Distribution of Reduced Quadratic Irrationals

Maria Siskaki

University of Illinois at Urbana-Champaign

Sep. 21, 2021
A real number \(x \) is called a **quadratic irrational** if there exist integers \(A, B, C \) with \(A \neq 0 \), such that \(Ax^2 + Bx + C = 0 \), with \(\gcd(A, B, C) = 1 \) and \(D = B^2 - 4AC > 0 \) not a perfect square.

A quadratic irrational \(\omega \) is called **(regular) reduced** if \(\omega > 1 \) and its conjugate \(\omega^* \) lies between \(-1\) and \(0\).

In this talk, I will be describing a number theoretical approach (Kallies et al, Boca, Ustinov) which gives an effective estimate in the asymptotic formula for the distribution of various types of quadratic irrationals.
Euclidean Algorithms

The Division Algorithms (Vallée)

<table>
<thead>
<tr>
<th>Division Type</th>
<th>Equation</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>By-default division (G)</td>
<td>$v = cu + r$,</td>
<td>$0 \leq r < u$</td>
</tr>
<tr>
<td>By-excess division (B)</td>
<td>$v = cu - r$,</td>
<td>$0 \leq r < u$</td>
</tr>
<tr>
<td>Centered division (K)</td>
<td>$v = cu + \epsilon r$, $\epsilon = \pm 1$, $0 \leq r < u/2$</td>
<td></td>
</tr>
<tr>
<td>Even division (E)</td>
<td>$v = cu + \epsilon r$, $\epsilon = \pm 1$, $0 \leq r < u$, c even</td>
<td></td>
</tr>
<tr>
<td>Odd division (O)</td>
<td>$v = cu + \epsilon r$, $\epsilon = \pm 1$, $0 \leq r < u$, c odd</td>
<td></td>
</tr>
<tr>
<td>Subtractive algorithm (T)</td>
<td>replaces by-default division by exactly c subtractions of the form $v = u + r$</td>
<td></td>
</tr>
</tbody>
</table>

- Each of these algorithms is associated to a **continued fraction** (CF) expansion:
 - (G)— regular CF (RCF)
 - (E)— even CF (ECF)
 - (B)— backwards CF (BCF)
 - (O)— odd CF (OCF)
 - (K)— nearest integer CF (NICF)
 - (T)— Lehner CF (Farey of RCF)
The RCF expansion

- For example:

\[
\frac{5}{8} = \frac{5}{1 \cdot 5 + 3} = \frac{1}{1 + \frac{3}{5}} = \frac{1}{1 + \frac{3}{\frac{3}{2} + 2}} = \frac{1}{1 + \frac{1}{1 + \frac{2}{3}}}
\]

\[
= \frac{1}{1 + \frac{1}{1 + \frac{2}{1 + \frac{1}{2}}}} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}}}
\]

\[= [1, 1, 1, 2]\]

- Every \(x \in (0, 1] \setminus \mathbb{Q}\) has a unique regular continued fraction (RCF) expansion

\[x = [a_1, a_2, a_3, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}, \quad a_i \geq 1.\]
Another example: the golden mean $G = \frac{\sqrt{5} + 1}{2} > 1$ satisfies $G^2 = G + 1$, or $G = 1 + \frac{1}{G} = 1 + \frac{1}{1 + \frac{1}{G}}$. Hence $\frac{1}{G} = g = [1]$.

Truncating the RCF expansion of $x = [a_1, a_2, \ldots]$ at level n yields the nth convergent of x

\[
\frac{p_n}{q_n} = \frac{p_n(x) := [a_1, \ldots, a_n]}{q_n} = \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n}}} = p_n(x)
\]

The sequence $(p_n(x))_n$ converges to x:

\[
\lim_{n \to \infty} \frac{p_n}{q_n} = x
\]
The RCF Gauss map

The continuous extension of the standard Euclidean division algorithm is the RCF Gauss map

\[T(x) := \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor, \quad T(0) := 0. \]

The RCF digits of \(x \) are fully recaptured by \(T \)'s iterates as

\[a_1 = \left\lfloor \frac{1}{x} \right\rfloor = \left\lfloor \frac{1}{T^0(x)} \right\rfloor, \quad a_n = \left\lfloor \frac{1}{T^{n-1}(x)} \right\rfloor. \]

- \(T \) acts as a shift on the digits:
 If \(x = [a_1, a_2, a_3, \ldots] \), then \(T(x) = [a_2, a_3, \ldots] \).

- The unique Lebesgue absolutely continuous \(T \)-invariant probability measure is the Gauss measure

\[d\mu(x) = h(x)dx, \quad \text{where} \quad h(x) = \frac{1}{\log 2} \frac{1}{(x + 1)}. \]
A number \(x \in [0, 1] \) is a **periodic point** of \(T \) if there exists an \(n \geq 1 \) such that \(T^n x = x \).

The periodic points of \(T \) are the numbers with purely periodic RCF expansion, \(x = [a_1, a_2, \ldots, a_n] \).

Lagrange: The reduced quadratic irrationals (RQIs) are precisely the periodic points of \(T \).

Remark— (Galois) If \(\omega = [a_1, \ldots, a_n] \), then \(-\frac{1}{\omega^*} = [a_n, \ldots, a_1] \).

Ordering the RQIs \(\omega \) can be done by the spectral radius of a specific matrix \(\tilde{M}(\omega) \) associated to \(\omega \) (Pollicott 1986, Faivre 1992), by the trace of that matrix (Kallies et al 2001, Boca 2007, Ustinov 2013), and by the size of the fundamental discriminant \(\Delta = \Delta(\omega) \) (Duke 1988).
Consider the hyperbolic plane $\mathbb{H} = \{ x + yi \mid y > 0 \}$ with the metric $ds^2 = \frac{dx^2 + dy^2}{y^2}$. Elements of $\text{PSL}(2, \mathbb{Z})$ are isometries of \mathbb{H}, and $\mathbb{H}/\text{PSL}(2, \mathbb{Z})$ is the modular surface.
The length of an RQI

- Fix an RQI ω and its conjugate ω^*. Let γ_ω be the geodesic in \mathbb{H} with endpoints ω, ω^*. Then $p \circ \gamma_\omega$ is a closed primitive geodesic on $\mathbb{H}/\text{PSL}(2, \mathbb{Z})$. We define the length $\varrho(\omega)$ of the RQI ω to be the length of $p \circ \gamma_\omega$.
The length of an RQI

Let \(a \geq 1 \). Take \(x = [a_1, a_2, \ldots] := a_1 + [a_2, \ldots] > 1 \).

The “building block” \(g_a := \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} \) acts on \(x \) as a linear fractional transformation:

\[
g_a \circ x = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} \circ x = \frac{ax + 1}{x + 0} = a + \frac{1}{x} = [a, a_1, a_2, \ldots].
\]

Suppose that \(\omega = [a_1, a_2, \ldots, a_n] > 1 \), with \(n = \text{per}(\omega) \), and consider the matrices

\[
M(\omega) = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix}, \quad \text{and}
\]

\[
\tilde{M}(\omega) = \begin{cases} M(\omega), & \text{if } n \text{ is even} \\ M(\omega)^2, & \text{if } n \text{ is odd.} \end{cases}
\]

It is clear that \(\tilde{M}(\omega) \circ \omega = \omega \).
The length of an RQI

- The matrix $\tilde{M}(\omega)$ is a generator of $\{g \in \text{PSL}(2, \mathbb{Z}) \mid g \circ \omega = \omega\}$. In fact, it is a generator of the fixed-point group $\{g \in \text{SL}(2, \mathbb{Z}) \mid g \circ \omega = \omega\}$.

- The length of the closed primitive geodesic $p \circ \gamma_\omega$ is
 \[L_{p \circ \gamma_\omega} = 2 \log \mathcal{R}(\tilde{M}(\omega)),\]

 where $\mathcal{R}(\tilde{M}(\omega))$ is the spectral radius of a generator $\tilde{M}(\omega)$ of the fixed-point group $\{g \in \text{PSL}(2, \mathbb{Z}) \mid g \circ \omega = \omega\}$.

- By definition, the length of the RQI ω is
 \[\varrho(\omega) = 2 \log \mathcal{R}(\tilde{M}(\omega)).\]
The length of an RQI

- \(G = \frac{1+\sqrt{5}}{2} = [\overline{1}] \), so \(\text{per}(G) \) is odd.
The length of an RQI

Maria Siskaki (UIUC) Distribution of Reduced Quadratic Irrationals Sep. 21, 2021
The length of an RQI
Set

\[G_\omega := \{ g \in \text{GL}(2, \mathbb{Z}) \mid g \circ \omega = \omega \} \]

\[E_\Delta := \{ u + v \sqrt{\Delta} \mid u, v \in \mathbb{Z}, u^2 - \Delta v^2 = \pm 4 \}, \]

and denote by \(\epsilon_0^+(\omega) \) the fundamental solution to the Pell equation \(u^2 - \Delta v^2 = 4 \), \(\Delta = \text{disc}(\omega) \).

The homomorphism of abelian groups

\[\Lambda_\omega : G_\omega \rightarrow E_\Delta, \quad \Lambda_\omega \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \mapsto c\omega + d \]

maps each matrix \(\sigma \) to its eigenvalue \(\lambda_{\sigma,\omega} = c\omega + d \).

It turns out that \(\Lambda_\omega \) is an isomorphism, and therefore maps \(\tilde{M}(\omega) \) to \(\epsilon_0^+(\omega) \), so that \(R(\tilde{M}(\omega)) = \epsilon_0^+(\omega) \). Therefore, ordering the RQIs \(\omega \) by their length is equivalent to ordering them by the size of \(\epsilon_0^+(\omega) \).
The periodic points of T have been shown to be uniformly distributed w.r.t. the Gauss measure μ on $[0, 1]$ (identified with $[1, \infty)$ via $z \mapsto \frac{1}{z}$):

Theorem (Pollicott 1986, Faivre 1992)

\[
\begin{align*}
(A) & \quad \sum_{\varrho(M) \leq R} \frac{1}{M \in [\alpha, \beta]} \sim \int_{\alpha}^{\beta} d\mu, \quad \text{as } R \to \infty \quad (0 \leq \alpha < \beta \leq 1) \\
(B) & \quad \sum_{\varrho(M) \leq R} 1 \sim \frac{3 \log 2}{\pi^2} e^R, \quad \text{as } R \to \infty.
\end{align*}
\]
Ordering by length

- Consider the function π_1 counting the RQI’s of bounded length, and its Laplace-Stieltjes transform F:

$$\pi_1(R) = \sum_{\varrho(\omega) \leq R} 1,$$

$$F(s) = \int_0^\infty e^{-st} d\pi_1(t) = \sum_{\omega} e^{-s\varrho(\omega)} = \sum_{n=1}^{\infty} \sum_{a_1, \ldots, a_n} (xT \cdots T^{n-1}x)^{2\alpha_n s}.$$

- Then $\pi_1(R) = O(e^R)$, and F is holomorphic for $\text{Re}(s) > 1$. In fact, F extends meromorphically to the half plane $\{ \text{Re}(s) > \frac{1}{2} \}$, with only one pole on the line $\text{Re}(s) = 1$, which is simple, located at $s = 1$, and with residue equal to $\frac{3\log 2}{\pi^2}$.

- Applying the Wiener-Ikehara Tauberian theorem on F yields the result:

$$\lim_{R \to \infty} e^{-R} \pi_1(R) = \frac{3 \log 2}{\pi^2}.$$
The transfer operator associated with the Gauss map:

\[L(s)(f)(z) = \sum_{n=1}^{\infty} f\left(\frac{1}{z+n}\right)\left(\frac{1}{z+n}\right)^{2s} \]

restricted to the disc algebra \(A(\{|z-1| \leq \frac{3}{2}\}) \) is a nuclear operator.

Spectral analysis of \(L \) shows that 1 is the maximal eigenvalue of \(L(1) \), it is simple, and all other eigenvalues have modulus < 1. Similarly, all eigenvalues of \(L(s) \), for \(\text{Re}(s) \geq 1 \), \(s \neq 1 \) have modulus < 1.

For the eigenvalues

\[\theta_1(s) \geq \theta_2(s) \geq \ldots \]

of \(L(s) \), for \(s \neq 1 \) but close to 1, \(\text{Re}(s) \geq 1 \), we have that for \(i \geq 2 \)

\[\theta_i(s) < R < \theta_1 < 1, \]

where \(0 < R < 1 \) does not depend on \(s \).
Denote by $\nu(s)$ the Fredholm kernel associated to $L(s)$. The functions $f_1(z, s) = \det(I - z\nu(s))$ and $F_1(z, s) = f_1(z, s)f_z(-z, s)$ are holomorphic for $z \in \mathbb{C}$ and $\Re(s) > \frac{1}{2}$, and $F_1(1, s) \neq 0$ for $\Re(s) > 1$. Then F can be expressed as

$$F(s) = -\frac{1}{2} \frac{\partial F_1}{\partial z}(1, s) \frac{1}{F_1(1, s)} + G(s),$$

where G is a holomorphic function for $\Re(s) > \frac{1}{2}$.

The function $F_1(1, s)$ has a simple zero at $s = 1$, and the residue of F at $s = 1$ is $-\frac{1}{2\theta'_1(1)}$.

The number $-\theta'_1(1)$ is shown to be real and equal to the entropy of the RCF Gauss map.

The following trace formula for $n \geq 1$ is important

$$\text{Tr}(\nu^n(s)) = \sum_{a_1, \ldots, a_n} \frac{(\prod_{i=1}^{n-1} T^i x)^{2s}}{1 - (-1)^n(\prod_{i=1}^{n-1} T^i x)^2},$$

where $x = [0; a_1, \ldots, a_n]$.

Maria Siskaki (UIUC) Distribution of Reduced Quadratic Irrationals Sep. 21, 2021 19 / 36
Ordering by Trace

- Instead of ordering the RQIs $\omega > 1$ by the spectral radius $\lambda_\omega > 1$ of the matrix $\tilde{M}(\omega)$, consider the trace of $\tilde{M}(\omega)$, $\text{Tr}(\tilde{M}(\omega)) = \lambda_\omega + \lambda_\omega^{-1}$.
- In fact, the isomorphism Λ_ω preserves the trace:

$$\text{tr} \circ \Lambda_\omega = \text{Tr},$$

where $\text{Tr}(\sigma)$ is the trace of the matrix σ and $\text{tr}(\eta)$ is the trace of the QI η in the associated quadratic field.

When $\eta \in E^+_\Delta$, we have $0 < \text{tr}(\eta) - \eta < \frac{1}{2}$. For $\eta = \epsilon_0^+(\omega)$, we get that the trace and the spectral radius of $\tilde{M}(\omega)$ “grow together”:

$$0 < \text{Tr} \tilde{M}(\omega) - R(\tilde{M}(\omega)) < \frac{1}{2}.$$

This suggests that ordering by length and ordering by Trace could give the same asymptotics for the number of RQIs.
Every purely periodic $\omega = [a_1, a_2, ..., a_n]$ gives rise to a word $w = a_1...a_n$, where n is not necessarily the period of ω. Instead of counting the RQI’s ω, we will count the number of words w.

These words w are in one-to-one correspondence with the matrices
\[
\tilde{M}(w) = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix},
\]
where m is even.

For the “building blocks” of $\tilde{M}(w)$, we have
\[
\begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \ell & 1 \\ 1 & 0 \end{pmatrix} = B^k A^\ell,
\]
where $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = A^t$.

The monoid \mathcal{M} generated by A and B is free. Therefore, with some overcounting, we can order the RQIs by the Trace of the products of even length of these matrices.
Ordering by Trace

- We want to find asymptotic estimates for the cardinality of the set
 \[\mathcal{L} := \{ B^{a_1} A^{a_2} \ldots B^{a_{2n-1}} A^{a_{2n}} \mid n \geq 1, \; M := [a_1, \ldots, a_{2n}] > 1, \; \text{Tr}(B^{a_1} A^{a_2} \ldots B^{a_{2n-1}} A^{a_{2n}}) \leq N \}. \]

- This set can be re-written as
 \[\mathcal{L} = \left\{ \begin{pmatrix} q' \\ p' \\ p \end{pmatrix} \mid 0 \leq p \leq q, \; 0 \leq p' \leq q', \; q < q', \; p + q' \leq N, \; pq' - p'q = 1 \right\}, \]
 and can be parametrized as
 \[S := \{(q, q') \mid q < q' \leq N, \; \gcd(q, q') = 1, \; q' + \overline{q'} \leq N\} \]

- Hence its cardinality is given by
 \[|\mathcal{L}| = |S| = \sum_{q<N} \sum_{q<y<N} 1 \]
Ordering by Trace (sketch of proof)

- Counting the number of such matrices with Trace $\leq N$ amounts to counting the lattice points within certain regions A and on the modular hyperbolas $H_q = \{(x, y) \in \mathbb{Z}^2 \mid xy \equiv 1 \mod q\}$, $q < N$.

- Weil bounds on Kloosterman sums are used to estimate the number $N_q(M)$ of such points when A is a rectangle $I \times J$:

$$N_q(I \times J) = \frac{\phi(q)}{q^2} |I| |J| + O_\epsilon(q^{1/2+\epsilon}).$$

- Standard techniques and Perron’s formula are then used to estimate

$$\sum_{n \leq N} \frac{\phi(n)}{n^2} = c_1 \log N + c_2 + O\left(\frac{\log N}{N}\right),$$

$$\sum_{\lambda N \leq n \leq \mu N} \frac{\phi(n)}{n^2} = c_1 \log \frac{\lambda}{\mu} + O\left(\frac{\log N}{N}\right).$$
Ordering by Trace and length

Hence we get an effective version of the Pollicott-Faivre results:

Theorem (Boca, 2007)

\[
\sum_{\varrho(\omega) \leq R} 1 = \frac{3 \log 2}{\pi^2} e^R + O_\epsilon(e^{(7/8 + \epsilon)R}), \quad \text{as } R \to \infty.
\]

Theorem (Ustinov, 2013)

For \(\alpha, \beta \in [0, 1]\), we have \((R \to \infty)\):

\[(A) \quad \sum_{\varrho(\omega) \leq R} 1 = \frac{3 \log 2}{\pi^2} e^R + O_\epsilon(e^{(3/4 + \epsilon)R}), \quad \text{and} \quad
(B) \quad \sum_{\varrho(\omega) \leq R} 1 = \frac{e^R}{2\zeta(2)} \int\int_{[0,\alpha] \times [0,\beta]} \frac{dx \, dy}{(xy + 1)^2} + O_\epsilon(e^{(3/4 + \epsilon)R}).\]

Taking \(\beta = 1\), this shows that the RQIs are uniformly distributed w.r.t. \(\mu\).
The ECF Gauss map

- (Schweiger) Every irrational number $x > 1$ has a unique ECF-expansion

$$x = [(a_1, e_1), (a_2, e_2), \ldots] := a_1 + \frac{e_1}{a_2 + \frac{e_2}{a_3 + \cdots}} \geq 1,$$

where $a_i \in 2\mathbb{N}$ and $e_i \in \{\pm 1\}$.

- The corresponding ECF Gauss shift T_E acts on $[1, \infty)$ by

$$T_E(x) = \begin{pmatrix} 0 & e_1 \\ 1 & -a_1 \end{pmatrix} \circ x = \frac{e_1}{x - a_1},$$

where $a_1 = a_1(x) = 2\left\lfloor \frac{x+1}{2} \right\rfloor \in 2\mathbb{N}$ and $e_1 = e_1(x) = \text{sgn}(x - a_1(x)) \in \{\pm 1\}$.

- T_E acts as a shift on the digits:

If $x = [(a_1, e_1), (a_2, e_2), (a_3, e_3), \ldots]$, then $T(x) = [(a_2, e_2), (a_3, e_3), \ldots]$.

Maria Siskaki (UIUC) Distribution of Reduced Quadratic Irrationals Sep. 21, 2021 25 / 36
The ECF Gauss map

- The ECF Gauss shift on \([1, \infty)\) and \((0, 1)\) respectively:

\[
\begin{array}{c}
(1,1) & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
(0,0) & 1 & 1 & 1 & 1 & 1 & (1,0) \\
\end{array}
\]
The ECF Gauss map

- The map T_E has the invariant measure $\mu_E = \frac{2dx}{(x-1)(1+x)}$, which is infinite.

- The periodic points of T_E are the E-reduced QIs, and their set R_E consists exactly of the QIs $\omega > 1$ with $\omega^* \in [-1, 1]$.

Remark— The Galois formula in this case takes the following form: if $\omega = [(a_1, e_1), ..., (a_n, e_n)]$, then $-\omega^* = \langle\langle (a_n, e_n), \ldots, (a_1, e_1)\rangle\rangle = \frac{e_n}{a_n + \frac{e_{n-1}}{a_{n-1} + \cdots}}$.

- If $\omega = [(a_1, e_1), \ldots, (a_n, e_n)] \in R_E$, $n = \text{per}(\omega)$, we have

$$M_E(\omega) := \begin{pmatrix} a_1 & e_1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & e_n \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} p_n & p_{n-1}e_n \\ q_n & q_{n-1}e_n \end{pmatrix},$$

$$\tilde{M}_E(\omega) = \begin{cases} M_E(\omega) & \text{if } (-e_1) \cdots (-e_n) = +1 \\ M_E(\omega)^2 & \text{if } (-e_1) \cdots (-e_n) = -1. \end{cases}$$

Remark— In the RCF case, $(-e_1) \cdots (-e_n) = +1 \iff n$ is even.
Distribution of the E-RQIs

- The **length** of $\omega \in R_E$ is

 $$\varrho_E(\omega) := 2 \log \mathcal{R}(\tilde{M}_E(\omega)),$$

 where $\mathcal{R}(\tilde{M}_E(\omega))$ is the spectral radius of $\tilde{M}_E(\omega)$.

- In fact, $\tilde{M}_E(\omega)$ is the generator of the fixed-point group

 $$\Theta_\omega = \{\sigma \in \Theta \mid \sigma \circ \omega = \omega\},$$

 where

 $$\Theta = \{\sigma \in \text{SL}(2, \mathbb{Z}) \mid \sigma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \pmod{2}\}.$$

- Set $\mathcal{F}_\Delta = \{u + v\sqrt{\Delta} \mid u, v \in \mathbb{Z}, \ u^2 - \Delta v^2 = \pm 1\}$, and

 $$\tilde{\Theta} = \{\sigma \in \text{GL}(2, \mathbb{Z}) \mid \sigma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \pmod{2}\}.$$

- The corresponding homomorphism $\Lambda^E_\omega : \tilde{\Theta}_\omega \to \mathcal{F}_\Delta$ is not always surjective. In particular, it is onto when $\Delta = \Delta(\omega) \equiv 1 \pmod{4}$. When $\Delta = 4\Delta_0$, Δ_0 not a perfect square, Δ_0 odd, and $B \equiv 0 \pmod{4}$, where $Ax^2 + Bx + C$ is the minimal polynomial of ω, we have

 $$\Lambda^E_\omega(\tilde{\Theta}_\omega) = \mathcal{F}_{\Delta_0}.$$
Theorem (Boca, S, 2020)

For every $\alpha, \beta_1, \beta_2 \geq 1$ with $(\alpha, \beta_1) \neq (1, 1)$,

\[
\sum_{\omega \in \mathbb{R} \atop \varrho_E(\omega) \leq R \atop \omega \geq \alpha} 1 = C(\alpha, \beta_1, \beta_2)e^R + O_{\alpha, \beta_1, \varepsilon}(e^{(3/4+\varepsilon)R}),
\]

where

\[
C(\alpha, \beta_1, \beta_2) = \frac{1}{\pi^2} \log \left(\frac{\alpha \beta_2 + 1}{\alpha \beta_2} \cdot \frac{\alpha \beta_1}{\alpha \beta_1 - 1} \right)
\]

\[
= \frac{1}{\pi^2} \int \int_{[\alpha, \infty) \times [-\frac{1}{\beta_2}, \frac{1}{\beta_1}]} \frac{du \, dv}{(u - v)^2}.
\]

Taking $\beta_1 = \beta_2 = 1$, this shows that the E-reduced QIs are uniformly distributed w.r.t the T_E–invariant measure μ_E.

\[
\]
As in the case of the RCF, the Trace and the spectral radius of the matrices \tilde{M}_E “grow together”, therefore counting the E-reduced QIs ordered by their length amounts to counting the number of matrices

$$M = \begin{pmatrix} p' & pe \\ q' & qe \end{pmatrix} \in \text{SL}(2, \mathbb{Z}), \text{ with } p' > p > q > 0, p' > q' > q, e = \pm 1,$$

$$M \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mod 2, \text{ Tr}M \leq N.$$

Passing from the constraints $\omega > 1, \omega^* \in [-1, 1]$ on QIs to the constraints on their convergents p/q is allowed because of the approximations

$$\omega \approx \frac{p}{q} \text{ and } -\frac{1}{\omega^*} \approx \frac{p'}{pe}.$$
Counting these matrices M with Trace $\leq N$ amounts to counting the lattice points within certain regions A and on the modular hyperbolas $H_{q,h} = \{(x, y) \in \mathbb{Z}^2 \mid xy \equiv h \mod q\}$, $(q, h) = 1$, $q < N$, with additional conditions on the parity of x, y and q.

The number theoretical arguments giving the estimates in this case involve proving formulas such as

\[
\sum_{\substack{n \leq N \\ n \text{ even}}} \frac{\varphi(2n)}{n^2} = \frac{2(\log N + c_1)}{3\zeta(2)} + O\left(\frac{\log^2 N}{N}\right), \quad c_1 = \gamma - \frac{4\log 2}{3} - \frac{\zeta'(2)}{\zeta(2)},
\]

\[
\sum_{\substack{n \leq N \\ n \text{ odd}}} \frac{\varphi(n)}{n^2} = \frac{2(\log N + c_2)}{3\zeta(2)} + O\left(\frac{\log^2 N}{N}\right), \quad c_2 = c_1 + \frac{6\log 2}{3}.
\]
Distribution of the B-RQIs

- The BCF Gauss map on \((1, \infty)\) can be obtained from \(T_E\) by setting \(e_i = -1, \ \forall i \geq 1\), and letting \(a_i \geq 2\) not necessarily even. Its (infinite) invariant measure is \(\mu_B = \frac{dx}{x(x-1)}\) (Rényi).

- The periodic points of \(T_B\) are the \(B\)-reduced QIs, and their set \(R_B\) consists exactly of the QIs \(\omega > 1\) with \(\omega^* \in [0, 1]\).

Theorem (Boca, S, 2020)

For every \(\alpha, \beta \geq 1\) with \((\alpha, \beta) \neq (1, 1)\),

\[
\sum_{\omega \in R_B, \varrho_B(\omega) \leq R, \omega \geq \alpha, 0 < \omega^* \leq \frac{1}{\beta}} 1 = \frac{e^R}{2\zeta(2)} \int_{[\alpha, \infty) \times [0, 1/\beta]} \frac{du \ dv}{(u - v)^2} + O_{\alpha, \beta, \varepsilon}(e^{(3/4 + \varepsilon)R}).
\]

Taking \(\beta = 1\) this shows that the \(B\)-reduced QIs are uniformly distributed w.r.t the \(T_B\)–invariant measure \(\mu_B\).
The distribution of the O-QIs

- (Rieger) Every irrational number $x > 1$ has a unique OCF-expansion

$$x = [(a_1, e_1), (a_2, e_2), \ldots] := a_1 + \frac{e_1}{a_2 + \frac{e_2}{a_3 + \cdots}} \geq 1,$$

where $a_i \in 2\mathbb{N} - 1$, $e_i \in \{\pm 1\}$ and $a_i + e_i \geq 2$, $\forall i$.

- The OCF Gauss map T_O acts as a shift on the digits, and the T_O-invariant measure μ_o is a probability measure.

- The length of $\omega \in R_O$ is

$$\varrho_O(\omega) := 2 \log R(\tilde{M}_O(\omega)),$$

where $R(\tilde{M}_O(\omega))$ is the spectral radius of $\tilde{M}_O(\omega)$, and $\tilde{M}_O(\omega)$ is the generator of the fixed-point group $\Gamma_\omega = \{g \in \Gamma \mid g \circ \omega = \omega\}$, where

$$\Gamma = \{\sigma \in \text{SL}(2, \mathbb{Z}) \mid \sigma \equiv (\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \text{ or } (\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}) \mod 2\}. \)
The distribution of the O-RQIs

- In this case, we count the number of matrices in the set
 \[\mathcal{P} := \{ (a_1 e_1)(a_2 e_2) \cdots (a_n e_n) \mid n \geq 1, a_i \in 2\mathbb{N} - 1, e_i = \pm 1, a_i + e_i \geq 2 \}, \]

- The set of matrices \(\mathcal{P} \) can be parametrized as
 \[\mathcal{P} = S_{+1} \cup S_{-1}, \quad \text{with} \]
 \[S_{+1} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \tilde{\Gamma} \mid 0 \leq d \leq b, 1 \leq c \leq a, a/b > g, \right. \]
 \[\quad ad - bc = \pm 1 \}, \quad \text{and} \]
 \[S_{-1} = \left\{ \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} \in \tilde{\Gamma} \mid 0 \leq d \leq b, 1 \leq c \leq a, a/b > G + 1, \right. \]
 \[\quad ad - bc = \pm 1 \}. \]
Theorem (S, 2021)

For every $\alpha \geq 1$, $\beta_1 \geq G + 1$, and $\beta_2 \geq G - 1$ we have that

$$
\sum_{\omega \in \mathcal{R}_O, \quad \varrho_1(\omega) \leq R, \quad \omega \geq \alpha, \quad -\frac{1}{\beta_2} \leq \omega^* \leq \frac{1}{\beta_1}} 1 = \frac{3 \log G}{4 \zeta(2)} \int \int_{[\alpha, \infty) \times \left[-\frac{1}{\beta_1}, \frac{1}{\beta_2}\right]} d\tilde{\mu}_o + O(e^{(\frac{3}{4} + \epsilon)R}).
$$

Taking $\beta_1 = G + 1$, $\beta_2 = G - 1$ we get that the O-reduced QIs are equidistributed with respect to the T_O–invariant probability measure μ_o:

For every $\alpha \geq 1$ we have

$$
\sum_{\omega \in \mathcal{R}_O, \quad \varrho_1(\omega) \leq R, \quad \omega \geq \alpha} 1 \quad \sim \quad \sum_{\omega \in \mathcal{R}_O, \quad \varrho_1(\omega) \leq R} 1 \quad \sim \quad \int_{\alpha}^{\infty} d\mu_o.
$$
Thank you!