Reversible primes

Cathy Swaenepoel

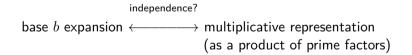
IMJ-PRG, Université Paris Cité

Joint work with C. Dartyge, B. Martin, J. Rivat and I. Shparlinski.

One World Numeration Seminar, January 30, 2024. Representation of an integer k > 0 in base $b \ge 2$:

$$k = \sum_{j=0}^{n-1} arepsilon_j(k) b^j$$

where $\varepsilon_j(k) \in \{0, \ldots, b-1\}$ and $\varepsilon_{n-1}(k) \neq 0$.



- Mauduit-Rivat (2010): The sum of digits of primes is well distributed mod m.
- Maynard (2019): There are infinitely many primes with no digit 7 in base 10.
- Bourgain (2015), S. (2020): Primes with a positive proportion of prescribed digits.
- Martin-Mauduit-Rivat (2019): Primes which are "équilibrés" in base b (example in base 2: (1010011)₂ = 83).
- Col (2009):
 - Upper bound for the number of palindromic primes less than x.
 - There are infinitely many binary palindromes k such that $\Omega(k) \leq 60$. Tuxanidy–Panario (preprint 2023): 60 can be replaced by 6.

For a positive integer k written in base b as

$$k = \sum_{j=0}^{n-1} \varepsilon_j(k) b^j,$$

where $\varepsilon_j(k) \in \{0, \ldots, b-1\}$ and $\varepsilon_{n-1}(k) \neq 0$, we define the "**reverse**" of k by:

$$\overleftarrow{k} = \sum_{j=0}^{n-1} \varepsilon_j(k) b^{n-1-j}.$$

Example in base b = 2: The reverse of $k = 23 = (10111)_2$ is $\overleftarrow{k} = (11101)_2 = 29$.

Now b = 2. Let $\Theta(n)$ be the number of *n*-bit reversible primes:

$$\Theta(n) = |\{a \in [2^{n-1}, 2^n) : a \text{ and } \overleftarrow{a} \text{ are prime}\}|.$$

Problem: Estimate $\Theta(n)$ as $n \to +\infty$.

Conjecture: There exists c > 0 such that

$$\Theta(n) = \frac{2^n}{n^2} \left(c + o(1) \right) \qquad (n \to +\infty).$$

We define $\mathcal{B}_n = \{a \in [2^{n-1}, 2^n) : a \text{ odd}\}$ (note that $a \in \mathcal{B}_n \Rightarrow \overleftarrow{a} \in \mathcal{B}_n$) and $\Theta(n, z) = |\{a \in \mathcal{B}_n : P^-(a\overleftarrow{a}) \ge z\}|$

where $P^{-}(a\overleftarrow{a})$ is the smallest prime factor of $a\overleftarrow{a}$.

Theorem 1 (DMRSS 2024+)

1 For any $\gamma \in (0,1)$, we have

$$\Theta(n, 2^{\gamma n}) \ll_{\gamma} \frac{2^n}{n^2}.$$

2 For any $\gamma \in \left(0, \frac{1}{2\beta_2}\right)$, there exists $n_0 = n_0(\gamma)$ such that for $n \ge n_0$, we have $\Theta(n, 2^{\gamma n}) \gg_{\gamma} \frac{2^n}{n^2}.$

Remark: $\beta_2 \approx 4.2664$.

Cathy Swaenepoel

Results

$$\begin{array}{l} \mbox{Recall that } \Theta(n) = |\{a \in [2^{n-1}, 2^n) : a \mbox{ and } \overleftarrow{a} \mbox{ are prime}\}| \\ \mbox{and } \Theta(n,z) = |\{a \in \mathcal{B}_n : P^-(a\overleftarrow{a}) \geqslant z\}|. \end{array}$$

Remark: $\Theta(n) \leq \Theta(n, z)$ for any $z \leq 2^{n-1}$.

Corollary 2 (DMRSS 2024+)

For any $n \ge 1$, we have

$$\Theta(n) \ll \frac{2^n}{n^2}$$

Remark: If $a < 2^n$ and $P^-(a) \ge 2^{\gamma n}$ then $\Omega(a) < \frac{1}{\gamma}$. Our limit for $\frac{1}{\gamma}$ is $2\beta_2 \approx 8.53$.

Corollary 3 (DMRSS 2024+)

There exists n_0 such that for $n \ge n_0$, we have

$$|\{a \in \mathcal{B}_n : \max\left(\Omega(a), \Omega(\overleftarrow{a})\right) \leq 8\}| \gg \frac{2^n}{n^2}$$

As an application of the techniques developed to prove Theorem 1, we obtain:

Theorem 4 (DMRSS 2024+)

There exists an absolute constant c > 0 such that for $n \ge 1$, we have

$$|\{a \in \mathcal{B}_n : a \text{ and } \overleftarrow{a} \text{ are squarefree}\}| = |\mathcal{B}_n| \left(\frac{66}{\pi^4} + O\left(\exp(-c\sqrt{n})\right)\right).$$

Proof of Theorem 1

Approach to estimate $\Theta(n, z)$

Denoting $P(z) = \prod_{3 \leq p < z} p$, we have

$$\Theta(n,z) = |\{a \in \mathcal{B}_n : \gcd(a \overleftarrow{a}, P(z)) = 1\}|.$$

 $\Theta(n,z)$ is the "sifting function" for the sequence $\mathcal{A} = (a\overleftarrow{a})_{a\in\mathcal{B}_n}$.

Good approximation of the number of terms of A which are divisible by d, on average over d | P(z). See Lemma 5 below.

Sieve

Two-dimensional sieve (Diamond–Halberstam–Richert 1988)

Estimate of the sifting function for \mathcal{A} .

 $\Rightarrow \text{Theorem 1}$

Remark: $\beta_2 \approx 4.2664$ is the "sieving limit".

Cathy Swaenepoel

Number of terms of \mathcal{A} divisible by d

For d squarefree and odd, we need a good approximation of

$$T_n(d) := |\{a \in \mathcal{B}_n : d \mid a \overleftarrow{a}\}|.$$

Heuristic: Pick $a \in \mathcal{B}_n$ at random. $\mathbb{P}(d \mid a \overleftarrow{a}) \approx ?$

- For $p \ge 5$, $\mathbb{P}(p \mid a \overleftarrow{a}) = \mathbb{P}(p \mid a) + \mathbb{P}(p \mid \overleftarrow{a}) \mathbb{P}(p \mid a \text{ and } p \mid \overleftarrow{a}) \approx \frac{1}{p} + \frac{1}{p} \frac{1}{p^2} = \frac{2p-1}{p^2}$.
- $\overleftarrow{a} \equiv (-1)^{n-1} a \mod 3$. Thus $\mathbb{P}(3 \mid a \overleftarrow{a}) = \mathbb{P}(3 \mid a) \approx \frac{1}{3}$.
- For $p_1 \neq p_2$, $\mathbb{P}(p_1 p_2 | a\overleftarrow{a}) \approx \mathbb{P}(p_1 | a\overleftarrow{a}) \mathbb{P}(p_2 | a\overleftarrow{a})$.

We therefore expect that

$$\mathbb{P}(d \,|\, a\overleftarrow{a}) \approx \frac{f(d)}{d}$$

where \boldsymbol{f} is the multiplicative function defined by

$$f(p) = \begin{cases} 0 & \text{if } p = 2, \\ 1 & \text{if } p = 3, \\ \frac{2p-1}{p} & \text{if } p \ge 5, \end{cases} \text{ and } f(p^{\nu}) = 0 \text{ for any } \nu \ge 2.$$

Number of terms of \mathcal{A} divisible by d

Recall that $T_n(d) = |\{a \in \mathcal{B}_n : d \mid a \overleftarrow{a}\}|$. We define

$$R_n(d) = T_n(d) - \frac{f(d)}{d} |\mathcal{B}_n|$$

and prove that $|R_n(d)|$ is small on average:

Lemma 5 (Main technical result)

Let $\xi \in (0, \frac{1}{2})$. There exists $c = c(\xi) > 0$ such that for any $n \ge 1$, we have

$$\sum_{\substack{d < 2^{\xi_n} \\ d \text{ odd, sf}}} 4^{\Omega(d)} |R_n(d)| \ll_{\xi} 2^n \exp(-c\sqrt{n}).$$

Proof of Lemma 5

Recall that
$$R_n(d) = T_n(d) - \frac{f(d)}{d} |\mathcal{B}_n|$$
 with $T_n(d) = |\{a \in \mathcal{B}_n : d \mid a \overleftarrow{a}\}|.$
Notation: $e(x) = \exp(2\pi i x), x \in \mathbb{R}.$

Expression of $R_n(d)$ with exponential sums

$$\begin{split} T_n(d) &= \sum_{\substack{0 \leq u, v < d \\ uv \equiv 0 \bmod d}} \sum_{\substack{a \in \mathcal{B}_n}} \mathbf{1}_{a \equiv u \bmod d} \mathbf{1}_{\overleftarrow{a} \equiv v \bmod d} \\ &= \sum_{\substack{0 \leq u, v < d \\ uv \equiv 0 \bmod d}} \sum_{\substack{a \in \mathcal{B}_n}} \left(\frac{1}{d} \sum_{\substack{0 \leq h_1 < d \\ 0 \leq h_1 < d}} e\left(\frac{h_1(a-u)}{d} \right) \right) \left(\frac{1}{d} \sum_{\substack{0 \leq h_2 < d \\ 0 \leq h_2 < d}} e\left(\frac{h_2(\overleftarrow{a} - v)}{d} \right) \right) \\ &= \frac{1}{d^2} \sum_{\substack{0 \leq h_1, h_2 < d \\ uv \equiv 0 \bmod d}} \left(\sum_{\substack{0 \leq u, v < d \\ uv \equiv 0 \bmod d}} e\left(\frac{-h_1u - h_2v}{d} \right) \right) \left(\sum_{\substack{a \in \mathcal{B}_n}} e\left(\frac{h_1a + h_2\overleftarrow{a}}{d} \right) \right) \\ &= \underbrace{\frac{f(d)}{d}}_{(\text{if } 3 \nmid d)} |\mathcal{B}_n| + \underbrace{R_n(d)}_{(\text{contri. of }(h_1, h_2) \neq (0, 0)} . \end{split}$$

Denoting
$$F_n(\alpha, \vartheta) = \frac{1}{|\mathcal{B}_n|} \sum_{a \in \mathcal{B}_n} e(\alpha \overleftarrow{a} - \vartheta a)$$
, the sum in blue is equal to $|\mathcal{B}_n| \cdot F_n\left(\frac{h_2}{d}, \frac{-h_1}{d}\right)$.

Cathy Swaenepoel

Upper bounds of $|F_n|$

$$F_n(\alpha, \vartheta) = \frac{1}{|\mathcal{B}_n|} \sum_{a \in \mathcal{B}_n} e(\alpha \overleftarrow{a} - \vartheta a).$$

Lemma 6 (Pointwise bound)

For $d \in \mathbb{N}$ and $h \in \mathbb{Z}$ such that d is odd and $d \nmid 3h$, we have

$$\max_{\alpha \in \mathbb{R}} \left| F_n\left(\alpha, \frac{h}{d}\right) \right| \ll \exp\left(\frac{-c_0 n}{\log\left(\frac{4d}{3}\right)}\right) \quad \text{with} \quad c_0 = 0.0308\dots$$

Lemma 7 (Bound on average)

Let $\xi \in (0, \frac{1}{2})$. There exists $\delta = \delta(\xi) > 0$ such that if $D_1 D_2 D_3 \leqslant 2^{\xi n}$ then

$$\sum_{\substack{d_1,d_2,d_3\\D_i \leqslant d_i < 2D_i \text{ gcd}(h_1,d_2d_3) = 1}} \sum_{\substack{0 < h_1 < d_2d_3\\\gcd(h_1,d_2d_3) = 1 \text{ gcd}(h_2,d_1d_3) = 1}} \left| F_n\left(\frac{h_2}{d_1d_3}, \frac{h_1}{d_2d_3}\right) \right| \ll_{\xi} D_1 D_2 D_3^2 \left(D_1 D_2 D_3\right)^{-\delta}.$$

Arguments for Lemma 6 (Pointwise bound)

$$F_n(\alpha,\vartheta) = \frac{1}{|\mathcal{B}_n|} \sum_{a \in \mathcal{B}_n} e(\alpha \overleftarrow{a} - \vartheta a).$$

1 Product formula: Writing a and \overleftarrow{a} in base 2, we obtain

$$|F_n(\alpha,\vartheta)| = \prod_{j=1}^{n-2} |U(\alpha 2^{n-1-j} - \vartheta 2^j)| \quad \text{where} \quad |U(x)| = \frac{|1 + \mathbf{e}(x)|}{2} = |\cos \pi x|.$$

Arguments for Lemma 6 (Pointwise bound)

Recall that
$$|F_n(\alpha, \vartheta)| = \prod_{j=1}^{n-2} |U(\alpha 2^{n-1-j} - \vartheta 2^j)|$$
 where $|U(x)| = \frac{|1 + \mathbf{e}(x)|}{2}$.

2 Bound uniform in α : By judiciously grouping the product terms, we obtain

$$\max_{\alpha \in \mathbb{R}} |F_n(\alpha, \vartheta)| \leqslant \prod_{j=1}^{n-3} \left(\frac{1}{4} |U(3\vartheta 2^j)| + \frac{3}{4}\right)^{1/3}$$

Proof: This follows from:

•
$$|F_n(\alpha, \vartheta)|^3 \leq \prod_{j=1}^{n-3} |U(\alpha 2^{n-1-j} - \vartheta 2^j) U^2(\alpha 2^{n-1-(j+1)} - \vartheta 2^{j+1})|,$$

• $|U(x) U^2(y)| \leq \frac{1}{4} |U(x-2y)| + \frac{3}{4}, \qquad (x,y) \in \mathbb{R}^2.$

3 For $\vartheta = \frac{h}{d}$, "several" terms of the product are "small" (classical).

Additional arguments for Lemma 7 (Bound on average)

4 Cauchy–Schwarz inequality.

5 For fixed d_2 , d_3 and h_1 , since the points $\frac{h_2}{d_1 d_3}$ are $(4D_1^2 d_3)^{-1}$ -spaced modulo 1, we obtain by the large sieve inequality:

$$\sum_{\substack{D_1 \leq d_1 < 2D_1 \\ \gcd(h_2, d_1d_3) = 1}} \left| F_m\left(\frac{h_2}{d_1d_3}, \frac{h_1}{d_2d_3}\right) \right|^2 \ll (2^m + D_1^2d_3) 2^{-m}.$$

(6) Use Argument 2 and the **Sobolev–Gallagher inequality** to bound

$$\sum_{d_2} \sum_{d_3} \sum_{h_1} \max_{\alpha \in \mathbb{R}} \left| F_{\ell} \left(\alpha, \frac{h_1}{d_2 d_3} \right) \right|^2.$$

Conjecture on $\Theta(n)$

Recall that
$$\Theta(n) = |\{a \in [2^{n-1}, 2^n) : a \text{ and } \overleftarrow{a} \text{ are prime}\}| \text{ and let } \operatorname{Li}(x) = \int_2^x \frac{dt}{\log t}.$$

By a simple heuristic argument, we may expect that $\Theta(n) \approx \Theta_{\exp}(n)$ where

$$\Theta_{\exp}(n) = \frac{3\left(\operatorname{Li}(2^n) - \operatorname{Li}(2^{n-1})\right)^2}{2^{n-1}} = (3 + o(1))\frac{2^{n-1}}{(\log 2^n)^2} \qquad (n \to +\infty).$$

This agrees with the values of $\Theta(n)$ (see below).

Conjecture:

$$\Theta(n) = (3 + o(1)) \frac{2^{n-1}}{(\log 2^n)^2} \qquad (n \to +\infty).$$

				1.2		÷.,				
n	$\Theta(n)$	n	$\Theta(n)$	1.2						
31	7377931	41	4222570054	1.1						
32	13878622	42	8056984176			•	1.1.1.1.1	·*•••••••	··	
33	25958590	43	15315267089	1.0		. · ·				
34	48421044	44	29274821854	0.9	•					
35	92163237	45	55976669028							
36	173672988	46	106505783902	0.8 -						
37	325098134	47	204628057694	0.7						
38	617741968	48	392422557460							
39	1177573074	49	749026893680	0.6 -						
40	2221353224	50	1440435348050	0.5	· • •					
	Values of $\Theta(n$) for	$30 < n \leqslant 50.$	0		10	20	30	40	5

Graph of $\Theta(n)/\Theta_{exp}(n)$.

- With a sieve argument, we obtain:
 - an upper bound (of the expected order of magnitude) for the number of *n*-bit reversible primes,
 - a lower bound for the number of *n*-bit reversible almost primes (at most 8 prime factors).
- We obtain an asymptotic formula for the number of *n*-bit **reversible squarefree** integers.

- With a sieve argument, we obtain:
 - an upper bound (of the expected order of magnitude) for the number of *n*-bit reversible primes,
 - a lower bound for the number of *n*-bit reversible almost primes (at most 8 prime factors).
- We obtain an asymptotic formula for the number of *n*-bit **reversible squarefree** integers.

Thank you for your attention!