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Periods of a word

An integer p, with 1 ≤ p ≤ |x |, is called a period of a finite word x
if x [i ] = x [i + p] for 1 ≤ i ≤ |x | − p.

Example: alfalfa has period 3.

A period p of x is nontrivial if p < |x |.

The least period of a word x is called the period, and is written
per(x).

The number of nontrivial periods of a word x is denoted nnp(x).
For example, nnp(adoradora) = 2.
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Exponent and critical exponent

The exponent of a finite nonempty word x is defined to be
exp(x) := |x |/ per(x).

For example, exp(entente) = 7/3.

The critical exponent ce(x) of a finite or infinite word x is defined
to be

ce(x) := sup{exp(p) : p is a nonempty factor of x}.
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Motivation for the talk

The original motivation for this research was to answer the
following question:

When does a word have lots of periods?

Obviously, one way a word can have lots of periods is if it is
periodic: 0n has n periods. So a word with high exponent will have
lots of periods.

On the other hand, 0n 1n
2

0n has lots of periods, but very small
exponent (n2 + 2n)/(n2 + n) ≈ 1 + 1/n. So exponent alone can’t
be the whole story. Maybe critical exponent?

No! A word like 01n0 has only one period, but has high critical
exponent.

So what should we do?
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Initial critical exponent

Instead we’ll consider the initial critical exponent.

The initial critical exponent ice(x) of a finite or infinite word x is
defined to be

ice(x) := sup{exp(p) : p is a nonempty prefix of x}.

For example, ice(phosphorus) = 7/4.

This concept was (essentially) introduced by Berthé, Holton, and
Zamboni in 2006.
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Digression: borders of a word

A word w is a border of a word x if w is both a prefix and suffix of
x .

For example, ionization has the border ion.

Borders are allowed to overlap, but we generally rule out borders w
where w = ε or w = x .

A border w of x is short if |w | < |x |/2.

Basic observation: A word has a nontrivial period t iff it has a
border of length n − t.

Example: abracadabra has nontrivial periods 7 and 10, and
borders of length 4 and 1.
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An inequality for the number of periods

Now, back to counting periods. Here is our main result #1,
relating periods to ice:

Theorem. Let x be a bordered word of length n ≥ 1. Let
e = ice(x). Then

nnp(x) ≤ e

2
+ 1 +

ln(n/2)

ln(e/(e − 1))
.

Proof.
Break the bound up into two pieces, by considering the periods of
size ≤ n/2 and > n/2. Call these the short and long periods.
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Proof of the period inequality

Let p = per(x), the shortest period of x .

If p is short, then x has short periods p, 2p, 3p, . . . , bn/(2p)cp.

Clearly ice(x) ≥ n/p, so we get at most e/2 short periods from
this list.

To see that there are no other short periods, let q be some short
period not on this list. Then p < q ≤ n/2 by assumption.

By the Fine-Wilf theorem, if a word of length n has two periods
p, q with n ≥ p + q − gcd(p, q), then it also has period gcd(p, q).

Since gcd(p, q) ≤ p, either gcd(p, q) < p, which is a contradiction,
or gcd(p, q) = p, which means q is a multiple of p, another
contradiction.
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Proof of the period inequality

Next, let’s consider the long periods or, alternatively, the short
borders (those of length < n/2).

Suppose x has borders y , z of length q and r respectively, with
q < r < n/2.

Then x = yy ′y = zz ′z for words y ′ and z ′. Hence z = yt = t ′y for
some nonempty words t and t ′.

Then by the Lyndon-Schützenberger theorem we know there exist
words u, v with u nonempty, and an integer d ≥ 0, such that
t ′ = uv , t = vu, and y = (uv)du.

Hence x has the prefix z = yt = (uv)d+1u, which means
e = ice(x) ≥ |z |/|uv | = r/(r − q).
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Proof of the period inequality

The inequality r/(r − q) ≤ e is equivalent to r/q ≥ e/(e − 1).

If b1 < b2 < · · · < bt are the lengths of all the short borders of x
then

b1 ≥ 1

b2 ≥ (e/(e − 1))b1 ≥ e/(e − 1),

and so forth, and hence bt ≥ (e/(e − 1))t−1.

All these borders are of length at most n/2, so
n/2 > bt ≥ (e/(e − 1))t−1.

Hence

t ≤ 1 +
ln(n/2)

ln(e/(e − 1))
,

and the result follows.
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Expected value of initial critical exponent

Theorem. Let k ≥ 2. Over a k-letter alphabet, the expected
number of borders (equivalently, the number of nontrival periods)
of a length-n word is k−1 + k−2 + · · ·+ k1−n ≤ 1

k−1 .

Proof. By the linearity of expectation, the expected number of
borders is the sum, from i = 1 to n − 1, of the expected value of
the indicator random variable Bi taking the value 1 if there is a
border of length i , and 0 otherwise.

Once the left border of length i is chosen arbitrarily, the i bits of
the right border are fixed, and so there are n − i free choices of
symbols.

This means that E [Bi ] = kn−i/kn = k−i .
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Expected value of initial critical exponent

Theorem. The expected value of ice(x), for finite or infinite words
x , is Θ(1).

Proof. Let’s count the fraction Hj of words having at least a j ’th
power prefix. Count the number of words having a j ’th power
prefix with period 1, 2, 3, etc. This double counts, but shows that
Hj ≤ k1−j + k2(1−j) + · · · = 1/(k j−1− 1) for j ≥ 2. Clearly H1 = 1.
Then Hj−1 − Hj is the fraction of words having a (j − 1)th power
prefix but no jth power prefix. These words will have an ice at
most j . So the expected value of ice is bounded above by

2(H1 − H2) + 3(H2 − H3) + 4(H3 − H4) + · · ·

= 2H1 + H2 + H3 + H4 + · · · = 2 + H2 + H3 + H4 + · · ·

= 2 +
∑
j≥2

1/(k j−1 − 1) = 2 +
∑
j≥1

1/(k j − 1).
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Characteristic Sturmian words

Let 0 < α < 1 be an irrational real number with continued fraction
expansion [0, a1, a2, . . .].

The characteristic Sturmian word xα is an infinite word

x1x2x3 · · ·

defined by
xi = b(i + 1)αc − biαc.

For example, for α =
√

2− 1 the characteristic Sturmian word xα is

010100101001010100101001010100 · · · .

14 / 36



The Ostrowski α-numeration system

You were waiting patiently for the numeration systems. Here they
are.

With every real irrational α, 0 < α < 1,
we associate a numeration system based
on the continued fraction expansion α =
[0, a1, a2, a3, . . .] This is called the Os-
trowski α-numeration system.

Define pi/qi = [0, a1, . . . , ai ] to be the
i ’the convergent. In the (ordinary) Os-
trowski α-numeration system, we write

n =
∑

0≤i≤t
diqi

where dt > 0 and the di satisfy certain
inequalities.

Alexander Ostrowski
(1893-1986)

Photo courtesy of Archives of the

Mathematisches Forschungsinstitut

Oberwolfach
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The lazy Ostrowski numeration system

But we’re going to be more concerned with the lazy Ostrowski
system (Epifanio et al., 2012, 2016).

This representation is again defined through the sum
n =

∑
0≤i≤t diqi but with slightly different conditions:

(a) 0 ≤ d0 < a1;

(b) 0 ≤ di ≤ ai+1 for i ≥ 1;

(c) For i ≥ 2, if di = 0, then di−1 = ai ;

(d) If d1 = 0, then d0 = a1 − 1.

By convention, we write it as a finite word dtdt−1 · · · d1d0, starting
with the most significant digit.
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Main result #2

Here it is in words:

From the lazy Ostrowski α-representation of n, one can directly
read off all the periods of the length-n prefix Xn of the Sturmian
characteristic word xα.

More precisely,
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Main result #2

Let Yn for n ≥ 1 be the prefix of xα of length n.

Let PER(n) denote the set of all periods of Yn (including the
trivial period n).

Theorem. (a) The number of periods of Yn (including the trivial
period n) is equal to the sum of the digits in the lazy Ostrowski
representation of n.

(b) Suppose the lazy Ostrowski representation of n is
∑

0≤i≤t diqi .
Define

A(n) =

eqj +
∑
j<i≤t

diqi : 1 ≤ e ≤ dj and 0 ≤ j ≤ t

 .

Then PER(n) = A(n).
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Example of the theorem

As an example of the theorem, suppose α =
√

2− 1.

Write n = 23 in lazy Ostrowski: 12 + 2 · 5 + 1.

Then the periods are
12, 12 + 5 = 17, 12 + 5 + 5 = 22, 12 + 5 + 5 + 1 = 23.

So the nonempty borders are size 11, 6, 1.

Take Y23 = 01010010100101010010100.

Here are the borders:

01010010100101010010100

01010010100101010010100

01010010100101010010100
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Brief sketch of the proof

Let Xi = Yqi .

Frid (2018) defined two kinds of Ostrowski representations.

A representation n =
∑

0≤i≤t diqi is legal if 0 ≤ di ≤ ai+1.

A representation n =
∑

0≤i≤t diqi is valid if Yn = X dt
t · · ·X

d0
0 .

She proved the very nice result: every legal representation is
valid.
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Brief sketch of the proof

Let n =
∑

0≤i≤t diqi be the lazy Ostrowski representation of n. It’s

legal, hence valid, hence Yn = X dt
t X

dt−1

t−1 · · ·X
d0
0 .

What we want to show is that each of the following is a period of
Yn:

Xt , X
2
t , . . . , X

dt
t ,

X dt
t Xt−1, X

dt
t X 2

t−1, . . . , X
dt
t X

dt−1

t−1 , . . . ,

X dt
t X

dt−1

t−1 · · ·X
d1
1 X0, X

dt
t X

dt−1

t−1 · · ·X
d1
1 X 2

0 , . . . , X
dt
t X

dt−1

t−1 · · ·X
d1
1 X d0

0 .

To show A(n) ⊆ PER(n), we let U be one of the words above.
Then by Frid’s theorem Yn = UYn′ for an appropriate n′.

But Yn′ is a prefix of Yn, so Yn is a prefix of UYn.

So U is a period of Yn, as desired. That proves one direction of
our theorem. For the other direction, we use an induction.
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News flash!

Philipp Hieronymi and his group at Illinois have implemented a
prover for Sturmian characteristic words.

With this prover they were able to prove our Main Result #2
above just by stating it in first-order logic!
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Special case of the Fibonacci word

In the special case of the Fibonacci word f, we have
α = (

√
5− 1)/2.

To get the periods of the length-n prefix Yn of f, write n in “lazy
Fibonacci” representation:

n = Fat + Fat−1 + · · ·+ Fa1

where at > at−1 > · · · > a1.

Then the periods are

Fat ,

Fat + Fat−1 ,

. . . ,

Fat + Fat−1 + · · ·+ Fa1 .
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Special case of the Fibonacci word

More results on the Fibonacci word:

The shortest prefix of f having exactly n periods (including the
trivial period) is of length Fn+3 − 2, for n ≥ 1.

The longest prefix of f having exactly n periods (including the
trivial period) is of length F2n+2 − 1, for n ≥ 1.

The least period of f[0..m − 1] is Fn for Fn+1 − 1 ≤ m ≤ Fn+2 − 2
and n ≥ 2.
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Tightness of the inequality on periods

Let gs , for s ≥ 1, be the prefix of length Fs+2 − 2 of f. Thus, for
example, g1 = ε, g2 = 0, g3 = 010, g4 = 010010, and so forth.

In our period inequality

nnp(x) ≤ e

2
+ 1 +

ln(n/2)

ln(e/(e − 1))

the bound is tight, up to an additive factor, for the words gs .

Let τ = (1 +
√

5)/2, the golden ratio.

Theorem. Take x = gs for s ≥ 4. Then the left-hand side of the
inequality is s − 2, while the right-hand side is asymptotically s + c
for c = 3 + τ2/2− (ln 2

√
5)/(ln τ)

.
= 1.19632.
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Measures of periodicity for infinite words

What we have seen suggests exploring

M(x) :=
nnp(x)

ice(x) ln |x |

as a measure of periodicity for finite words x . It also suggests
studying the following measures of periodicity for infinite words x.

For n ≥ 2 let Yn be the prefix of length n of x. Then define

P(x) := lim sup
n→∞

M(Yn)

p(x) := lim inf
n→∞

M(Yn)

For the “typical” infinite word x we have P(x) = p(x) = 0.

Thus it is of interest to find words x where P(x) and p(x) are large.
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An example: the period-doubling word

The period-doubling word d is defined to be the fixed point of the
morphism sending 1→ 10 and 0→ 11.

Theorem. P(d) = 1
2 ln 2

.
= 0.7213 and p(d) = 1

4 ln 2
.

= 0.36067.

27 / 36



An example: the period-doubling word

Proof. Let r(n) denote the number of periods (including the trivial
period) in the length-n prefix of d. We can use the theorem-proving
software Walnut to calculate the periods of prefixes of d.

We write a first-order logical formula pdp(m, p) stating that the
prefix of length m ≥ 1 of d has period p, 1 ≤ p ≤ m:

pdp(m, p) := (1 ≤ p ≤ m) ∧ d[0..m − p − 1] = d[p..m − 1]

= (1 ≤ p ≤ m) ∧ ∀t (0 ≤ t < m − p) =⇒ d[t] = d[t + p].
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An example: the period-doubling word

Such a formula can be automatically translated, using Walnut, to
an automaton that recognizes the language

{(n, p)2 : the length-n prefix of d has period p}.

0

[0,0] 1
[1,0]

2

[1,1]

3[0,1]

[0,0], [1,1]
4

[1,0]

[0,1]

[0,1] 5[0,0], [1,0]

[0,0], [1,0]

29 / 36



An example: the period-doubling word

Such an automaton can be automatically converted by Walnut to
a linear representation for r(n). This is a triple (v , ρ,w) where
v ,w are vectors, and ρ is a matrix-valued morphism, such that
r(n) = v · ρ((n)2) · w .

The values are given below:

v = [1 0 0 0 0 0] ρ(0) =

 1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 0 1

 ρ(1) =

 0 1 1 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1

 w =

 0
0
1
0
1
1

 .
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An example: the period-doubling word

From this we can easily compute the relations

r(0) = 0

r(2n + 1) = r(n) + 1, n ≥ 0

r(4n) = r(n) + 1, n ≥ 1

r(4n + 2) = r(n) + 1, n ≥ 0.

Reinterpreting this definition for r , we see that r(n) is equal to the
length of the (unique) factorization of (n)2 into the factors 1, 00,
and 10.
It now follows that

(a) The smallest m such that r(m) = n is m = 2n − 1;

(b) The largest m such that r(m) = n is m = b22n+1/3c, with
(m)2 = (10)n.
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An example: the period-doubling word

Similarly, we can use Walnut to determine the smallest period p of
every length-n prefix of d. We use the predicate

pdlp(n, p) := pdp(n, p) ∧ ∀q (1 ≤ q < p) =⇒ pdp(n, q).

This gives the automaton

0

[0,0]
1[1,0]

2

[1,1]

3[0,1]

4[0,0] 5

[1,0]

[0,1]

[1,0]

[0,0], [1,0]

Inspection of this automaton shows that least period of the prefix
of length n is, for s ≥ 2, equal to 3 · 2s−2 for 2s ≤ n < 5 · 2s−2 and
2s for 5 · 2s−2 ≤ n < 2s+1. So the ice of every length-n prefix of d
for 2t − 1 ≤ n ≤ 2t+1 − 2, is 2− 21−t .

The result now follows. 32 / 36



Shortest overlap-free binary word with p periods

Recall that an overlap is a word of the form axaxa, where a is a
single letter and x is a (possibly empty) word. An example in
English is the word alfalfa. We say a word is overlap-free if no
finite factor is an overlap.

Define f (p) to be the length of the shortest overlap-free binary
word having p nontrivial periods.

Theorem. We have f (1) = 2, f (2) = 5, and

f (p) ≤ 17

6
· 4p−2 +

2

3
for p ≥ 3 .
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Shortest overlap-free binary word with p periods

Proof sketch. Define µ(0) = 01 and µ(1) = 10. If w = axa for a
single letter a, define γ(w) = a−1µ2(w)a−1. Furthermore define

An =

{
001001100100, if n = 3;

γ(An−1), if n ≥ 4.

Then we can prove by induction that An is a overlap-free
palindrome with n nontrivial periods for n ≥ 3.
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Shortest squarefree ternary word with p periods

Recall that a square is a word of the form xx , where x is a
nonempty word. An example in English is the word murmur. We
say a word is squarefree if no finite factor is a square.

Define g(p) to be the length of the shortest squarefree ternary
word having p nontrivial periods.

Theorem. We have g(1) = 3, g(2) = 7, and

g(p) ≤ 17

12
· 4p−1 +

1

3
for p ≥ 3 .
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Open problems

1. Prove that the bound for binary overlap-free words f (p)
obtained above is optimal.

2. For ternary squarefree words, determine the asymptotic
behavior of g(p).

3. Find an exact expression for the limit, as n→∞, of the
expected value of ice of the length-n words over a k-letter
alphabet. For example, for k = 2, this seems to be about
2.494.
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