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What does the Rauzy gasket relate to?
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Novikov's model
of electromagnetic induction

When free electrons in a metal lattice are compelled to move
orthogonally to a magnetic field, how do they behave?
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Novikov's conjecture

Novikov's conjecture is that chaotic behaviour generically never
happens:

For a generic smooth H, the set of Q € RP? which show

chaotic behaviour has Lebesgue measure zero.

Moreover, it has Hausdorff dimension strictly between 1 and 2.
Dynnikov and De Leo investigated this for a piecewise linear H:
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What was the chaotic set in this case? R
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The Sierpinski gasket

A hyperbolic, self-similar attractor




The Sierpinski gasket

A hyperbolic, self-similar attractor
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The Apollonian gasket

A parabolic, conformal attractor
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The Rauzy gasket ‘R

A parabolic, self-projective fractal

Where ‘R lives

The standard two-simplex, A
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Let A = [@,ﬁ,z\ K X, Y270, x*v)*f" 1§

(0,0,1),
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The maps which preserve ‘R

Letting

My =

define T; : A — A by

Eg.,

The dimension of R
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Most rigorous results concern its Hausdorff dimension:

1. Avila—Hubert—Skripchenko: dimgy(R
2. Fougeron: dimpg/(
(

3. Gutiérrez-Romo—Matheus: dimy(R

Numerics of De Leo—Dynnikov give dimg(R

Theorem (Pollicott-S.)
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Bounding the dimensions above

To shew dimy(R) < 1+ 4, it suffices to give a sequence of covers
(Cn)n of R such that

> diam(5)'* -0 (n — o).
SeCn

To improve this to dimg(R) < 1+ J, we require also JC ;0 \’/y)

L & maxsee,(diam(5)) 2 C

@ minsec, (diam(S))
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Towards a covering lemma

We write |i| = n for i € {1,2,3}", and
M; = My M, - - M;, =
T,':T,'lo ,-20-~~OT,'n'
A;=Ti(A)

From the definition of attractor,
=) T(®) ¢ UM
\‘\\’/W \M-;V‘

and covering each of these level-n triangles A; “efficiently” gives

the nth cover C, in the sequence we use to bound dimy(2R).
N

(More care is needed re dimg(R).)
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If § € (0,1) and

as n — oo, then dimy(R) < 1+ 6. Furthermore, if

then dimg(R) < 1+6.
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For now, focus on areas

To illustrate the main ideas, consider just
Xn = Z area(A;)°.
li|=n
There is a lot of structure hidden here. For example,

Lemma

area(A;) M1
area(A) (M)~

for any i, where v : R33 — R is given by
a b a

via b o
as b3 C3

= (31 + a» + 33)(b1 + by + b3)(C1 + o+ C3)
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A decomposition of X, = z Yk &_\
y-.,\

Forn> k> 1, let

Anki={lil=ns 1= 7=

and let

We can also define R, C A:

Lemma
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House of Cards Markov structure (for Ax, X, «, and/or Ry)
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Sub-renewal inequality for X1

Lemma
There exist sequences (ax) (bx) and (r,) s.t. for every n > k > 1,

Xnt1,k+1 <

Xng1,1 <
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Write this as
n—1

Xnt11 < > MXnp1-k1 + .
k=1

This is a sub-renewal equation, so we have a simple criterion for
the summability X, 1 (hence X, using X, < CX,121).

Theorem (Renewal Theorem, after Feller)

Best upper bound from this: dimg(R) < 1.893....
/—’—/\
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How to improve upon this?

To get more “competitive” upper bounds we
re-introduce the diameter factors, and

give more refined decompositions/partitions for A,/X,/A.

These two, up to computing limitations, give us our main result:

Theorem
dimg(R) < 1.7404.
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Limitations and questions

The method presented here is simple and general, but we implicitly
relied upon implicit symmetry and simplicity, since the upper
bounds obtained are very sensitive to the values of ax and by.
Some starter questions for future development:
Can X, be expressed via iterations of a transfer operator?
(e.g., acting on 1-forms)
Is there an analogous method for lower bounds on dimy(9R)?
Can we obtain statistical results on the geometry of the A;?
(e.g., a limiting distribution for area(4A;) for |i| = n — o)
What, if any, is the connection with eigenvalues/singular
values of the M;?
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Thank you very much!
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