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Introduction

A multidimensional continued fraction algorithm is a multidimensional
generalization of well-known continued fraction algorithms of small
dimensions: Gauss and Euclidean.
Plan of our work:

1 define the MCF algorithms, their corresponding Rauzy graphs and
partitions into subcones.

2 check that the proof of the exactness of the Euclidean algorithm given
by T.Miernowski and A.Nogueira (see [1]) generalizes to the
multidimensional case.

3 proof the exactness of non-homogeneous MCF Selmer, Brun and
Jacobi-Perron algorithms by applying Miernowski and Nogueira’s proof
with solving the technical difficulties of generalizing to the
multidimensional case.
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Definition
A multidimensional continued fraction algorithm is specified by two
piecewiese continuous maps:

f : [0, 1]n → [0, 1]n and A : [0, 1]n → GL(n,Z)

[0, 1]n - parameter space
A(k)(x) = A

(
f k−1(x)

)
- matrix k-th step for the vector x ∈ [0, 1]n

We can define a cycle C (k)(x) = A(k) · . . . · A(1)(x)

We will consider non-homogeneous algorithms. In this case the map f is
determined by the formula f (x) = A−1(x) · x .
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Selmer and Brun algorithms in dimension 3

In space V = ∆3 map of the Selmer algorithm F(x1, x2, x3) = (x ′1, x
′
2, x

′
3) is

defined as:

(x ′π(1), x
′
π(2), x

′
π(3)) = (xπ(1), xπ(2), xπ(3) − xπ(1)),

where π ∈ Sn, s.t. xπ(1) < xπ(2) < xπ(3).

Map of the Brun algorithm is defined as:

(x ′π(1), x
′
π(2), x

′
π(3)) = (xπ(1), xπ(2), xπ(3) − xπ(2)).

Matrix definition. M(x) =

1 0 1
0 1 0
0 0 1

 , where

M(x) = Id + Eπ−1(3),π−1(1) for Selmer case,

M(x) = Id + Eπ−1(3),π−1(2) for Brun’s case.

D. Siukaev (USPN) report 03.10.2022 4 / 25



Jacobi-Perron algorithm in dimension 3

Map of the Jacobi-Perron algorithm is defined as:

(x ′1, x
′
2, x

′
3) = (xπ(2) − b2 · xπ(1), xπ(3) − b3 · xπ(1), xπ(1)), where bi =

[
xπ(i)

xπ(1)

]
.

To prove the exactness, it is also necessary to define a tagged version of the
Jacobi-Perron algorithm.
Let min(x) = {i : xi ⩽ xj ∀ j} and nz(x) = min{i : xi > xmin}. Let’s define
number m(x) First we assume m(x) = min(x). Then

m(x ′) =

{
min(x ′) if xj ⩽ xm ∀j ̸= nz(x), xnz < 2xm,

m(x) else.

Then map S(x) of the tagged version of the Jacobi-Perron algorithm is defined as

S(x) = M(x)−1x , where M(x) = Id + Eπ−1(m),π−1(nz).

At the same time, we note that F (x) = Sb3 ◦ Sb2 ◦ Sb1(x).
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Permutations and Partition into subcones
Define the Rauzy graph for the MCF algorithm of dimension n to be the directed
graph G(n) whose vertices are the permutations in Sn and the arrows go from πi

to πi+1.
Lemma. For all π1, π2 in Sn there is a path in G(n) that starts in π1 and ends in
π2. Every π in Sn has exactly γ(n) incoming and exactly γ(n) outgoing arrows in
G(n). For Selmer and Brun algorithms γ(n) = n, for tagged Jacobi-Perron
algorithm γ(n) = n2−n+2

2 .

Using the vector x , we construct a sequence of permutations
(πx) = π1

x , . . . , π
k
x , . . . and a sequence of matrices M1

π, . . . ,M
k
π , . . .. Finite

sequence π1, . . . , πk ∈ G(n) defines the set

Cπ1,...,πk

= {x ∈ V : πi
x = πi , 1 ⩽ i ⩽ k}

For k ⩾ 1 denote by P(k) the set of cones Cπ1,...,πk

where π1, . . . , πk goes
through all possible paths of length k in G(n). We call it a partition of the space
V into γk(n) cones (by previous lemma) and P(k+1) is a refinement of this
partition.
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Ergodic properties
Let (X ,Σ, µ) be a measure space and let T : X −→ X be a measurable
map.

Definition
T is said to be ergodic with respect to µ if for every Ω ∈ Σ such that
T−1(Ω) = Ω, µ(Ω) = 0 or µ(X \ Ω) = 0

T is said to be nonsingular if for Ω ∈ Σ µ(T−1(Ω)) = 0 if and only if
µ(Ω) = 0

T is said to be exact if Ω ∈
⋂

m⩾1 T
−m(Σ) implies µ(Ω) = 0 or

µ(X \ Ω) = 0

T is said to be bi-measurable if for every Ω ∈ Σ we have T (Ω) ∈ Σ

The bi-measurable map T satisfies the intersection property with respect
to the measure µ if

∀ Ω ∈ Σ, s.t. µ(Ω) > 0, ∃k ⩾ 1, s.t. µ
(
T k(Ω) ∩ T k+1(Ω)

)
> 0.
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Idea of our work
In the article ([1] T.Miernowski, A.Nogueira) the following has been proved:

Lemma
Let T be bi-measurable, nonsingular and ergodic. Then T is exact if and
only if it satisfies the intersection property.

After that, it was proved that Euclid algorithm and the non-homogeneous
Rauzy induction satisfy the intersection property and, as a consequence, are
exact. At the end of the article it is stated that other non-homogeneous
multidimensional continued fraction algorithms - in particular, Selmer, Brun
and Jacobi-Perron algorithms - also satisfy the intersection property and
they are also exact. However, there is no proof of this. In our work, we only
check that this statement is true. So, the idea of the proof belongs to
T.Miernowski and A.Nogueira (see [1]), while we only prove the mentioned
statement, which was given in their article without proof. This requires
changing the proof of the auxiliary lemma and changing (constructing new
sets unique for each algorithm) at the end of the proof of the main
statement.
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Lemmas
Lemma 1. ([7], Section 4). There is a positive constant C such that for almost
every x ∈ V there are infinitely many integers k ⩾ 1, such that Mk(x) is a
C -balanced matrix.

Lemma 2. There exists a partition of V whose elements are subcones C (k)(x)
which satisfy Lemma 1.

Lemma 3. For almost every x , ⋂
k⩾1 C

(k)(x) = {αx : α ⩾ 0}.

Auxiliary lemma. For every N ⩾ 1 there exists a partition PN of V which
satisfies the following properties:
1. Its elements are subcones of type C (k)(x),

2. If F is a map of the Selmer algorithm, then ∥l(k)i (x)∥1

∥l(k)j (x)∥1
⩾ N for some j and all i ̸= j .

If F is a map of the Brun algorithm, then ∥l(k)i (x)∥1

∥l(k)j (x)∥1
⩾ N and ∥l(k)j (x)∥1

∥l(k)p (x)∥1
⩾ Nfor some j , p

and all i ̸= j

If F is a map of the Jacobi-Perron algorithm, then ∥l(k)j (x)∥1

∥l(k)i (x)∥1
⩾ Nfor some j and all

i ̸= j .
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Exactness of algorithms
We now use the proof of T.Miernowski, A.Nogueira. The difference lies in
the construction of new sets P+ for each of the three algorithms. This is
the plan of the proof (see [1]) and then we will construct the indicated sets
P+.

1 Lemma 1.1 implies that it is sufficient to prove that for any subset of
X ⊂ V of positive measure there exists k ⩾ 1 such that
µ(F k+1(X ) ∩ F k(X )) > 0.

2 Let x0 ∈ X be a density point satisfying the lemma 3 and
(n − 1)-dimensional ball
Dρ = {x0 + x : ϵ ∈ X , ϵ1x

0
1 + . . .+ ϵnx

0
n = 0, ∥ϵ∥1 < ρ} of radius ρ

with the center at x0 is entirely contained in X .
3 Σ(x0, ρ) = {tx : x ∈ Dρ, δ ⩽ t ⩽ 1} (δ = 1− ρ

∥x0∥1
) - cylindrical

cone. By the density point theorem, for a given ϵ > 0 and a
sufficiently small ρ the inequality

µ(X ∩ Σ(x0, ρ)) > (1− ϵ)µ(Σ(x0, ρ))

is true.
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Exactness of the algorithms
4 Let N ⩾ 1 and PN is a C -balanced partition of V . The sets

Σ(x0, ρ) ∩ CN , where CN ∈ PN , divide the cone Σ(x0, ρ). There exists
CN ∈ PN such that

µ(X ∩ Σ(x0, ρ) ∩ CN) > (1− 2ϵ)µ(Σ(x0, ρ) ∩ CN).

5 Equality CN = C (k)(x) implies that for some k ⩾ 1 the equality
F k(CN) = X is true.

6 Using the properties of Σ(x0, ρ) ∩ CN , for each of the three algorithms
(Selmer, Brun and Jacobi-Perron) we construct set P+ such that

µ
(
F k(X ) ∩ P+ ∩ F (P+)

)
>

1

2
µ
(
P+ ∩ F(P+)

)
,

µ
(
F k+1(X ) ∩ P+ ∩ F (P+)

)
>

1

2
µ
(
P+ ∩ F (P+)

)
,

then
µ
(
F k(X ) ∩ F k+1(X )

)
> 0.

We get the intersection property. ■
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Set P+ for Selmer algorithm

Now let’s build the sets P+. Consider the Selmer algorithm.
1. Let P+ = {x ∈ P : xmin(k) - the largest coordinate of the vector x}.
Vertices of the set P+ ( 2n vertices):

(0, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
αmin(k) , 0, . . . , 0, 0),

(0, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
βmin(k) , 0, . . . , 0, 0),

(
0, 0, . . . , 0,

i-th coordinate︷ ︸︸ ︷
αiαmin(k)

αi + αmin(k)

, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
αiαmin(k)

αi + αmin(k)

, 0, . . . , 0, 0
)

if i ̸= min(k),

(
0, 0, . . . , 0,

i-th coordinate︷ ︸︸ ︷
βiβmin(k)

βi + βmin(k)

, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
βiβmin(k)

βi + βmin(k)

, 0, . . . , 0, 0
)

if i ̸= min(k).
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Set P+ for Selmer algorithm (case n = 3)

Рис.: The set P+ for Selmer algorithm (case n = 3).
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Set P+ for Selmer algorithm
Now we can estimate the measure of the set P+:

µ
(
P+
)

µ
(
P
) =

( βn
min(k) ·

∏
i ̸=min(k)

βi∏
i ̸=min(k)

(
βi + βmin(k)

) −

αn
min(k) ·

∏
i ̸=min(k)

αi∏
i ̸=min(k)

(
αi + αmin(k)

)) ·
1

β1 . . . βn − α1 . . . αn
=

=
(
1 − δ

−n) · ( βn
min(k) ·

∏
i ̸=min(k)

βi∏
i ̸=min(k)

(
βi + βmin(k)

)) ·
1

(1 − δ−n)β1 · . . . · βn
=

=

( ∏
i ̸=min(k)

(
βi/βmin(k) + 1

))−1
⩾
(

2

N
+ 1

)1−n
=

(
N

N + 2

)n−1
.

So, the following equality holds:

µ(P+) ⩾
(

N

N + 2

)n−1
· µ(P).

Therefore, for sufficiently large N, the following inequality holds:

µ(F k (X ) ∩ P+) ⩾ (1 − 3ε)µ(P+). (1)

2. The only coordinate P+ that changes when we apply F is xmin(k). Let x1 be the
smallest coordinate of the vector x . Selmer algorithm acts on a pair of
(x1, xmin(k)) as Euclidean algorithm.
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Set P+ for Selmer algorithm
3. Now we want prove that for sufficiently large N the inequality

µ
(
P+ ∩ F (P+)

)
>

1

2
µ
(
P+
)
=

1

2
µ
(
F (P+)

)
. (2)

holds. Vertices of the set F (P+) ( 2n vertices):

(0, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
αmin(k) , 0, . . . , 0, 0),

(0, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
βmin(k) , 0, . . . , 0, 0),

(
first coordinate︷ ︸︸ ︷
α1αmin(k)

α1 + αmin(k)

, 0, . . . , 0, 0
)
,

(
first coordinate︷ ︸︸ ︷

β1βmin(k)

β1 + βmin(k)

, 0, . . . , 0, 0
)
,

(
0, 0, . . . , 0,

i-th coordinate︷ ︸︸ ︷
αiαmin(k)

αi + αmin(k)

, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
αiαmin(k)

αi + αmin(k)

, 0, . . . , 0, 0
)

if i ̸= 1,min(k),

(
0, 0, . . . , 0,

i-th coordinate︷ ︸︸ ︷
βiβmin(k)

βi + βmin(k)

, 0, . . . , 0,

min(k)-th coordinate︷ ︸︸ ︷
βiβmin(k)

βi + βmin(k)

, 0, . . . , 0, 0
)

if i ̸= 1,min(k).
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Sets P+ and F (P+) for Selmer algorithm (case n = 3)

Рис.: The sets P+, F (P+) and P+ ∩ F (P+) for Selmer algorithm (case n = 3).
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Set P+ for Selmer algorithm
We want to prove that for a sufficiently large N the inequality

β1βmin(k)

β1 + βmin(k)

>
β1 + α1

2
. (3)

holds and the inequality (2) holds as a consequence.
4. For a sufficiently large N and small ρ, from the inequalities (1) and (2) we get
that

µ
(
F k (X ) ∩ P+ ∩ F (P+)

) (1),(2)
⩾

( 1
2

+ t − 3ε
)
· µ
(
P+
)
>

1

2
µ
(
P+
)
⩾

⩾
1

2
µ
(
P+ ∩ F (P+)

)
. (4)

The map F preserves the Lebesgue measure, so from the inequality (1) follows
the inequality

µ
(
F k+1(X ) ∩ F (P+)

)
⩾ (1 − 3ε)µ

(
F (P+)

)
, (5)

so, as a consequence,

µ
(
F k+1(X ) ∩ P+ ∩ F (P+)

) (5),(2)
⩾

( 1
2

+ t − 3ε
)
· µ
(
F (P+)

)
>

1

2
µ
(
F (P+)

)
⩾

⩾
1

2
µ
(
P+ ∩ F (P+)

)
. (6)

It follows from the inequalities (4) and (6) that

µ
(
F k (X ) ∩ F k+1(X )

)
> 0. ■

D. Siukaev (USPN) report 03.10.2022 17 / 25



Set P+ for Brun algorithm

Consider the Brun algorithm.
1. Let P+ = {x ∈ P : x1 and x2 - the largest and second largest coordinates of the
vector x}.
Vertices of the set P+ ( 2n vertices):

(α1, 0, . . . , 0, 0),

(β1, 0, . . . , 0, 0),

(
α1α2

α1 + α2

,
α1α2

α1 + α2

, 0 . . . , 0, 0),

(
β1β2

β1 + β2

,
β1β2

β1 + β2

, 0 . . . , 0, 0),

( 2α1α2αi

2α2αi + α1αi + α1α2

,
α1α2αi

2α2αi + α1αi + α1α2

, 0, . . . , 0,

i-th coordinate︷ ︸︸ ︷
α1α2αi

2α2αi + α1αi + α1α2

, 0, . . . , 0
)

if i > 2,

( 2β1β2βi

2β2βi + β1βi + β1β2

,
β1β2βi

2β2βi + β1βi + β1β2

, 0, . . . , 0,

i-th coordinate︷ ︸︸ ︷
β1β2βi

2β2βi + β1βi + β1β2

, 0, . . . , 0
)

if i > 2.
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Set P+ for Brun algorithm (case n = 3)
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Set P+ for Brun algorithm
Now we can estimate the measure of the set P+:

µ
(
P+
)

µ
(
P
) =

(
N

N + 2

)
·
(

N2

N2 + 2N + 8

)n−2
→ 1 for N → ∞.

Therefore, for sufficiently large N, the following inequality holds:

µ(F k (X ) ∩ P+) ⩾ (1− 3ε)µ(P+). (7)

2. The only coordinate P+ that changes when we apply F is x1. Brun algorithm
acts on a pair of (x2, x1) as Euclidean algorithm.
3. Now we want prove that for sufficiently large N the inequality

µ
(
P+ ∩ F (P+)

)
>

1

2
µ
(
P+
)
=

1

2
µ
(
F (P+)

)
(8)

holds. It follows from the inequalities

β1β2

β1 + β2

>
1

n−1√2
β2 +

(
1 −

1

n−1√2

)
α2, (9)

β1β2βi

2β2βi + β1βi + β1β2

>
1

n−1√2
·

β1β2βi

β2βi + β1βi + β1β2

+
(
1 −

1

n−1√2

)
·

α1α2αi

α2αi + α1αi + α1α2

(i > 2). (10)

The end of the proof is the same as in the case of Selmer. ■
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Sets P+ and F (P+) for Brun algorithm (case n = 3)
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Set P+ for Jacobi-Perron algorithm
Consider the Jacobi-Perron algorithm (tagged version).
1. Let P+ = {x ∈ P : x1 - the smallest coordinate of the vector x}.
Vertices of the set P+ ( n vertices):

(0, . . . , 0, αi , 0, . . . , 0) if i > 1,

(0, . . . , 0, βi , 0, . . . , 0) if i > 1,

(
1

1

α1

+ . . . +
1

αn

, . . . ,
1

1

α1

+ . . . +
1

αn

)
,

(
1

1

β1

+ . . . +
1

βn

, . . . ,
1

1

β1

+ . . . +
1

βn

)
.

Now we can estimate the measure of the set P+:

µ
(
P+
)

µ
(
P
) ⩾

N

N + 2 · (n − 1)
→ 1 for N → ∞. (δ = m+1

m
)

Therefore, for sufficiently large N, the following inequality holds:

µ(Sk (X ) ∩ P+) ⩾ (1 − 3ε)µ(P+). (11)
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Set P+ for Jacobi-Perron algorithm

2. The only coordinate P+ that changes when we apply S is x2-the smallest
coordinate of the vector x after x1. Tagged Jacobi-Perron algorithm acts on a pair
of (x1, x2) as Euclidean algorithm.
3. Now we want prove that for sufficiently large N the inequality

µ
(
P+ ∩ S(P+)

)
>

1

2
µ
(
P+
)
=

1

2
µ
(
S(P+)

)
. (12)

holds. it follows from the inequalities

1

1

β1

+ . . . +
1

βn

>
1

n−1√2
·

1

1

β1

+
1

β3

+ . . . +
1

βn

+
(
1 −

1

n−1√2

)
·

1

1

α1

+
1

α3

+ . . . +
1

αn

4. As in Selmer’s and Brun’s cases, from the inequalities (11) and (12) it follows
that

µ
(
Sk(X ) ∩ Sk+1(X )

)
> 0.

This means that tagged Jacobi-Perron algorithm satisfies the intersection
property, so it is exact with respect to the Lebesgue measure. ■
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Set P+ for Jacobi-Perron algorithm

Thus, we get that the proof of T.Miernowski and A.Nogueira generalizes to
the multidimensional case. to do this, we needed to re-prove the auxiliary
lemma, as well as to carry out technically complex constructions of sets P+

for the Selmer, Brun and Jacobi-Perron algorithms. Therefore, the
statement about the possibility of generalizing the proof from [1] is true.
Also, in order to be able to consider the algorithms as ergodic and use their
infinite-partial balance, we conceptually used the paper by J. Chaika and A.
Nogueira (see [7]), which deals with non-homogeneous MCF algorithms.
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