Block occurrences in the binary expansion of n and

$$
n+t
$$

Bartosz Sobolewski
(joint work with Lukas Spiegelhofer)
Jagiellonian University in Kraków
Montanuniversität Leoben
One World Numeration Seminar February 13, 2024

Cusick's conjecture

Binary expansion of $n \in \mathbb{N}=\{0,1, \ldots\}$:

$$
n=\sum_{j \geq 0} \delta_{j} 2^{j}, \quad \delta_{j} \in\{0,1\} .
$$

Sum of binary digits:

$$
\mathrm{s}(n)=\sum_{j \geq 0} \delta_{j} .
$$

Conjecture (Cusick, 2012)
For each $t \in \mathbb{N}$ the natural density

$$
\begin{aligned}
c_{t} & =\operatorname{dens}\{n \in \mathbb{N}: \mathrm{s}(n+t) \geq \mathrm{s}(n)\} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \#\{0 \leq n<N: \mathrm{s}(n+t) \geq \mathrm{s}(n)\}
\end{aligned}
$$

satisfies

$$
c_{t}>\frac{1}{2} .
$$

Connections to other problems

The conjecture is related to:

- the Tu-Deng conjecture (2011);
- the distribution of the 2-adic valuation of binomial coefficients:

$$
\mathrm{s}(n+t)-\mathrm{s}(n)=\mathrm{s}(t)-\nu_{2}\left(\binom{n+t}{t}\right) ;
$$

- hyperbinary expansions.

More details in a paper of Drmota, Kauers, Spiegelhofer (2016).

Some results

- Drmota, Kauers, Spiegelhofer (2016):
- The conjecture holds for $t<2^{30}$;
- $1 / 2<c_{t}<1 / 2+\varepsilon$ for t in a set of density 1 ;
- Emme, Hubert (2019):

Central-limit type result on the distribution of $s(n+t)-s(n)$ for t random;

- Spiegelhofer (2022):
$c_{t}>1 / 2-\varepsilon$ for all t having sufficiently many occurrences of 01 in their binary expansion.

Some results

Theorem (Spiegelhofer, Wallner (2023))

We have $c_{t}>1 / 2$ for all t having sufficiently many occurrences of 01 in their binary expansion.

For $j \in \mathbb{Z}$ let $\sigma(t, j)=\operatorname{dens}\{n \in \mathbb{N}: s(n+t)-\mathrm{s}(n)=j\}$.
Theorem (Spiegelhofer, Wallner (2023))
For $t \geq 1$ let us define

$$
\kappa(1)=2, \quad \kappa(2 t)=\kappa(t), \quad \kappa(2 t+1)=\frac{\kappa(t)+\kappa(t+1)}{2}+1 .
$$

Then for all t having N occurrences of 01 in their binary expansion we have

$$
\sigma(t, j)=\frac{1}{\sqrt{2 \pi \kappa(t)}} \exp \left(-\frac{j^{2}}{2 \kappa(t)}\right)+\mathcal{O}\left(N^{-1}(\log N)^{4}\right)
$$

Further research

Cusick: "the hard cases remain".

Some possible generalizations:

- Consider expansions in any base b;
- Multidimensional analogues;
- Count occurrences of other blocks.

Question

Can we prove similar results for the function r, counting the occurrences of 11 in the binary expansion?

$$
n=\sum_{j \geq 0} \delta_{j} 2^{j} \Longrightarrow r(n)=\sum_{j \geq 0} \delta_{j} \delta_{j+1}
$$

The distribution of $r(n+t)-r(n)$
For $k \in \mathbb{Z}$ we let

$$
c_{t}(k)=\operatorname{dens}\{n \in \mathbb{N}: r(n+t)-r(n)=k\}
$$

Theorem (S., Spiegelhofer (2024+))

For $t \in \mathbb{N}$ let $v_{0}=0, v_{1}=3 / 2$, and

$$
\begin{aligned}
v_{4 t} & =v_{2 t}, \\
v_{4 t+2} & =v_{2 t+1}+1, \\
v_{2 t+1} & =\frac{v_{t}+v_{t+1}}{2}+\frac{3}{4} .
\end{aligned}
$$

There exist effective absolute constants C, N_{0} such that for any $k \in \mathbb{Z}$ we have

$$
\left|c_{t}(k)-\left(2 \pi v_{t}\right)^{-1 / 2} \exp \left(-\frac{k^{2}}{2 v_{t}}\right)\right| \leq C \frac{(\log N)^{2}}{N}
$$

for any $t \in \mathbb{N}$ having $N \geq N_{0}$ occurrences of 01 in its binary expansion.

Some remarks

- The main term

$$
\left(2 \pi v_{t}\right)^{-1 / 2} \exp \left(-\frac{k^{2}}{2 v_{t}}\right)
$$

dominates the error term $N^{-1}(\log N)^{2}$ when $|k|<\delta \frac{\sqrt{3}}{2} \sqrt{N \log N}$, where $\delta \in(0,1)$

- We have

$$
\sum_{k \geq 0} c_{t}(k) \geq 1 / 2-C_{1} N^{-1 / 2}(\log N)^{3}
$$

for some effective absosute constant C_{1}.

- For $t<2^{20}$ we have

$$
\sum_{k \geq 0} c_{t}(k)>\frac{1}{2}
$$

Sketch of the proof

- Put $\mathrm{e}(\vartheta)=\exp (i \vartheta)$ and consider the characteristic functions

$$
\gamma_{t}(\vartheta)=\sum_{k \in \mathbb{Z}} c_{t}(k) \mathrm{e}(k \vartheta)
$$

so that

$$
c_{t}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \gamma_{t}(\vartheta) \mathrm{e}(-k \vartheta) \mathrm{d} \vartheta
$$

- Main term comes from the approximation of the integral over a suitable subinterval $\left[-\vartheta_{0}, \vartheta_{0}\right.$] by replacing γ_{t} with Gaussian characteristic functions

$$
\gamma_{t}^{*}(\vartheta)=\exp \left(-\frac{v_{t}}{2} \vartheta^{2}\right)
$$

where v_{t} is the variance of $k \mapsto c_{t}(k)$ (mean $=0$).

- Bound the tails of the integral from above.

Main ingredients

Let N be the number of occurrences of 01 in the binary expansion of t. We will use the following facts:

1. There exists an absolute constant K such that for $|\vartheta| \leq \pi$ we have

$$
\left|\gamma_{t}(\vartheta)-\gamma_{t}^{*}(\vartheta)\right| \leq K N|\vartheta|^{3}
$$

2. For $|\vartheta| \leq \pi$ we have

$$
\left|\gamma_{t}(\vartheta)\right| \leq\left(1-\frac{1}{128} \vartheta^{2}\right)^{\lfloor N / 2\rfloor}
$$

3. For all $t \in \mathbb{N}$ we have

$$
\frac{3}{4} N \leq v_{t} \leq 5 N
$$

Basic properties and recurrences

Initial goals:

- show that $c_{t}(k)$ exist;
- obtain a recurrence relation for γ_{t}.

Put

$$
\begin{aligned}
d(t, n) & =\mathrm{r}(n+t)-\mathrm{r}(n) \\
C_{t}(k) & =\{n \in \mathbb{N}: d(t, n)=k\} .
\end{aligned}
$$

We partition $C_{t}(k)$ depending on the parity of n :
$A_{t}(k)=\{n \in \mathbb{N}: d(t, 2 n)=k\}, \quad B_{t}(k)=\{n \in \mathbb{N}: d(t, 2 n+1)=k\}$,
so that

$$
C_{t}(k)=2 A_{t}(k) \cup\left(2 B_{t}(k)+1\right)
$$

Basic properties and recurrences

Starting from $r(0)=0$ and the recurrence relations

$$
r(2 n)=r(n), \quad r(4 n+1)=r(n), \quad r(4 n+3)=r(2 n+1)+1
$$

we get relations for $d(t, n)$, and finally for $A_{t}(k), B_{t}(k)$:

$$
A_{4 t+j}(k)=2 A_{2 t+\ell}(k+\sigma) \cup\left(2 B_{2 t+\ell}(k+\rho)+1\right)
$$

for some $\ell \in\{0,1\}, \sigma, \rho \in\{-1,0,1\}$ (similarly for $B_{4 t+j}(k)$).

Proposition

For all $t \in \mathbb{N}$ and $k \in \mathbb{Z}$ the sets $A_{t}(k), B_{t}(k)$ are finite unions of arithmetic progressions of the form $2^{q} \mathbb{N}+p$, where $0 \leq p<2^{q}$. Therefore, their densities (and thus also $c_{t}(k)$) exist and satisfy a set of recurrence relations.

Characteristic functions

Define the densities

$$
a_{t}(k)=\operatorname{dens} A_{t}(k), \quad b_{t}(k)=\operatorname{dens} B_{t}(k)
$$

so that

$$
c_{t}(k)=\frac{a_{t}(k)+b_{t}(k)}{2}
$$

Define characteristic functions of the probability distributions $k \mapsto a_{t}(k)$ and $k \mapsto b_{t}$:

$$
\begin{aligned}
& \alpha_{t}(\vartheta)=\sum_{k \in \mathbb{Z}} a_{t}(k) \mathrm{e}(k \vartheta), \\
& \beta_{t}(\vartheta)=\sum_{k \in \mathbb{Z}} b_{t}(k) \mathrm{e}(k \vartheta) .
\end{aligned}
$$

We have

$$
\gamma_{t}(\vartheta)=\frac{\alpha_{t}(\vartheta)+\beta_{t}(\vartheta)}{2}
$$

Characteristic functions

The functions α_{t}, β_{t} satisfy the relations

$$
\begin{aligned}
\alpha_{2 t}=\frac{1}{2}\left(\alpha_{t}+\beta_{t}\right), & \beta_{4 t}=\frac{1}{2}\left(\alpha_{2 t}+\beta_{2 t}\right), \\
\alpha_{2 t+1}=\frac{1}{2}\left(\alpha_{t}+\mathrm{e}(\vartheta) \beta_{t}\right), & \beta_{4 t+2}=\frac{1}{2}\left(\mathrm{e}(\vartheta) \alpha_{2 t+1}+\mathrm{e}(-\vartheta) \beta_{2 t+1}\right), \\
& \beta_{2 t+1}=\frac{1}{2}\left(\alpha_{t+1}+\mathrm{e}(-\vartheta) \beta_{t+1}\right) .
\end{aligned}
$$

We can rewrite them using column vectors
$S_{t}(\vartheta)=\left(\begin{array}{llllll}\alpha_{2 t}(\vartheta) & \beta_{2 t}(\vartheta) & \alpha_{2 t+1}(\vartheta) & \beta_{2 t+1}(\vartheta) & \alpha_{2 t+2}(\vartheta) & \beta_{2 t+2}(\vartheta)\end{array}\right)^{T}$, and 6×6 coefficient matrices $D_{0}(\vartheta), D_{1}(\vartheta)$.

Proposition

For all $t \in \mathbb{N}$ we have the recurrence relations

$$
\begin{aligned}
S_{2 t}(\vartheta) & =D_{0}(\vartheta) S_{t}(\vartheta), \\
S_{2 t+1}(\vartheta) & =D_{1}(\vartheta) S_{t}(\vartheta) .
\end{aligned}
$$

Mean and variance

Let $m_{t}, m_{t}^{\alpha}, m_{t}^{\beta}$ denote the mean and $v_{t}, v_{t}^{\alpha}, v_{t}^{\beta}$ the variance of $\gamma_{t}, \alpha_{t}, \beta_{t}$.

Proposition

We have

$$
m_{2 t}^{\alpha}=m_{2 t}^{\beta}=0, \quad m_{2 t}^{\alpha}=-m_{2 t}^{\beta}=1 / 2
$$

and

$$
\begin{aligned}
v_{2 t}^{\alpha} & =\frac{1}{2}\left(v_{t}^{\alpha}+v_{t}^{\beta}\right)+q_{2 t}^{\alpha}, \quad v_{2 t}^{\beta}=\frac{1}{2}\left(v_{t}^{\alpha}+v_{t}^{\beta}\right)+q_{2 t}^{\beta}, \\
v_{2 t+1}^{\alpha} & =\frac{1}{2}\left(v_{t}^{\alpha}+v_{t}^{\beta}\right)+q_{2 t+1}^{\alpha}, \quad v_{2 t+1}^{\beta}=\frac{1}{2}\left(v_{t+1}^{\alpha}+v_{t+1}^{\beta}\right)+q_{2 t+1}^{\beta},
\end{aligned}
$$

where $q_{t}^{\alpha}, q_{t}^{\beta}$ repeat with period 4 .

Corollary

We have $m_{t}=0$ and

$$
v_{4 t}=v_{2 t}, \quad v_{4 t+2}=v_{2 t+1}+1, \quad v_{2 t+1}=\frac{1}{2}\left(v_{t}+v_{t+1}\right)+\frac{3}{4}
$$

1st ingredient: Gaussian approximation

Recall: we want to approximate γ_{t} using

$$
\gamma_{t}^{*}(\vartheta)=\exp \left(-\frac{v_{t}}{2} \vartheta^{2}\right)
$$

First, approximate α_{t}, β_{t} by

$$
\alpha_{t}^{*}(\vartheta):=\exp \left(m_{t}^{\alpha} i \vartheta-\frac{1}{2} v_{t}^{\alpha} \vartheta^{2}\right), \quad \beta_{t}^{*}(\vartheta):=\exp \left(m_{t}^{\beta} i \vartheta-\frac{1}{2} v_{t}^{\beta} \vartheta^{2}\right)
$$

Define the vector of approximations

$$
S_{t}^{*}(\vartheta)=\left(\begin{array}{llllll}
\alpha_{2 t}^{*}(\vartheta) & \beta_{2 t}^{*}(\vartheta) & \alpha_{2 t+1}^{*}(\vartheta) & \beta_{2 t+1}^{*}(\vartheta) & \alpha_{2 t+2}^{*}(\vartheta) & \beta_{2 t+2}^{*}(\vartheta)
\end{array}\right)^{T}
$$

By definition,

$$
S_{t}(\vartheta)-S_{t}^{*}(\vartheta)=O\left(\vartheta^{3}\right)
$$

where the implied constant depends on t.

1st ingredient: Gaussian approximation

We show that for any $k \in \mathbb{N}$ and $|\vartheta| \leq \pi$ we have

$$
\begin{aligned}
\left\|S_{2^{k} t}-S_{2^{k} t}^{*}\right\|_{\infty} & \leq\left\|D_{0}^{k}\left(S_{t}-S_{t}^{*}\right)\right\|_{\infty}+\left\|D_{0}^{k} S_{t}^{*}-S_{2^{k} t}^{*}\right\|_{\infty} \\
& \leq\left\|S_{t}-S_{t}^{*}\right\|_{\infty}+K|\vartheta|^{3}, \\
\left\|S_{2^{k} t+2^{k}-1}-S_{2^{k} t+2^{k}-1}^{*}\right\|_{\infty} & \leq\left\|S_{t}-S_{t}^{*}\right\|_{\infty}+K|\vartheta|^{3},
\end{aligned}
$$

for some absolute constant K.
By induction on the number N of occurrences of 01 in the binary expansion of t :

$$
\left\|S_{t}-S_{t}^{*}\right\|_{\infty} \leq\left\|S_{0}-S_{0}^{*}\right\|_{\infty}+2 K N|\vartheta|^{3} \leq K^{\prime} N|\vartheta|^{3} .
$$

Finally,

$$
\left|\gamma_{t}-\gamma_{t}^{*}\right| \leq \frac{1}{2}\left|\alpha_{t}+\beta_{t}-\alpha_{t}^{*}-\beta_{t}^{*}\right|+\left|\frac{\alpha_{t}^{*}+\beta_{t}^{*}}{2}-\gamma_{t}^{*}\right| \leq\left(K^{\prime}+K^{\prime \prime}\right) N|\vartheta|^{3}
$$

2nd ingredient: an upper bound on γ_{t}

Let t have binary expansion $\delta_{n} \delta_{n-1} \cdots \delta_{1} \delta_{0}$ and let N be the number of occurrences of 01 . We want to bound $\|\cdot\|_{\infty}$ of

$$
S_{t}=D_{\delta_{0}} D_{\delta_{1}} \cdots D_{\delta_{n-1}} D_{\delta_{n}} S_{0}
$$

Observe the following:

- $\left\|D_{0}\right\|_{\infty}=\left\|D_{1}\right\|_{\infty}=1$;
- there occur at least $\lfloor N / 2\rfloor$ nonoverlapping strings from the set $\{0001,0101,1001,1101\}$ in the expansion;
- each row of $D_{1} D_{0} D_{0} D_{0}, D_{1} D_{0} D_{1} D_{0}, D_{1} D_{0} D_{0} D_{1}, D_{1} D_{0} D_{1} D_{1}$ has an entry containing $(e(k \vartheta)+e((k+1) \vartheta)) / 16$.

2nd ingredient: an upper bound on γ_{t}

We have
$|\mathrm{e}(k \vartheta)+\mathrm{e}((k+1) \vartheta)|=|1+\exp (i \vartheta)|=\sqrt{2(1+\cos \vartheta)}=2\left|\cos \frac{\vartheta}{2}\right| \leq 2-\frac{\vartheta^{2}}{8}$.
The norm of each row of $D_{1} D_{0} D_{0} D_{0}, D_{1} D_{0} D_{1} D_{0}, D_{1} D_{0} D_{0} D_{1}, D_{1} D_{0} D_{1} D_{1}$ is at most

$$
\frac{1}{16}\left(16-\frac{\vartheta^{2}}{8}\right)=1-\frac{\vartheta^{2}}{128}
$$

By submultiplicativity

$$
\left\|S_{t}\right\|_{\infty} \leq\left(1-\frac{\vartheta^{2}}{128}\right)^{\lfloor N / 2\rfloor}\left\|S_{0}\right\|_{\infty}=\left(1-\frac{\vartheta^{2}}{128}\right)^{\lfloor N / 2\rfloor}
$$

3rd ingredient: bounds on the variance v_{t}

Recall: $v_{0}=0, v_{1}=3 / 2$, and

$$
v_{4 t}=v_{2 t}, \quad v_{4 t+2}=v_{2 t+1}+1, \quad v_{2 t+1}=\frac{v_{t}+v_{t+1}}{2}+\frac{3}{4} .
$$

We want to show:

$$
\frac{3}{4} N \leq v_{t} \leq 5 N .
$$

First, we claim that $\left|v_{t+1}-v_{t}\right| \leq 3 / 2$. If $w_{t}=v_{t+1}-v_{t}$, then

$$
\begin{aligned}
w_{4 t} & =\frac{1}{2} w_{2 t}+\frac{3}{4}, & w_{4 t+1} & =\frac{1}{2} w_{2 t}+\frac{1}{4}, \\
w_{4 t+2} & =\frac{1}{2} w_{2 t+1}-\frac{1}{4}, & w_{4 t+3} & =\frac{1}{2} w_{2 t+1}-\frac{3}{4},
\end{aligned}
$$

and our claim follows by induction

3rd ingredient: bounds on the variance v_{t}

$$
v_{4 t}=v_{2 t}, \quad v_{4 t+2}=v_{2 t+1}+1, \quad v_{2 t+1}=\frac{v_{t}+v_{t+1}}{2}+\frac{3}{4}
$$

Lower bound:

$$
\begin{aligned}
v_{2 t}-v_{t} & \geq 0 \\
v_{2 t+1}-v_{t} & =\frac{1}{2}\left(v_{t+1}-v_{t}\right)+\frac{3}{4} \geq 0, \\
v_{4 t+1}-v_{t} & =\frac{1}{2}\left(v_{2 t}-v_{t}\right)+\frac{1}{2}\left(v_{2 t+1}-v_{t}\right)+\frac{3}{4} \geq \frac{3}{4}
\end{aligned}
$$

Adding a digit to t does not decrease v_{t}; adding 01 increases v_{t} by $\geq 3 / 4$.
Upper bound:

$$
\begin{aligned}
\left|v_{2^{k} t}-v_{t}\right| & =\left|v_{2 t}-v_{t}\right| \leq 1 \\
\left|v_{2^{k} t+2^{k}-1}-v_{t}\right| & \leq\left|v_{2^{k}(t+1)-1}-v_{2^{k}(t+1)}\right|+\left|v_{2^{k}(t+1)}-v_{t+1}\right|+\left|v_{t+1}-v_{t}\right| \\
& \leq \frac{3}{2}+1+\frac{3}{2}=4
\end{aligned}
$$

Adding $0^{k_{1}} 1^{k_{2}}$ increases v_{t} by ≤ 5.

Generalization to any block

Let w be a block of binary digits of length $|w|=\ell$. Define $|n|_{w}$, to be the number the occurrences of w in the binary expansion of n. In particular,

$$
\mathrm{s}(n)=|n|_{1}, \quad \mathrm{r}(n)=|n|_{11} .
$$

Work in progress: prove that the distribution of $|n+t|_{w}-|n|_{w}$ is approximately Gaussian when the binary expansion of t has many occurrences of 01.

Some remarks on the generalization

- The result should follow from the same main ingredients;
- If $w \in\left\{1^{\ell}, 0^{\ell}\right\}$, then the sets

$$
C_{t}(k)=\left\{n \in \mathbb{N}:|n+t|_{w}-|n|_{w}=k\right\}
$$

are finite unions of arithmetic progressions of the form $2^{q} \mathbb{N}+p$ and are nonempty for infinitely many k; If $w \notin\left\{1^{\ell}, 0^{\ell}\right\}$, only finitely many $C_{t}(k)$ are nonempty but the unions may be infinite;

- To get recurrence relations for $c_{t}(k)=\operatorname{dens} C_{t}(k)$ and associated characteristic functions γ_{t}, we condition on the last $\ell-1$ digits;
- The mean of γ_{t} is 0 , while the conditional means are periodic in t and bounded by $1-1 / 2^{\ell-1}$.

Some remarks on the generalization

- The (unconditional) variance v_{t} satisfies

$$
v_{2 t}=v_{t}+q_{2 t}, \quad v_{2 t+1}=\frac{1}{2}\left(v_{t}+v_{t+1}\right)+q_{2 t+1}
$$

where q_{t} are periodic in t (we had $q_{4 t}=0, q_{4 t+2}=1, q_{2 t+1}=3 / 4$ for $w=11$).
When $w \in\left\{0^{\ell-1} 1,1^{\ell-1} 0\right\}$, some q_{t} are negative!

- It seems that v_{t} grows the fastest with $|t|_{01}$ for $w \in\left\{0^{\ell}, 1^{\ell}\right\}$ (approximation error is the least), and the slowest for $w \in\left\{10^{\ell-1}, 01^{\ell-1}\right\}$.
- Obtaining an upper bound on γ_{t} requires analyzing long products of $2^{\ell-1} \times 2^{\ell-1}$ coefficient matrices.

Thank you for your attention!

