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Setting

Let g > 2 be an integer and let a be an integer with 1 < a < g, such that

gcd(a, Q) = 1. Then a rational number a/q can be expanded into a finite
simple continued fraction as

a 1
e =Ja,...,a], &€,
q a1+a2+71

Note that each rational a/q € (0, 1) has two different representations

a/q=|ai,a,...,ar—1,a] and a/q=|ai,a,...,ar—1,a — 1,1].
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Zaremba’s conjecture

Denote

a
K (q> = max(ai, ..., ar).

Conjecture (Zaremba, 1971)

There exists an absolute constant M with the following property: for any
positive integer q there exists a coprime to g, such that K(a/q) < M.

In fact, Zaremba'’s conjectured that for M = 5.

For large prime numbers g Hensley conjectured that even M = 2 should be
enough.
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Korobov’s bound

Theorem (Korobov, 1963)
For prime number q there exists 1 < a < q such that

K(a/q) < logq.

In fact, this result is also true for composite g.
Korobov’s studied continued fractions with small partial quotients for the
purposes of numerical integration.
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Zaremba’s conjecture for a.e. q

Theorem (Bourgain-Kontorovich, Ann. Math., 2011,2014)

The number of q € {1,..., N} such that Zaremba’s conjecture holds with
K(a/q) < M for this q is

N — O(N1—C(M)/ IoglogN)7 C(M) > 0.

Further, if M = 50, then there is a positive proportion of such q.

Decreasing M: Frolenkov-Kan, Kan, Huang, Magge-Oh-Winter.

Theorem (Kan, 2016)

If M = 4, then for all but o(N) numbers q € {1,..., N} Zaremba’s conjecture
takes place.
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Problems with the above results

@ Korobov’s result provide a rather weak bound of log g.

@ Bourgain-Kontorovich type results not just dont have any information
about the set of possible exceptions, but it also doesn’t provide
information about the set, where the bound holds.
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Neiderreiter’s results

Those problems are somewhat solved by the following results.

Theorem (Neiderreiter, 1986)

For integer numbers of the form q = 2" or q = 3", n € N, there exists an
integer a, coprime to q with
K(a/q) <3.

Theorem (Neiderreiter, 1986)

For integer numbers of the form q = 5", n € N, there exists an integer a,
coprime to q with
K(a/q) < 4.
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Weak results of Niederreiter’s type

After that, couple of more results were provided.

Theorem (Yodphotong-Laohakosol,2002)

For integer numbers of the form q = 6" for any n € N there exists an integer a,
coprime to q with
K(a/q) <5.

Theorem (Komatsu, 2005)

For integer numbers of the form q = 7¢2" (n>0,c=1,3,5,7,9,11) there
exists an integer a, coprime to q with

K(a/m) < 8.
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How do Niederreiter’s type results work?

Proofs rely on a famous folklore statement, knows as Folding lemma.
Lemma (Folding Lemma)
Ift./qr = [a1,...,a] and b is a non-negative integer, then

i+(_1)r—[a a,b—1,1,a—-1,a ay (1)
qr bq,? - 1y dry )y 1y @r yAr—1y...,at].
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Niederreiter’s strategy

To present first few explicit fractions with small partial quotients, and then

apply Folding Lemma inductively to generate all other powers of 2. He started
with 1/2,3/4,3/8,7/16,9/32 and

25
~[2,1,1,3,1,2
64 [7 ’ a37 ) ]7
49
@_[271717171727172]7
791

m:[2,1,1,2,3,3,1,1,2,2].
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Main result

| present a generalisation of Niederreiter’s type results.

Recall the definition of a radical of an integer number n.

rad(n) = H p.

p|n
p prime

Theorem (Sh., 2023)

For any integer g > 2, such that q # 2", 3", there exists a positive integer a
with1 < a< g andgcd(a,q) =1, such that K(a/q) < rad(q) — 1.

Corollary

For any integer q of the form q = 2"3™ for any n,m € Ny there exists a
positive integer a with 1 < a < g and ged(a, q) = 1, such that K(a/q) < 5.

This theorem also suits as an improvement of some results by
Moshchevitin-Murphy-Shkredov.
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Recent improvement to Korobov’s bound

One of the most recent results is due to Moshchevitin, Murphy and Shkredov,
they proved the following theorem.

Theorem (Moshchevitin-Murphy-Shkredov, 2022)

Let q be a positive sufficiently large integer with sufficiently large prime
factors. Then there is a positive integer a with ged(a, q) = 1 and

K(a/q) < O(log q/ log log q). (2)

Also, if q is a sufficiently large square-free number, then (2) takes place.
Finally, if g = p", p is an arbitrary prime, then (2) holds for sufficiently large n.
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Improvement of MMSh result

Remark

Using Theorem 9 we can improve Theorem 11 in the case q = p" for a prime
number p. By Theorem 11 for n sufficiently large one has

K(a/q) < O(nlog p/ log(nlog p))

for some 1 < a < q, coprime to p. For large enough n, say for n < p?, our
Theorem 9 gives a better bound of K(a/q) < p — 1, as compared to

K(a/q) < O(p? log p/ log(p? log p)) = O(p?)

from Theorem 11. When n > p?, the bound obtained by Theorem 9 remains
the same, but the bound obtained by Theorem 11 will become worse the
larger the value of n is.
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The main construction

The canonical representation of the number q is

q=ppe* P ()
where p1 < po < ... < pk are primes and n; are positive integers. Hence
rad(q) = p1 - Px-

Now consider a following iterative procedure: set q(o) := g and for i > 1 define
q(i from the equality

qi-1) = P Gy (4)
where
MO0 S0
piy =Py Py - pe with v € {0,1} for all i, j.

Note that for all / we have p(;| rad(q) , so, in particular, p;y < rad(q).
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The main construction 2

By the definition of the procedure (4), there exists N € N U {0}, such that

gy > 1and gnyq) = 1.
After this step, the process terminates and we have qn.j) = Pivij) = 1,/ > 2.
Easy to seethat N=0ifand only ifin (3) onehas ny = ... = n, =1 and

N > 1 otherwise.

We have 2 < q(n) < rad(q). We also note that gy is a square-free number.
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Proof

We have two cases.

1) If N =0, then rad(q) = q. Consider a fraction (g — 1)/q. We have
(g—1)/g=[1,9—2,1]. Hence for a= g — 1 we get K(a/q) < rad(q) — 2.
2) If N > 1, we further distinguish several cases.

2.1) am) #2,3,6.
As qn) is a square-free number, this means that qv) > 5, and, in particular,

rad(q) > g(vy > 5. For a square-free number q(v) > 5 we have ¢(qn)) > 4,
where ¢(n) is an Euler’s totient function.

Lemma

For an integer number q with ©(q) > 4, there exists an integer1 <a<gq—1,
coprime to q, such that

=la1,...,an)

Qo

with the following properties:
en>2;
@ a1 >2anda, > 2;
° K(a/q) < %'
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Proof

Apply previous Lemma with g = q(y) to get a reduced fraction a/qgn), so there
exists a/q = [a,...,an) withn> 2, ay,a, > 2 and K(a/qn)) < (g — 1)/2.

Application of Folding Lemma with

tr a
—=—— and b=p
ar  qum )
leads to
(=1 an-1 an-1)
=la,...,anpn—1,1,a,—1,....a] = = .
9 ba? 2 e ! ] Py - Gy div-1)

We have two possible situations. If pjy) = 1, then we get
an—
K (20) < (qu -~ 1)/2:4 1 = (q + 1)/2 < rad(@) - 1.
QN—-1)
To get the last inequality we used q(n) < rad(q) and rad(q) > 5.
If ,O(N) > 2, then

a(N1)> ( qny — 1 )
K|{— ] <max -1, <rad(q)—1.
(CI(N_1) < P(n) 5 (9)
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End of the case qn) # 2,3,6

Now we iteratively apply Folding Lemma fori=1,2,..., N — 1 with

t an_i
L (N=1) and b= p(N_,-)

ar Q-
to get
tr (=1) an-—i-1) anN—i-1)
—+ =lay,...,a, pn—p—1,1,a1—1,...,a&] = = .
g9 bqg? [ (V=1 ] Pv-i) - Gin_iy  AN—-i-1)

After N — 1 steps, the application of Folding Lemma provides us a fraction
with denominator gy = g with all partial quotients bounded by rad(g) — 1 and

the process terminates.
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Case qn) = 2,3,6

If g(vy = 3 or 6, the application of Lemma 8 for t,/q, = 1/q(ny and b = p(n)
gives us

tr (=1)

+ an-1) an-1)
q-  bg?

:[CIN7PN_1a17QN_1]: = .
() PN ™) P(N)'Q(ZN) Qn-1)

The resulting continued fraction [g(), pvy — 1,1, gvy — 1] satisfy the first two
properties from Lemma and K(av—1)/qn-1)) < rad(q) — 1, so we can
continue the procedure as in the previous case.

If gvy = 2, then the first application of the Folding Lemma, depending on p(n),
will generate either fraction [2, pin) — 1,2] or 1/4 = [4]. In the first subcase we
proceed as previously, in the latter we apply Folding Lemma manually one

more time to get [4, pv—1) — 1,1,3], so that we can start the iterative process
using Lemma.

18/23



Case g = 2"3"

We know that the potential values of g(y) are gny = 2,3 or 6. Fractions
1/2=2],1/3 =[2,1],1/6 = [5, 1] satisfy K(1/q(n)) < 5. By definition,
AN—1) = PN q(N), where py) € {1,2,3,6} and q(n) € {2,3,6}. Consider the
fractlons

3 5 7

:[4]7 ﬁ:[2’1’2]7 322 :[27272]7 622 :[37273]7
2 5 8 17
— =1[4,2], — =13,1,1,2], —— =13,2,1,2], =13,5,1,2],
> =2 sop=B2 So=peta =351
e=B312  Jo—pas, 2 —ui232  Sh-pe2242

These fraction cover aII possible values of gv_1) and for all fractions
a/q(n-1), one has K(a/q-1)) < 5. For every frac’uon except 1/22 = [4], the
length of continued fraction expansion is n > 2 and 2 < ay, a, < 4. For them
we do the same procedure as before.
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Final case of qn) = 2, qv—1) = 4

Consider all possible values of gv_2), generated by 1/4 = [4]:

7 9 13 29
— = 22 22 _— _— —_—
24 [ 73) ]’ 2.24 [371’174]’ 3.24 [3’172’4]7 6-24

As before, for each continued fraction here, its length n satisfies n > 2 and
2 f; 531753n f; 4”

=[3,3,4,2].

So we can continue the same iterative procedure as before. This concludes
the proof.
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Remark on the result of MMSh

By Theorem of MMSh, when d is a sufficiently large square-free integer, there
exists a, coprime to d, such that

K(a/d) < O(log d/ loglog d).

By the iterative procedure from the proof of Theorem our main result, we
reduce any number g to a square-free number g in finite number of steps.
Afterwards, we start building continued fractions with given properties starting
from q(ny and going back to the number q := q(q).

MMSh Theorem guarantees that for the square-free number
d = q(n) = p1 - - - Pk one can find an integer a, coprime to gy with
K(a/qn)) < O(log q(n)/ log log q(ny)-

Starting from this fraction as a seed fraction of our iterative procedure, we can
apply Folding Lemma with b € D, where D is the set of small divisors of gy
defined as

D={meN : mign and m < O(log q(n)/ loglog q(n)) } -

This set is always non-empty, because 1 € D.
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Remark on the result of MMSh 2

Then using the same iterative procedure as in the proof of the main result,
one will generate all numbers g of the form

pZ‘~--p,§_”d2" forall p;---p; €D, ny,...,n; e NU{0},neN.

In particular, as 1 € D, iterative application of Folding Lemma will generate all
numbers of the form d?”, n € N with the same bound

K(a/d*") < O(log d/ log log d)

for sufficiently large square-free integer d and some number a coprime to d.
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Thank you!



