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Setting

Let q ≥ 2 be an integer and let a be an integer with 1 ≤ a < q, such that
gcd(a,q) = 1. Then a rational number a/q can be expanded into a finite
simple continued fraction as

a
q

=
1

a1 +
1

a2+
1

... + 1
ar

= [a1, . . . ,ar ], ai ∈ Z+.

Note that each rational a/q ∈ (0,1) has two different representations

a/q = [a1,a2, . . . ,ar−1,ar ] and a/q = [a1,a2, . . . ,ar−1,ar − 1,1].

1 / 23



Zaremba’s conjecture

Denote

K
(

a
q

)
= max(a1, . . . ,ar ).

Conjecture (Zaremba, 1971)
There exists an absolute constant M with the following property: for any
positive integer q there exists a coprime to q, such that K (a/q) ≤ M.

In fact, Zaremba’s conjectured that for M = 5.

For large prime numbers q Hensley conjectured that even M = 2 should be
enough.
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Korobov’s bound

Theorem (Korobov, 1963)
For prime number q there exists 1 ≤ a < q such that

K (a/q) ≪ log q.

In fact, this result is also true for composite q.
Korobov’s studied continued fractions with small partial quotients for the
purposes of numerical integration.
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Zaremba’s conjecture for a.e. q

Theorem (Bourgain-Kontorovich, Ann. Math., 2011,2014)
The number of q ∈ {1, . . . ,N} such that Zaremba’s conjecture holds with
K (a/q) ≤ M for this q is

N − O(N1−c(M)/ log log N), c(M) > 0.

Further, if M = 50, then there is a positive proportion of such q.

Decreasing M: Frolenkov-Kan, Kan, Huang, Magge-Oh-Winter.

Theorem (Kan, 2016)
If M = 4, then for all but o(N) numbers q ∈ {1, . . . ,N} Zaremba’s conjecture
takes place.
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Problems with the above results

Korobov’s result provide a rather weak bound of log q.
Bourgain-Kontorovich type results not just dont have any information
about the set of possible exceptions, but it also doesn’t provide
information about the set, where the bound holds.
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Neiderreiter’s results

Those problems are somewhat solved by the following results.

Theorem (Neiderreiter, 1986)
For integer numbers of the form q = 2n or q = 3n, n ∈ N, there exists an
integer a, coprime to q with

K (a/q) ≤ 3.

Theorem (Neiderreiter, 1986)
For integer numbers of the form q = 5n, n ∈ N, there exists an integer a,
coprime to q with

K (a/q) ≤ 4.
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Weak results of Niederreiter’s type

After that, couple of more results were provided.

Theorem (Yodphotong-Laohakosol,2002)
For integer numbers of the form q = 6n for any n ∈ N there exists an integer a,
coprime to q with

K (a/q) ≤ 5.

Theorem (Komatsu, 2005)
For integer numbers of the form q = 7c2n

, (n ≥ 0, c = 1,3,5,7,9,11) there
exists an integer a, coprime to q with

K (a/m) ≤ 3.
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How do Niederreiter’s type results work?

Proofs rely on a famous folklore statement, knows as Folding lemma.

Lemma (Folding Lemma)

If tr/qr = [a1, . . . ,ar ] and b is a non-negative integer, then

tr
qr

+
(−1)r

bq2
r

= [a1, . . . ,ar ,b − 1,1,ar − 1,ar−1, . . . ,a1]. (1)
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Niederreiter’s strategy

To present first few explicit fractions with small partial quotients, and then
apply Folding Lemma inductively to generate all other powers of 2. He started
with 1/2,3/4,3/8,7/16,9/32 and

25
64

= [2,1,1,3,1,2],

49
128

= [2,1,1,1,1,2,1,2],

...
791
2048

= [2,1,1,2,3,3,1,1,2,2].
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Main result
I present a generalisation of Niederreiter’s type results.

Recall the definition of a radical of an integer number n.

rad(n) =
∏
p|n

p prime

p.

Theorem (Sh., 2023)

For any integer q ≥ 2, such that q ̸= 2n,3n, there exists a positive integer a
with 1 ≤ a < q and gcd(a,q) = 1, such that K (a/q) ≤ rad(q)− 1.

Corollary
For any integer q of the form q = 2n3m for any n,m ∈ N0 there exists a
positive integer a with 1 ≤ a < q and gcd(a,q) = 1, such that K (a/q) ≤ 5.

This theorem also suits as an improvement of some results by
Moshchevitin-Murphy-Shkredov.
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Recent improvement to Korobov’s bound

One of the most recent results is due to Moshchevitin, Murphy and Shkredov,
they proved the following theorem.

Theorem (Moshchevitin-Murphy-Shkredov, 2022)

Let q be a positive sufficiently large integer with sufficiently large prime
factors. Then there is a positive integer a with gcd(a,q) = 1 and

K (a/q) ≤ O(log q/ log log q). (2)

Also, if q is a sufficiently large square-free number, then (2) takes place.
Finally, if q = pn, p is an arbitrary prime, then (2) holds for sufficiently large n.
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Improvement of MMSh result

Remark
Using Theorem 9 we can improve Theorem 11 in the case q = pn for a prime
number p. By Theorem 11 for n sufficiently large one has

K (a/q) ≤ O(n log p/ log(n log p))

for some 1 ≤ a < q, coprime to p. For large enough n, say for n ≍ p2, our
Theorem 9 gives a better bound of K (a/q) ≤ p − 1, as compared to

K (a/q) ≤ O(p2 log p/ log(p2 log p)) = O(p2)

from Theorem 11. When n ≫ p2, the bound obtained by Theorem 9 remains
the same, but the bound obtained by Theorem 11 will become worse the
larger the value of n is.
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The main construction

The canonical representation of the number q is

q = pn1
1 pn2

2 · · · pnk
k , (3)

where p1 < p2 < . . . < pk are primes and ni are positive integers. Hence
rad(q) = p1 · · · pk .

Now consider a following iterative procedure: set q(0) := q and for i ≥ 1 define
q(i) from the equality

q(i−1) = p(i) · q2
(i), (4)

where

p(i) = pv (i)
1

1 pv (i)
2

2 · · · pv (i)
k

k with v (i)
j ∈ {0,1} for all i , j .

Note that for all i we have p(i)| rad(q) , so, in particular, p(i) ≤ rad(q).
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The main construction 2

By the definition of the procedure (4), there exists N ∈ N ∪ {0}, such that

q(N) > 1 and q(N+1) = 1.

After this step, the process terminates and we have q(N+j) = p(N+j) = 1, j ≥ 2.
Easy to see that N = 0 if and only if in (3) one has n1 = . . . = nk = 1 and
N ≥ 1 otherwise.

We have 2 ≤ q(N) ≤ rad(q). We also note that q(N) is a square-free number.
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Proof
We have two cases.

1) If N = 0, then rad(q) = q. Consider a fraction (q − 1)/q. We have
(q − 1)/q = [1,q − 2,1]. Hence for a = q − 1 we get K (a/q) ≤ rad(q)− 2.

2) If N ≥ 1, we further distinguish several cases.

2.1) q(N) ̸= 2,3,6.
As q(N) is a square-free number, this means that q(N) ≥ 5, and, in particular,
rad(q) ≥ q(N) ≥ 5. For a square-free number q(N) ≥ 5 we have φ(q(N)) ≥ 4,
where φ(n) is an Euler’s totient function.

Lemma
For an integer number q with φ(q) ≥ 4, there exists an integer 1 ≤ a ≤ q − 1,
coprime to q, such that

a
q

= [a1, . . . ,an]

with the following properties:
n ≥ 2;
a1 ≥ 2 and an ≥ 2;
K (a/q) ≤ q−1

2 .
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Proof
Apply previous Lemma with q = q(N) to get a reduced fraction a/q(N), so there
exists a/q = [a1, . . . ,an] with n ≥ 2, a1,an ≥ 2 and K (a/q(N)) ≤ (q(N) − 1)/2.

Application of Folding Lemma with
tr
qr

=
a

q(N)
and b = p(N)

leads to
tr
qr

+
(−1)r

bq2
r

= [a1, . . . ,an,p(N) − 1,1,an − 1, . . . ,a1] =
a(N−1)

p(N) · q2
(N)

=
a(N−1)

q(N−1)
.

We have two possible situations. If p(N) = 1, then we get

K
(

a(N−1)

q(N−1)

)
≤ (q(N) − 1)/2 + 1 = (q(N) + 1)/2 ≤ rad(q)− 1.

To get the last inequality we used q(N) ≤ rad(q) and rad(q) ≥ 5.

If p(N) ≥ 2, then

K
(

a(N−1)

q(N−1)

)
≤ max

(
p(N) − 1,

q(N) − 1
2

)
≤ rad(q)− 1.
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End of the case q(N) ̸= 2,3,6

Now we iteratively apply Folding Lemma for i = 1,2, . . . ,N − 1 with

tr
qr

=
a(N−i)

q(N−i)
and b = p(N−i)

to get

tr
qr

+
(−1)r

bq2
r

= [a1, . . . ,a1,p(N−i)−1,1,a1−1, . . . ,a1] =
a(N−i−1)

p(N−i) · q2
(N−i)

=
a(N−i−1)

q(N−i−1)
.

After N − 1 steps, the application of Folding Lemma provides us a fraction
with denominator q(0) = q with all partial quotients bounded by rad(q)− 1 and
the process terminates.
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Case q(N) = 2,3,6

If q(N) = 3 or 6, the application of Lemma 8 for tr/qr = 1/q(N) and b = p(N)

gives us

tr
qr

+
(−1)r

bq2
r

= [q(N),p(N) − 1,1,q(N) − 1] =
a(N−1)

p(N) · q2
(N)

=
a(N−1)

q(N−1)
.

The resulting continued fraction [q(N),p(N) − 1,1,q(N) − 1] satisfy the first two
properties from Lemma and K (a(N−1)/q(N−1)) ≤ rad(q)− 1, so we can
continue the procedure as in the previous case.

If q(N) = 2, then the first application of the Folding Lemma, depending on p(N),
will generate either fraction [2,p(N) − 1,2] or 1/4 = [4]. In the first subcase we
proceed as previously, in the latter we apply Folding Lemma manually one
more time to get [4,p(N−1) − 1,1,3], so that we can start the iterative process
using Lemma.
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Case q = 2n3m

We know that the potential values of q(N) are q(N) = 2,3 or 6. Fractions
1/2 = [2],1/3 = [2,1],1/6 = [5,1] satisfy K (1/q(N)) ≤ 5. By definition,
q(N−1) = p(N)q2

(N), where p(N) ∈ {1,2,3,6} and q(N) ∈ {2,3,6}. Consider the
fractions

1
22

= [4],
3

2 · 22
= [2, 1, 2],

5
3 · 22

= [2, 2, 2],
7

6 · 22
= [3, 2, 3],

2
32

= [4, 2],
5

2 · 32
= [3, 1, 1, 2],

8
3 · 32

= [3, 2, 1, 2],
17

6 · 32
= [3, 5, 1, 2],

11
62

= [3, 3, 1, 2],
17

2 · 62
= [4, 4, 4],

23
3 · 62

= [4, 1, 2, 3, 2],
49

6 · 62
= [4, 2, 2, 4, 2].

These fraction cover all possible values of q(N−1) and for all fractions
a/q(N−1), one has K (a/q(N−1)) ≤ 5. For every fraction except 1/22 = [4], the
length of continued fraction expansion is n ≥ 2 and 2 ≤ a1,an ≤ 4. For them
we do the same procedure as before.
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Final case of q(N) = 2,q(N−1) = 4

Consider all possible values of q(N−2), generated by 1/4 = [4]:

7
24 = [2,3,2],

9
2 · 24 = [3,1,1,4],

13
3 · 24 = [3,1,2,4],

29
6 · 24 = [3,3,4,2].

As before, for each continued fraction here, its length n satisfies n ≥ 2 and
2 ≤ a1,an ≤ 4.

So we can continue the same iterative procedure as before. This concludes
the proof.
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Remark on the result of MMSh
By Theorem of MMSh, when d is a sufficiently large square-free integer, there
exists a, coprime to d , such that

K (a/d) ≤ O(log d/ log log d).

By the iterative procedure from the proof of Theorem our main result, we
reduce any number q to a square-free number q(N) in finite number of steps.
Afterwards, we start building continued fractions with given properties starting
from q(N) and going back to the number q := q(0).

MMSh Theorem guarantees that for the square-free number
d = q(N) = p1 · · · pk one can find an integer a, coprime to q(N) with

K (a/q(N)) ≤ O(log q(N)/ log log q(N)).

Starting from this fraction as a seed fraction of our iterative procedure, we can
apply Folding Lemma with b ∈ D, where D is the set of small divisors of q(N)

defined as

D =
{

m ∈ N : m|q(N) and m ≤ O(log q(N)/ log log q(N))
}
.

This set is always non-empty, because 1 ∈ D.
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Remark on the result of MMSh 2

Then using the same iterative procedure as in the proof of the main result,
one will generate all numbers q of the form

pn1
i1 · · · pnj

ij d2n
for all pi1 · · · pij ∈ D, n1, . . . ,nj ∈ N ∪ {0},n ∈ N.

In particular, as 1 ∈ D, iterative application of Folding Lemma will generate all
numbers of the form d2n

,n ∈ N with the same bound

K (a/d2n
) ≤ O(log d/ log log d)

for sufficiently large square-free integer d and some number a coprime to d .
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Thank you!
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