Lazy Ostrowski Numeration and Sturmian Words

Jeffrey Shallit
School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
shallit@uwaterloo.ca
https://cs.uwaterloo.ca/~shallit
My co-authors

Daniel Gabric

Narad Rampersad
An integer p, with $1 \leq p \leq |x|$, is called a **period** of a finite word x if $x[i] = x[i + p]$ for $1 \leq i \leq |x| - p$.

Example: alfalfa has period 3.

A period p of x is **nontrivial** if $p < |x|$.

The least period of a word x is called the **period**, and is written \(\text{per}(x) \).

The number of nontrivial periods of a word x is denoted \(\text{nnp}(x) \). For example, \(\text{nnp}(adoradora) = 2 \).
The **exponent** of a finite nonempty word x is defined to be

$$\exp(x) := \frac{|x|}{\per(x)}.$$

For example, $\exp(\text{entente}) = 7/3$.

The **critical exponent** $ce(x)$ of a finite or infinite word x is defined to be

$$ce(x) := \sup\{\exp(p) : p \text{ is a nonempty factor of } x\}.$$
The original motivation for this research was to answer the following question:

When does a word have lots of periods?

Obviously, one way a word can have lots of periods is if it is periodic: 0^n has n periods. So a word with high exponent will have lots of periods.

On the other hand, $0^n 1^{n^2} 0^n$ has lots of periods, but very small exponent $(n^2 + 2n)/(n^2 + n) \approx 1 + 1/n$. So exponent alone can’t be the whole story. Maybe critical exponent?

No! A word like $01^n 0$ has only one period, but has high critical exponent.

So what should we do?
Instead we’ll consider the initial critical exponent.

The *initial critical exponent* $\text{ice}(x)$ of a finite or infinite word x is defined to be

$$
\text{ice}(x) := \sup\{\exp(p) : p \text{ is a nonempty prefix of } x\}.
$$

For example, $\text{ice}(\text{phosphorus}) = 7/4$.

This concept was (essentially) introduced by Berthé, Holton, and Zamboni in 2006.
A word w is a border of a word x if w is both a prefix and suffix of x.

For example, ionization has the border ion.

Borders are allowed to overlap, but we generally rule out borders w where $w = \epsilon$ or $w = x$.

A border w of x is short if $|w| < |x|/2$.

Basic observation: A word has a nontrivial period t iff it has a border of length $n - t$.

Example: abracadabra has nontrivial periods 7 and 10, and borders of length 4 and 1.
Now, back to counting periods. Here is our main result #1, relating periods to ice:

Theorem. Let x be a bordered word of length $n \geq 1$. Let $e = \text{ice}(x)$. Then

$$\text{nnp}(x) \leq \frac{e}{2} + 1 + \frac{\ln(n/2)}{\ln(e/(e - 1))}.$$

Proof.
Break the bound up into two pieces, by considering the periods of size $\leq n/2$ and $> n/2$. Call these the *short* and *long* periods.
Proof of the period inequality

Let $p = \text{per}(x)$, the shortest period of x.

If p is short, then x has short periods $p, 2p, 3p, \ldots, \lfloor n/(2p) \rfloor p$.

Clearly $\text{ice}(x) \geq n/p$, so we get at most $e/2$ short periods from this list.

To see that there are no other short periods, let q be some short period not on this list. Then $p < q \leq n/2$ by assumption.

By the Fine-Wilf theorem, if a word of length n has two periods p, q with $n \geq p + q - \gcd(p, q)$, then it also has period $\gcd(p, q)$.

Since $\gcd(p, q) \leq p$, either $\gcd(p, q) < p$, which is a contradiction, or $\gcd(p, q) = p$, which means q is a multiple of p, another contradiction.
Next, let’s consider the long periods or, alternatively, the short borders (those of length $< \frac{n}{2}$).

Suppose x has borders y, z of length q and r respectively, with $q < r < \frac{n}{2}$.

Then $x = yy'y = zz'z$ for words y' and z'. Hence $z = yt = t'y$ for some nonempty words t and t'.

Then by the Lyndon-Schützenberger theorem we know there exist words u, v with u nonempty, and an integer $d \geq 0$, such that $t' = uv$, $t = vu$, and $y = (uv)^d u$.

Hence x has the prefix $z = yt = (uv)^{d+1} u$, which means $e = \text{ice}(x) \geq \frac{|z|}{|uv|} = \frac{r}{r - q}$.
Proof of the period inequality

The inequality $r/(r - q) \leq e$ is equivalent to $r/q \geq e/(e - 1)$.

If $b_1 < b_2 < \cdots < b_t$ are the lengths of all the short borders of x then

\[
\begin{align*}
b_1 & \geq 1 \\
b_2 & \geq (e/(e - 1))b_1 \geq e/(e - 1),
\end{align*}
\]

and so forth, and hence $b_t \geq (e/(e - 1))^{t-1}$.

All these borders are of length at most $n/2$, so $n/2 > b_t \geq (e/(e - 1))^{t-1}$.

Hence

\[
t \leq 1 + \frac{\ln(n/2)}{\ln(e/(e - 1))},
\]

and the result follows. ■
Theorem. Let $k \geq 2$. Over a k-letter alphabet, the expected number of borders (equivalently, the number of nontrivial periods) of a length-n word is $k^{-1} + k^{-2} + \cdots + k^{1-n} \leq \frac{1}{k-1}$.

Proof. By the linearity of expectation, the expected number of borders is the sum, from $i = 1$ to $n - 1$, of the expected value of the indicator random variable B_i taking the value 1 if there is a border of length i, and 0 otherwise.

Once the left border of length i is chosen arbitrarily, the i bits of the right border are fixed, and so there are $n - i$ free choices of symbols.

This means that $E[B_i] = k^{n-i}/k^n = k^{-i}$.
Theorem. The expected value of $\text{ice}(x)$, for finite or infinite words x, is $\Theta(1)$.

Proof. Let’s count the fraction H_j of words having at least a j’th power prefix. Count the number of words having a j’th power prefix with period 1, 2, 3, etc. This double counts, but shows that

$$H_j \leq k^{1-j} + k^{2(1-j)} + \cdots = 1/(k^{j-1} - 1) \text{ for } j \geq 2.$$

Clearly $H_1 = 1$. Then $H_{j-1} - H_j$ is the fraction of words having a $(j - 1)$th power prefix but no jth power prefix. These words will have an ice at most j. So the expected value of ice is bounded above by

$$2(H_1 - H_2) + 3(H_2 - H_3) + 4(H_3 - H_4) + \cdots$$

$$= 2H_1 + H_2 + H_3 + H_4 + \cdots = 2 + H_2 + H_3 + H_4 + \cdots$$

$$= 2 + \sum_{j \geq 2} 1/(k^{j-1} - 1) = 2 + \sum_{j \geq 1} 1/(k^{j} - 1).$$
Let $0 < \alpha < 1$ be an irrational real number with continued fraction expansion $[0, a_1, a_2, \ldots]$.

The *characteristic Sturmian word* x_α is an infinite word

$$x_1 x_2 x_3 \cdots$$

defined by

$$x_i = \lfloor (i + 1)\alpha \rfloor - \lfloor i\alpha \rfloor.$$

For example, for $\alpha = \sqrt{2} - 1$ the characteristic Sturmian word x_α is

$$010100101001010100101001010100 \cdots.$$
You were waiting patiently for the numeration systems. Here they are.

With every real irrational α, $0 < \alpha < 1$, we associate a numeration system based on the continued fraction expansion $\alpha = [0, a_1, a_2, a_3, \ldots]$ This is called the Ostrowski α-numeration system.

Define $p_i/q_i = [0, a_1, \ldots, a_i]$ to be the i’the convergent. In the (ordinary) Ostrowski α-numeration system, we write

$$n = \sum_{0 \leq i \leq t} d_i q_i$$

where $d_t > 0$ and the d_i satisfy certain inequalities.
But we’re going to be more concerned with the *lazy Ostrowski system* (Epifanio et al., 2012, 2016).

This representation is again defined through the sum \(n = \sum_{0 \leq i \leq t} d_i q_i \) but with slightly different conditions:

(a) \(0 \leq d_0 < a_1 \);
(b) \(0 \leq d_i \leq a_{i+1} \) for \(i \geq 1 \);
(c) For \(i \geq 2 \), if \(d_i = 0 \), then \(d_{i-1} = a_i \);
(d) If \(d_1 = 0 \), then \(d_0 = a_1 - 1 \).

By convention, we write it as a finite word \(d_t d_{t-1} \cdots d_1 d_0 \), starting with the most significant digit.
Here it is in words:

From the lazy Ostrowski α-representation of n, one can directly read off all the periods of the length-n prefix X_n of the Sturmian characteristic word x_α.

More precisely,
Let \(Y_n \) for \(n \geq 1 \) be the prefix of \(x_\alpha \) of length \(n \).

Let \(\text{PER}(n) \) denote the set of all periods of \(Y_n \) (including the trivial period \(n \)).

Theorem. (a) The number of periods of \(Y_n \) (including the trivial period \(n \)) is equal to the sum of the digits in the lazy Ostrowski representation of \(n \).

(b) Suppose the lazy Ostrowski representation of \(n \) is \(\sum_{0 \leq i \leq t} d_i q_i \).

Define

\[
A(n) = \left\{ eq_j + \sum_{j < i \leq t} d_i q_i : 1 \leq e \leq d_j \text{ and } 0 \leq j \leq t \right\}.
\]

Then \(\text{PER}(n) = A(n) \).
Example of the theorem

As an example of the theorem, suppose \(\alpha = \sqrt{2} - 1 \).

Write \(n = 23 \) in lazy Ostrowski: \(12 + 2 \cdot 5 + 1 \).

Then the periods are
\[
12, 12 + 5 = 17, 12 + 5 + 5 = 22, 12 + 5 + 5 + 1 = 23.
\]

So the nonempty borders are size 11, 6, 1.

Take \(Y_{23} = 01010010100101010010100 \).

Here are the borders:

\[
010100101001010010100
01010010100101010010100
01010010100101010010100
010100101001010010100
\]
Brief sketch of the proof

Let $X_i = Y_{q_i}$.

Frid (2018) defined two kinds of Ostrowski representations.

A representation $n = \sum_{0 \leq i \leq t} d_i q_i$ is *legal* if $0 \leq d_i \leq a_{i+1}$.

A representation $n = \sum_{0 \leq i \leq t} d_i q_i$ is *valid* if $Y_n = X_t^{d_t} \cdots X_0^{d_0}$.

She proved the very nice result: every legal representation is valid.
Brief sketch of the proof

Let \(n = \sum_{0 \leq i \leq t} d_i q_i \) be the lazy Ostrowski representation of \(n \). It’s legal, hence valid, hence \(Y_n = X_t^{d_t} X_{t-1}^{d_{t-1}} \cdots X_0^{d_0} \).

What we want to show is that each of the following is a period of \(Y_n \):

\[
X_t, \ X_t^2, \ldots, \ X_t^{d_t}, \ X_t^{d_t} X_{t-1}, \ X_t^{d_t} X_{t-1}^2, \ldots, \ X_t^{d_t} X_{t-1}^{d_{t-1}}, \ldots, \ X_t^{d_t} X_{t-1}^{d_{t-1}} \cdots X_1^{d_1} X_0, \ X_t^{d_t} X_{t-1}^{d_{t-1}} \cdots X_1^{d_1} X_0^2, \ldots, \ X_t^{d_t} X_{t-1}^{d_{t-1}} \cdots X_1^{d_1} X_0^{d_0}.
\]

To show \(A(n) \subseteq \text{PER}(n) \), we let \(U \) be one of the words above. Then by Frid’s theorem \(Y_n = U Y_{n'} \) for an appropriate \(n' \).

But \(Y_{n'} \) is a prefix of \(Y_n \), so \(Y_n \) is a prefix of \(U Y_n \).

So \(U \) is a period of \(Y_n \), as desired. That proves one direction of our theorem. For the other direction, we use an induction.
Philipp Hieronymi and his group at Illinois have implemented a prover for Sturmian characteristic words.

With this prover they were able to prove our Main Result #2 above just by stating it in first-order logic!
In the special case of the Fibonacci word f, we have
\[\alpha = \left(\sqrt{5} - 1 \right) / 2. \]

To get the periods of the length-n prefix Y_n of f, write n in “lazy Fibonacci” representation:

\[n = F_{a_t} + F_{a_{t-1}} + \cdots + F_{a_1} \]

where $a_t > a_{t-1} > \cdots > a_1$.

Then the periods are

\[F_{a_t}, \]
\[F_{a_t} + F_{a_{t-1}}, \]
\[\cdots, \]
\[F_{a_t} + F_{a_{t-1}} + \cdots + F_{a_1}. \]
More results on the Fibonacci word:

The shortest prefix of f having exactly n periods (including the trivial period) is of length $F_{n+3} - 2$, for $n \geq 1$.

The longest prefix of f having exactly n periods (including the trivial period) is of length $F_{2n+2} - 1$, for $n \geq 1$.

The least period of $f[0..m-1]$ is F_n for $F_{n+1} - 1 \leq m \leq F_{n+2} - 2$ and $n \geq 2$.
Tightness of the inequality on periods

Let g_s, for $s \geq 1$, be the prefix of length $F_{s+2} - 2$ of f. Thus, for example, $g_1 = \epsilon$, $g_2 = 0$, $g_3 = 010$, $g_4 = 010010$, and so forth.

In our period inequality

$$\text{nnp}(x) \leq \frac{e}{2} + 1 + \frac{\ln(n/2)}{\ln(e/(e - 1))}$$

the bound is tight, up to an additive factor, for the words g_s.

Let $\tau = (1 + \sqrt{5})/2$, the golden ratio.

Theorem. Take $x = g_s$ for $s \geq 4$. Then the left-hand side of the inequality is $s - 2$, while the right-hand side is asymptotically $s + c$ for $c = 3 + \tau^2/2 - (\ln 2\sqrt{5})/(\ln \tau) \approx 1.19632$.
What we have seen suggests exploring

\[M(x) := \frac{\text{nnp}(x)}{\text{ice}(x) \ln |x|} \]

as a measure of periodicity for finite words \(x \). It also suggests studying the following measures of periodicity for infinite words \(x \).

For \(n \geq 2 \) let \(Y_n \) be the prefix of length \(n \) of \(x \). Then define

\[P(x) := \limsup_{n \to \infty} M(Y_n) \]
\[p(x) := \liminf_{n \to \infty} M(Y_n) \]

For the “typical” infinite word \(x \) we have \(P(x) = p(x) = 0 \).

Thus it is of interest to find words \(x \) where \(P(x) \) and \(p(x) \) are large.
The *period-doubling word* \(d \) is defined to be the fixed point of the morphism sending 1 \(\to \) 10 and 0 \(\to \) 11.

Theorem. \(P(d) = \frac{1}{2 \ln 2} \approx 0.7213 \) and \(p(d) = \frac{1}{4 \ln 2} \approx 0.36067 \).
An example: the period-doubling word

Proof. Let $r(n)$ denote the number of periods (including the trivial period) in the length-n prefix of d. We can use the theorem-proving software Walnut to calculate the periods of prefixes of d.

We write a first-order logical formula $\text{pdp}(m, p)$ stating that the prefix of length $m \geq 1$ of d has period p, $1 \leq p \leq m$:

$$\text{pdp}(m, p) := (1 \leq p \leq m) \land d[0..m−p−1] = d[p..m-1] = (1 \leq p \leq m) \land \forall t \ (0 \leq t < m − p) \implies d[t] = d[t + p].$$
An example: the period-doubling word

Such a formula can be automatically translated, using Walnut, to an automaton that recognizes the language

\[\{(n, p)_2 : \text{the length}-n \text{ prefix of } d \text{ has period } p \}. \]
An example: the period-doubling word

Such an automaton can be automatically converted by Walnut to a linear representation for $r(n)$. This is a triple (v, ρ, w) where v, w are vectors, and ρ is a matrix-valued morphism, such that $r(n) = v \cdot \rho(((n)_2)) \cdot w$.

The values are given below:

\[
v = [1 \ 0 \ 0 \ 0 \ 0 \ 0] \quad \rho(0) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \rho(1) = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad w = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.
\]
An example: the period-doubling word

From this we can easily compute the relations

\[r(0) = 0 \]
\[r(2n + 1) = r(n) + 1, \quad n \geq 0 \]
\[r(4n) = r(n) + 1, \quad n \geq 1 \]
\[r(4n + 2) = r(n) + 1, \quad n \geq 0. \]

Reinterpreting this definition for \(r \), we see that \(r(n) \) is equal to the length of the (unique) factorization of \((n)_2\) into the factors 1, 00, and 10.

It now follows that

(a) The smallest \(m \) such that \(r(m) = n \) is \(m = 2^n - 1 \);
(b) The largest \(m \) such that \(r(m) = n \) is \(m = \lfloor 2^{2n+1}/3 \rfloor \), with \((m)_2 = (10)^n\).
An example: the period-doubling word

Similarly, we can use \texttt{Walnut} to determine the smallest period p of every length-n prefix of d. We use the predicate

$$ pdlp(n, p) := pdp(n, p) \land \forall q (1 \leq q < p) \implies pdp(n, q). $$

This gives the automaton

![Automaton Diagram]

Inspection of this automaton shows that least period of the prefix of length n is, for $s \geq 2$, equal to $3 \cdot 2^{s-2}$ for $2^s \leq n < 5 \cdot 2^{s-2}$ and 2^s for $5 \cdot 2^{s-2} \leq n < 2^{s+1}$. So the ice of every length-n prefix of d for $2^t - 1 \leq n \leq 2^{t+1} - 2$, is $2 - 2^{1-t}$.

The result now follows.
Recall that an *overlap* is a word of the form $axaxa$, where a is a single letter and x is a (possibly empty) word. An example in English is the word *alfalfa*. We say a word is *overlap-free* if no finite factor is an overlap.

Define $f(p)$ to be the length of the shortest overlap-free binary word having p nontrivial periods.

Theorem. We have $f(1) = 2$, $f(2) = 5$, and

$$f(p) \leq \frac{17}{6} \cdot 4^{p-2} + \frac{2}{3} \quad \text{for } p \geq 3.$$
Proof sketch. Define $\mu(0) = 01$ and $\mu(1) = 10$. If $w = axa$ for a single letter a, define $\gamma(w) = a^{-1}\mu^2(w)a^{-1}$. Furthermore define

$$A_n = \begin{cases}
001001100100, & \text{if } n = 3; \\
\gamma(A_{n-1}), & \text{if } n \geq 4.
\end{cases}$$

Then we can prove by induction that A_n is a overlap-free palindrome with n nontrivial periods for $n \geq 3$. ■
Recall that a *square* is a word of the form xx, where x is a nonempty word. An example in English is the word *murmur*. We say a word is *squarefree* if no finite factor is a square.

Define $g(p)$ to be the length of the shortest squarefree ternary word having p nontrivial periods.

Theorem. We have $g(1) = 3$, $g(2) = 7$, and

$$g(p) \leq \frac{17}{12} \cdot 4^{p-1} + \frac{1}{3} \quad \text{for } p \geq 3.$$
Open problems

1. Prove that the bound for binary overlap-free words $f(p)$ obtained above is optimal.

2. For ternary squarefree words, determine the asymptotic behavior of $g(p)$.

3. Find an exact expression for the limit, as $n \to \infty$, of the expected value of ice of the length-n words over a k-letter alphabet. For example, for $k = 2$, this seems to be about 2.494.