The digits of n + t

Lukas Spiegelhofer¹

December 15, 2020, One World Numeration Seminar

¹This talk is about joint work with Michael Wallner (TU Wien)

Lukas Spiegelhofer (TU Wien/MU Leoben)

The fundamental question

We write *n* in base 2:

$$n = \varepsilon_0 2^0 + \varepsilon_1 2^1 + \varepsilon_2 2^2 + \cdots,$$

where $\varepsilon_j \in \{0, 1\}$. The vector $(\varepsilon_j)_{j \ge 0}$ is the *binary expansion* of *n*.

What happens to the binary expansion of n when a constant t is added?

Complementary to Sakarovitch's talk four weeks ago:

Adding 1 in general numeration systems vs. Adding t in base 2

Lukas Spiegelhofer (TU Wien/MU Leoben)

Addition of 1

The (possibly empty) block of 1s on the right of the binary expansion of n is replaced by 0s, and the 0 to the left of the block is replaced by 1.

This is the *ruler sequence* $n \mapsto \nu_2(n+1)$, given by the exponent of two in the prime factorization of n+1.

Lukas Spiegelhofer (TU Wien/MU Leoben)

The following picture is well known in countries using imperial units.

t = 2 is similar: ε_0 is unchanged and (1) is applied for the remaining digits.

The case $t \ge 3$

The fun begins. For t = 3 we have the following cases:

*00
$$\mapsto$$
 *11;
*01^k 10 \mapsto *10^k 01;
*01^k 11 \mapsto *10^k 10;

- Of course, we can find such a case distinction for each t in a straightforward way. This describes the situation for any given t completely.
- However: for growing t, we obtain long case distinctions. A structural principle describing these cases is unavailable.
- This is of course due to carry propagation. Carries can propagate through many blocks of 1, and many cases occur.

11101001110110011

+ 10110001001101

Lukas Spiegelhofer (TU Wien/MU Leoben)

We do not fully understand addition in base 2.

It is difficult enough to consider the sum-of-digits function $s_2(n)$. We have the formula (Legendre)

$$s_2(n+t) = s_2(n) + s_2(t) - \nu_2\left(\binom{n+t}{t}\right)$$

The function s_2 can be used to count the number of carries in n + t: a well-known relation due to Kummer is

$$\nu_2\left(\binom{n+t}{t}\right) = \#\operatorname{carries}(n,t).$$

We forget the carry structure and only keep the number of carries.

Lukas Spiegelhofer (TU Wien/MU Leoben)

The 2-valuation of binomial coefficients

Summing three consecutive values, we obtain the case t = 3.

Lukas Spiegelhofer (TU Wien/MU Leoben)

What proportion of the graph is above the x-axis? An apparently simple, unsolved conjecture is due to T. W. Cusick. Let $t \ge 0$ be an integer.

Is it true that, more often than not, we have $s_2(n+t) \ge s_2(n)$?

In symbols, we seek to prove $c_t > 1/2$, where

$$c_t = \lim_{N \to \infty} \frac{1}{N} \big| \{ 0 \le n < N : s_2(n+t) \ge s_2(n) \} \big|.$$

For example,

$$c_1 = 3/4, \quad c_{21} = 5/8, \quad c_{999} = 37561/2^{16},$$

$$\min_{t \le 2^{30}} c_t = 18169025645289/2^{45} = 0.516....$$

The latter minimum is attained at

$$t = (111101111011110111101111011110)_2$$
 and
 $t^R = (11111011110111101111011110)_2.$

Lukas Spiegelhofer (TU Wien/MU Leoben)

Densities for Cusick's conjecture

More generally, for integers $t \ge 0$ and j we define

$$\delta(j,t) = \lim_{N \to \infty} \frac{1}{N} |\{0 \le n < N : s_2(n+t) - s_2(n) = j\}|.$$

The densities $\delta(j, t)$ give us a probability distribution on \mathbb{Z} for each t.

A two-dimensional recurrence

The array δ satisfies the recurrence

$$\delta(k,1) = \begin{cases} 0 & \text{for } k \ge 2; \\ 2^{k-2} & \text{for } k \le 1; \\ \delta(j,2t) = \delta(j,t); \end{cases}$$
$$\delta(j,2t+1) = \frac{1}{2}\delta(j-1,t) + \frac{1}{2}\delta(j+1,t+1).$$

This permits to compute $\delta(j, t)$ efficiently. In particular, $c_t > 1/2$ for $t \leq 2^{30}$. (≈ 2 CPU hours, using a C program)

Lukas Spiegelhofer (TU Wien/MU Leoben)

The first theorem

Let M = M(t) be the number of blocks of 1s in the binary expansion of t. Theorem (S.-Wallner 2020+) Set $A_2(1) = 1$, and for $t \ge 1$ let $A_2(2t) = A_2(t)$, and $A_2(2t+1) = \frac{A_2(t) + A_2(t+1) + 1}{2}$.

If M is larger than some absolute, effective constant
$$M_0$$
, we have

$$\delta(j,t) = \frac{1}{\sqrt{4\pi A_2(t)}} \exp\left(-\frac{j^2}{4A_2(t)}\right) + \mathcal{O}\left(\frac{(\log M)^4}{M}\right)$$

for all integers j. The implied constant is absolute.

This improves on a theorem by Emme and Hubert (2018).

Lukas Spiegelhofer (TU Wien/MU Leoben)

A corollary

The number *M* of blocks of 1s in *t* satisfies $M \simeq A_2(t)$, the width of the normal distribution is therefore $\simeq \sqrt{M}$. We obtain the following result.

Corollary

There exists an absolute constant C > 0 with the following property. For all $t \ge 1$ we have

$$c_t \geq 1/2 - CM^{-1/2},$$

where M is the number of blocks of 1s in t.

The second theorem

Again, let M = M(t) be the number of blocks of 1s in t.

Theorem (S.–Wallner 2020+)

Let $t \ge 1$. If M(t) is larger than some absolute, effective constant M_1 , then $c_t > 1/2$.

Cusick: "Your paper reduces my conjecture to what I will call the 'hard cases' [...]". \longrightarrow more work to do!

Lukas Spiegelhofer (TU Wien/MU Leoben)

Method of proof of the theorems

Consider the characteristic function (writing $e(x) = exp(2\pi i x)$)

$$\gamma_t(\vartheta) = \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le n < N} e(\vartheta s_2(n+t) - \vartheta s_2(n)) = \sum_{j \in \mathbb{Z}} \delta(j, t) e(j\vartheta).$$

For each ϑ , we have the *one-dimensional* recurrence

$$\begin{split} \gamma_1(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2 - \mathsf{e}(-\vartheta)};\\ \gamma_{2t}(\vartheta) &= \gamma_t(\vartheta);\\ \gamma_{2t+1}(\vartheta) &= \frac{\mathsf{e}(\vartheta)}{2}\gamma_t(\vartheta) + \frac{\mathsf{e}(-\vartheta)}{2}\gamma_{t+1}(\vartheta). \end{split}$$

Note that $\gamma_t(0) = 1$; it follows that $\operatorname{Re} \gamma_t(x) > 0$ in a disk $D_t(0)$, and we can consider $\log \gamma_t(x)$ on D_t (\longrightarrow "cumulant generating function".)

Lukas Spiegelhofer (TU Wien/MU Leoben)

Method of proof of the theorems

We have $\gamma_t(\vartheta) = 1 + \mathcal{O}(\vartheta^2)$, therefore

$$\gamma_t(\vartheta) = \exp\left(-\sum_{j\geq 2} A_j(t)(2\pi\vartheta)^j\right)$$

for some $A_j(t) \in \mathbb{C}$ and all $\vartheta \in D_t$.

- Up to multiplication by i^j, the values A_j(t) are the *cumulants* of δ(·, t).
- We abbreviate a_j = A_j(t), b_j = A_j(t + 1), c_j = A_j(2t + 1). The recurrence for γ_t gives

$$\exp(-c_2\vartheta^2 - c_3\vartheta^3 - \cdots) = \frac{1}{2}\exp(-i\vartheta - a_2\vartheta^2 - a_3\vartheta^3 - \cdots) + \frac{1}{2}\exp(-i\vartheta - b_2\vartheta^2 - b_3\vartheta^3 - \cdots),$$

valid for ϑ in a certain disk.

Lukas Spiegelhofer (TU Wien/MU Leoben)

Comparing coefficients

We obtain a recurrence for the cumulants:

$$c_{2} = \frac{a_{2} + b_{2}}{2} + \frac{1}{2};$$

$$c_{3} = \frac{a_{3} + b_{3}}{2} + i\frac{a_{2} - b_{2}}{2};$$

$$c_{4} = \frac{a_{4} + b_{4}}{2} + i\frac{a_{3} - b_{3}}{2} - \frac{(a_{2} - b_{2})^{2}}{8} + \frac{1}{12};$$

$$c_{5} = \frac{a_{5} + b_{5}}{2} + i\frac{a_{4} - b_{4}}{2} - \frac{(a_{2} - b_{2})(a_{3} - b_{3})}{4} + i\frac{a_{2} - b_{2}}{6}.$$

For the normal distribution result, we only have to consider A_2 ; for Cusick's conjecture, we also have to take A_3, A_4, A_5 into account. This precision is necessary since the case $c_t \leq 1/2 + M^{-3/2}$ can occur!

Lukas Spiegelhofer (TU Wien/MU Leoben)

Proof of the first theorem, I

We define the approximation

$$\gamma_t'(\vartheta) = \exp(-A_2(t)(2\pi\vartheta)^2)$$

as well as the error

$$\widetilde{\gamma}_t(\vartheta) = \gamma_t(\vartheta) - \gamma'_t(\vartheta).$$

Proposition

There exists an absolute constant C such that for all t having M blocks of 1s and $|\vartheta| \le \min(M^{-1/3}, 1/(4\pi))$ we have

 $\left|\widetilde{\gamma}_t(\vartheta)\right| \leq CM\vartheta^3.$

Proposition

Assume that $t \ge 1$ has at least M blocks of 1s. Then for $|\vartheta| \le 1/2$,

$$\left|\gamma_t(\vartheta)\right| \ll \exp\left(-rac{M\vartheta^2}{4}
ight)$$

Lukas Spiegelhofer (TU Wien/MU Leoben)

Proof of the first theorem, II

Figure: Illustrating the propositions for t = 123.

We combine these facts with the formula

$$\delta(j,t) = \int_{-1/2}^{1/2} \gamma_t(\vartheta) \, \mathrm{e}(-j\vartheta) \, \mathrm{d}\vartheta.$$

After extending to a complete Gauss integral we obtain the statement of the theorem (with $\sqrt{\pi}$ and everything).

Lukas Spiegelhofer (TU Wien/MU Leoben)

Recapturing the first theorem

Theorem (S.-Wallner 2020+) Set $A_2(1) = 1$, and for $t \ge 1$ let $A_2(2t) = A_2(t)$, and $A_2(2t+1) = \frac{A_2(t) + A_2(t+1) + 1}{2}$.

If M is larger than some absolute, effective constant M_0 , we have

$$\delta(j,t) = \frac{1}{\sqrt{4\pi A_2(t)}} \exp\left(-\frac{j^2}{4A_2(t)}\right) + \mathcal{O}\left(\frac{(\log M)^4}{M}\right)$$

for all integers j. The implied constant is absolute.

Lukas Spiegelhofer (TU Wien/MU Leoben)

Proof of the second theorem

For c_t we need a more precise asymptotic expansion, involving the cumulants $A_2(t), A_3(t), A_4(t)$, and $A_5(t)$ — we study a *distorted* normal distribution.

We use the approximation

$$\gamma_t'(\vartheta) = \exp\left(-\sum_{2 \le j \le 5} A_j(t) (2\pi \vartheta)^j\right)$$

and the error

$$\widetilde{\gamma}_t(\vartheta) = \gamma_t(\vartheta) - \gamma'_t(\vartheta).$$

As above, we have

$$|\widetilde{\gamma}_t(\vartheta)| \leq CM\vartheta^6$$
 for $|\vartheta| \leq \min(M^{-1/6}, 1/(4\pi))$

with an absolute constant C.

Lukas Spiegelhofer (TU Wien/MU Leoben)

Reconstructing c_t

► The values $c_t = \delta(0, t) + \delta(1, t) + \cdots$ are related to the CF $\gamma_t(\vartheta)$ by the formula

$$c_t = rac{1}{2} + rac{\delta(0,t)}{2} + rac{1}{2} \int_{-1/2}^{1/2} \operatorname{Im} \gamma_t(\vartheta) \cot(\pi \vartheta) \mathrm{d} \vartheta.$$

Note that the third summand is zero if δ(−j, t) = δ(j, t) for all j, and c_t > 1/2 follows in this case.

Reconstructing c_t

▶ In this identity, we will replace γ_t by γ'_t . We expand the exponential:

$$egin{aligned} &\gamma_t'(artheta) = \expigl(-A_2(t)(auartheta)^2igr) imes igl(1-A_3(t)(auartheta)^3-A_4(t)(auartheta)^4-A_5(auartheta)^5\ &+rac{1}{2}A_3(t)^2(auartheta)^6+A_3(t)A_4(t)(auartheta)^7-rac{1}{6}A_3(t)^3(auartheta)^9igr)+\mathcal{O}(E), \end{aligned}$$

where $\tau = 2\pi$ and *E* is a certain error.

Reconstructing c_t

Introducing complete Gauss integrals, this leads to an approximation of c_t:

$$c_{t} = \frac{1}{2} + \frac{1}{4\sqrt{\pi}} \left(A_{2}^{-1/2} + iA_{2}^{-3/2}A_{3} + \frac{3}{4}A_{2}^{-5/2} \left(2iA_{5} - A_{4} - \frac{iA_{3}}{6} \right) + \frac{15}{8}A_{2}^{-7/2} \left(\frac{A_{3}}{2} - 2iA_{4} \right) A_{3} + \frac{35}{16}iA_{2}^{-9/2}A_{3}^{3} \right) + \mathcal{O}(E).$$

- The red terms sometimes almost cancel. Therefore we need more cumulants!
- ► A closer look at the recurrences for A_j finishes the proof: for c_t > 1/2 it is sufficient to have many blocks of 1s in the binary expansion of t.

The message

- 1. Adding a constant usually changes the binary sum of digits according to a normal law.
- 2. The sum of digits (weakly) increases more often than not under addition of a constant.

Moments and cumulants

▶ In a recently accepted paper I proved the following result.

Theorem (S. 2020+)

Let $\varepsilon > 0$. There exists an $M_0 = M_0(\varepsilon)$ such that for $t \ge 0$ having at least M_0 blocks of 1s, we have $c_t > 1/2 - \varepsilon$.

- > This is weaker than the corollary to our normal distribution-result!
- The proof uses estimates for the moments of $\delta(j, t)$,

$$m_k(t) = \sum_{j\in\mathbb{Z}} \delta(j,t) j^k.$$

Depending on ε , an increasing number of moments is used.

Introducing the logarithm of the CF, we only need the variance for proving the above theorem, and only *four* cumulants for the new result.

Rows in Pascal's triangle

The densities $\delta(j, t)$ are concerned with *columns* in Pascal's triangle. The *rows* behave similar with respect to *p*-valuation (the picture is invariant under rotation by $2\pi/3$), but they are finite. Let *j* and *t* be nonnegative integers and set

$$\Theta(j,t) = \left| \left\{ \ell \in \{0,\ldots,t\} : 2^{j+1}
mid inom{t}{\ell}
ight\} \right|.$$

For brevity, we extend $\Theta(\cdot, t)$ to \mathbb{R} by setting $\Theta(j, t) = 0$ for j < 0 and $\Theta(x, t) = \Theta(\lfloor x \rfloor, t)$.

Theorem (S.–Wallner 2018)

Assume that $\varepsilon > 0$ and $\lambda > 0$ is an integer. We set $I_{\lambda} = [2^{\lambda}, 2^{\lambda+1})$. Then

$$\left|\left\{t \in I_{\lambda} : \sup_{u \in \mathbb{R}} \left|\frac{\Theta_{2}(\lambda - s_{2}(t) + u, t)}{t + 1} - \Phi\left(\frac{u}{\sqrt{\lambda}}\right)\right| \geq \varepsilon\right\}\right| = \mathcal{O}\left(\frac{2^{\lambda}}{\sqrt{\lambda}}\right),$$

where the implied constant may depend on ε .

Lukas Spiegelhofer (TU Wien/MU Leoben)

SW2018 in a nutshell

The normal distribution appears in Pascal's triangle — not only in the size of the coefficients, but also in their 2valuation.

Possible extensions

- We hope to prove a sharpening of this theorem by means of cumulants too.
- Cusick proposed his conjecture when he was working on the related *Tu−Deng conjecture* relevant in cryptography. Let k be a positive integer and 1 ≤ t < 2^k − 1. Then the conjecture states that

$$\left| \left\{ (a,b) \in \{0,\ldots,2^k-2\}^2 : a+b \equiv t \mod 2^k - 1, \\ s_2(a) + s_2(b) < k \right\} \right| \le 2^{k-1}$$

and is open. Together with Wallner we proved that this conjecture is true in an asymptotic sense, and that it implies Cusick's conjecture.

 \longrightarrow We want to transfer our method to this situation. \overleftrightarrow

Possible extensions

What about adding t repeatedly? Together with T. Stoll we proved the following theorem.

Theorem (S.–Stoll 2020)

Assume that $k_1, \ldots, k_m \in \mathbb{Z}$. There exist n and t such that for $1 \leq \ell \leq m$,

$$k_{\ell}=s_2(n+\ell t)-s_2(n).$$

 \longrightarrow Every finite sequence of integers, modulo a shift $\sigma \in \mathbb{Z}$, appears as an arithmetic subsequence of s_2 .

This generalizes the theorem "The Thue–Morse sequence has full arithmetic complexity": any finite sequence of 0s and 1s appears as an arithmetic subsequence of the Thue–Morse sequence (proved by Avgustinovich, Fon-Der-Flaass, and Frid (2000)).

Possible extensions

$$\delta(k_1,\ldots,k_m,t) = \mathsf{dens} \big| \big\{ n : s_2(n+\ell t) - s_2(n) = k_\ell \text{ for } 1 \le \ell \le m \big\} \big|$$

and prove multidimensional generalizations of Cusick's conjecture and the limit law.

Possible conjectures involve multidimensional Gaussians and tuples $(s_2(n + \ell t))_{0 \le \ell \le m}$ in certain quadrants, octants,... (see [S.–Stoll 2020]).

Thank you!

 $^{^1}$ Supported by the Austrian Science Fund (FWF), Projects F55 and MuDeRa (jointly with ANR).