2
∑
j>i

∣∣Cov
(
1Ai ,1Aj

)∣∣
For i < j we have that∣∣Cov

(
1Ai ,1Aj

)∣∣ = |m (Ai ∩ Aj)−m (Ai ) ·m (Aj)| ≤ φm (j − i) ·m (Ai )

and on the other hand∣∣Cov
(
1Ai ,1Aj

)∣∣ = |m (Ac
i ∩ Aj)−m (Ac

i ) ·m (Aj)| ≤ φm (j − i) ·m (Ac
i )

yielding

2
∑
j>i

∣∣Cov
(
1Ai ,1Aj

)∣∣ ≤ 2

( ∞∑
k=1

φm (k)

)
·min {m (Ai ) ,m (Ac

i )}

=: κ ·min {m (Ai ) ,m (Ac
i )} .
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Main idea of proof

On the other hand we have that

V (1Ai ) = m (Ai ) ·m (Ac
i ) ≥ min {m (Ai ) ,m (Ac

i )}
2

.

Hence,

V

(
n∑

i=1

1Ai

)
≥

n∑
i=1

V (1Ai )− 2
∑
j>i

∣∣Cov
(
1Ai ,1Aj

)∣∣
≥

n∑
i=1

(
min {m (Ai ) ,m (Ac

i )}
2

− κ ·min {m (Ai ) ,m (Ac
i )}
)

=

(
1
2
− κ
)
·

n∑
i=1

min {m (Ai ) ,m (Ac
i )}

≥
(
1
2
− κ
)
·

n∑
i=1

V (1Ai ) .

To prove the lemma it suffices to prove that κ < 1/2.
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Let us now calculate κ = 2
∑∞

j=1 φm (j).
We remember that φm (n) ≤ 1/2ψm (n), for all n ∈ N, and
ψm (n) ≤ ρ θn−2 for n ≥ 2, where ρ = π2 log 2/6− 1 and θ is a
constant less than 0.30367, and ψm (1) = 2 log 2− 1.
This is not good enough! With this estimate κ > 1/2!
But we can show the following:

Lemma 3.4

Let φm denote the φ-mixing coefficient for the Gauss system. Then we
have that

φm (1) =
1− log 2 + log log 2

log 2
< 0.0861.

Using this estimate yields κ < 1/2.
It turns out that φm (1) coincides with the Erdős-Ford-Tenenbaum
constant.
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Mixing theory for CF digits II: First φ-mixing coefficient and extended random variables

The proof of this lemma can be done using the natural extension of
the random variables (an).
Loosely speaking this is a larger dynamical system which is invertible
and there exists a projection to the original system preserving some
dynamical structures.
First define G : (0, 1)× [0, 1]→ (0, 1)× [0, 1] by

G (ω, θ) :=

(
G (ω) ,

1
a1 (ω) + θ

)
.

It can be easily seen that

G
n

(ω, θ) = (G n (ω) , [an (ω) , . . . , a2 (ω) , a1 (ω) + θ]) .

Then we define the bi-infinite sequence (ak)k∈Z, where each
ak : (0, 1)× [0, 1]→ N is given by

ak (ω, θ) := a1

(
G

k
(ω, θ)

)
with a1 (ω, θ) := a1 (ω) .

There exists a unique probability measure m such that G preserves
m called extended Gauss measure.
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Mixing theory for CF digits II: First φ-mixing coefficient and extended random variables

Lemma 3.5 ([Iosifescu and Kraaikamp, 2009, Theorem 1.3.5])

For any x ∈ [0, 1] we have the conditional probability

m ([0, x ]× [0, 1] |(a0, a−1, . . .)) =
(a + 1) x

ax + 1
m-a.s.,

for the random variable a := [a0, a−1, . . .].

Motivated by this lemma we also define the probability measure ma on
B[0,1] via its distribution function, for a ∈ [0, 1], by

ma ([0, x ]) :=
(a + 1) x

ax + 1
.
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Second main results: Central limit theorems (CLT)
Mixing theory for CF digits II: First φ-mixing coefficient and extended random variables

Proof of the value of φm (1), i.e. Lemma 3.4 (Sketch).

Let

η := sup |ma (B)−m (B)|

with the supremum taken over all a ∈ [0, 1] and B ∈ B[0,1].
The proof of the lemma is separated into two parts, namely we show
that
(A) η = (1 − log 2 + log log 2) / log 2 and
(B) φm (1) ≤ η.

The proof of (B) is inspired by the estimate of the ψ-mixing
coefficient in [Iosifescu and Kraaikamp, 2009].
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Mixing theory for CF digits II: First φ-mixing coefficient and extended random variables

Proof of (A) (Sketch).

We want to calculate the precise value of
η := supa,B |ma (B)−m (B)|.
We define f : [0, 1)2 → R by

f (a, x) := ma ([0, x ])−m ([0, x ]) =
(a + 1) x

ax + 1
− log (x + 1)

log 2
.

f (a, ·) is the distribution function of a signed measure with density
∂f (a, x) /∂x .
For each a ∈ [0, 1) we have that supB(ma (B)−m (B)) will be
attained for B = {x : ∂f (a, x) /∂x > 0} and infB(ma (B)−m (B))
will be attained for Bc .
For given a ∈ [0, 1) calculate supB |ma (B)−m (B)|, then take the
supremum over a ∈ [0, 1).
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Proof of (B) (Sketch).

We want to show that φm (1) = supa,B |ma (B)−m (B)|.
Remember the definition of the φ-mixing coefficient:

φ (C,D) := sup
C ,D
|P (D | C )− P (D)| ,C ∈ C,D ∈ D,P (C ) > 0.

We have that φm (1) = sup
{∣∣m (B|A)−m

(
B
)∣∣}, where the

supremum is taken over B ∈ σ (an, an+1, . . .),
A ∈ σ (. . . , an−2, an−1) with m

(
A
)
> 0, n ∈ N.

By the shift invariance of m it is enough to take the supremum over
B ∈ σ (a1, a2, . . .) and A ∈ σ (a0, a−1, . . .) for which m

(
A
)
> 0.

Since B = B × [0, 1) and A = [0, 1)× A, for some A,B ∈ B[0,1), we
have

φm (1) = sup

{∣∣∣∣m (A× B)

m (A)
−m (B)

∣∣∣∣ : A,B ∈ B[0,1),m (A) > 0
}
.
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Mixing theory for CF digits II: First φ-mixing coefficient and extended random variables

Proof of (B) (Sketch) part II.

Estimate

φm (1) = sup

{∣∣∣∣m (A× B)

m (A)
−m (B)

∣∣∣∣ : A,B ∈ B[0,1),m (A) > 0
}
.

We have that m (A× B) =
∫
A
ma (B) dm (a), for A,B ∈ B[0,1).

For given B ∈ B[0,1) we have that

sup
a∈[0,1)

ma (B) ≥ sup
A∈B[0,1)

∫
A
ma (B) dm (a)

m (A)

inf
a∈[0,1)

ma (B) ≤ inf
A∈B[0,1)

∫
A
ma (B) dm (a)

m (A)
.

Some additional calculations give equality in the above cases.
Thus, φm (1) = supa,B |ma (B)−m (B)|.

37 / 44



Limit theorems for counting large continued fraction digits
Further connections
Diophantine approximation

1 Introduction
Notation
A classical CF result: The Borel-Bernstein Theorem
A second classical CF result: A central limit theorem (CLT) by
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Set
pn
qn

:= a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

= [a0; a1, . . . , an].

Definition 4.1

The approximation coefficient θ (x , p/q) of a rational number p/q with
respect to an irrational number x is defined by

θ

(
x ,

p

q

)
= q · |qx − p| .

In particular we have that
∣∣∣∣x − pk

qk

∣∣∣∣ =
θ
(
x , pkqk

)
q2
k

.

Defining un := q−2
n−1

∣∣∣x − pn−1
qn−1

∣∣∣−1
gives us θ (x , pn/qn) = u−1

n+1.
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Further interesting random variables might be

rn :=
1

G n−1 = [an; an+1, an+2, . . .] and

yn :=
qn

qn−1
.

We have qn = y1 · . . . · yn and yn = [an; an−1, . . . , a1] = an + yn−1,
n ∈ N.
Recall also the well-known estimate

1
qn−1 (qn + qn−1)

<

∣∣∣∣x − pn−1

qn−1

∣∣∣∣ < 1
qn−1qn

.

The differences between the above defined variables and an are
bounded as follows

an ≤ rn < an + 1
an ≤ yn < an + 1
an < un < an + 2.
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Our aim is to provide analogous results to the famous Khinchine theorem.

Theorem 4.2 (Khinchine’s Theorem)

Let k : N→ (0,∞) be non-increasing. Then∣∣∣∣x − p

q

∣∣∣∣ ≤ k(q)

q

for p ∈ N choosen appropriately for each q ∈ N holds infinitely often with
Lebesgue measure 0 or 1, according as

∞∑
n=1

k(n)

is finite or not.
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Lemma 4.3 ([Kesseböhmer and S., 2020])

Let (cn)n∈N be a sequence of real numbers and (dn)n∈N be a sequence of
natural numbers both tending to infinity such that

∑∞
n=1 1/(cndn) =∞.

Then for the random variables, rn, yn, and un, associated to the CF digits
we have that

dn < rn, yn ≤ dn (1 + 1/cn) + 1

and

dn < un ≤ dn (1 + 1/cn) + 2

hold for infinitely many n ∈ N Lebesgue almost everywhere.
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Further questions:
Is it possible to state the 0-1 laws for (un) in the same precise way
as for the CF digits (an)?
Does the CLT holds in the same way for (un) as for (an)?
Can one generalize the results for higher dimensional continued
fractions in the same way as for example the Borel-Bernstein
theorem, [Nogueira, 2001]?
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Kesseböhmer, M. and Schindler, T. I. (2020).

Limit theorems for counting large continued
fraction digits.
Lith. Math. J., 60(2):189–207.

Khinchin, A. Y. (1997).

Continued Fractions.
Dover Publications.

Kim, D. H. (2007).

The dynamical Borel-Cantelli lemma for interval
maps.
Discrete Contin. Dyn. Syst., 17(4):891–900.

Nogueira, A. (2001).

The Borel—Bernstein theorem for
multidimensional continued fractions.
Journal d’Analyse Mathématique, 85(1):1–41.
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