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Periodic points of dynamical systems
X: space
T : X → X map

Tn(x) := T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n times composition

(x) (n = 0, 1, 2, . . .)

PROBLEM: Describe the structure of the orbit {Tn(x)}∞n=0 for a
majority of initial conditions x.

Fix(Tn) := {x ∈ X : Tn(x) = x} (n = 1, 2, . . .).

For x ∈ Fix(Tn), the set {x,T(x), . . . ,Tn−1(x)} is called a periodic
orbit. The point x is called a periodic point of period n.

Fix(Tn) 3 x → T(x) → T2(x) → · · · → Tn(x) = x.
approximations of dynamical objects by periodic orbits
(invariant set, invariant measure, pressure, ...)
dynamical zeta function, Livschitz’s theorem, ...



Distribution of periodic points
X: space
T : X → X: map
φ : X → R potential (weight function) Snφ :=

∑n−1
k=0 φ ◦ Tk.

νn,φ :=
1

Zn(φ)

∑
x∈Fix(Tn)

exp (Snφ(x)) δx

where
Zn(φ) :=

∑
x∈Fix(Tn)

exp (Snφ(x)) .

Theorem 1 (Bowen 1975)
Let X be a topologically mixing subshift of finite type and
T : X → X the left shift. For any Hölder continuous function
φ : X → R, the sequence {νn,φ}∞n=1 converges to the equilibrium
state for the potential φ.

How Theorem 1 can be extended to random dynamical systems?



Independently Identically Distributed random dynamical
systems

2 ≤ N <∞ integer, Ti : X → X (1 ≤ i ≤ N) maps
p = (p1, . . . , pN): probability vector with

∏N
i=1 pi 6= 0.

We consider an i.i.d. random dynamical system in which Ti is
chosen with probability pi at each step.
N = {1, 2, . . .}, N0 := N ∪ {0}.
Ω := {1, 2, . . . ,N}N sample space
For a sample path ω = (ωn)n∈N ∈ Ω and n ∈ N, consider a random
composition

Tn
ω := Tωn ◦ Tωn−1 ◦ · · · ◦ Tω1 .

For convenience, define T0
ω to be the identity map on X.

{Tn
ω(x)}n∈N0 is called a random orbit with initial condition x.



“Periodic points” of random dynamical systems

A random cycle is an element of the set⋃
n∈N

⋃
ω∈Ω

Fix(Tn
ω),

where
Fix(Tn

ω) := {x ∈ X : Tn
ω(x) = x}.

x ∈ Fix(Tn) implies that the orbit {Tn(x)}n∈N0 is finite as a set,
whereas x ∈ Fix(Tn

ω) does not imply the finiteness of the random
orbit {Tn

ω(x)}n∈N0 as a set. Indeed, we have

Tn+1
ω (x) = Tωn+1 ◦ Tωn ◦ · · · ◦ Tω2 ◦ Tω1(x)

= Tωn+1(x),

which may not be contained in the set
{x,Tω1(x),Tω2 ◦ Tω1(x), . . . ,Tωn−1 ◦ · · · ◦ Tω1(x)}.



Samplewise//Sample-averaged schemes

⋃
n∈N

⋃
ω∈Ω

Fix(Tn
ω),

Samplewise (Quenched): Fix ω ∈ Ω, and ask behaviors of

Fix(Tn
ω)

as n → ∞.
Sample-averaged (Annealed): Ask behaviors of⋃

ω∈Ω
Fix(Tn

ω)

as n → ∞.



Some results/facts on random cycles

Dynamical zeta functions defined by random cycles were
considered by Ruelle (1990), Buzzi (2002).
A dynamical zeta function defined by random cycles of certain
random matrices cannot be extended holomorphically beyond
its disk of holomorphy, almost surely. (Buzzi (2002))
Distribution of

⋃
ω∈Ω Fix(Tn

ω) as n → ∞ for Ruelle expanding
maps. (Carvalho/Rodrigues/Varandas (2017))
Growth of #Fix(Tn

ω) as n → ∞ (Asaoka/Shinohara/Turaev
(2017)) for random interval maps systems with expansion/
contraction



Fully branched uniformly expanding maps

X : compact interval
A fully branched map on X is a map T :

⋃
a∈A Ja → X where

A ⊂ N with 2 ≤ #A <∞, and (Ja)a∈A is a collection of pairwise
disjoint subintervals of X such that:

◦ X =
⋃

a∈A Ja;
◦ for each a ∈ A, the restriction of T to Ja extends to a C2

diffeomorphism on cl(Ja);
◦ for each a ∈ A, cl(T(Ja)) = X.

A fully branched map T on X is uniformly expanding if there exists
a constant γ > 1 such that infx∈Ja |(T|Ja)

′x| ≥ γ for any a ∈ A.



I.i.d. random dynamical system
T1, . . . ,TN, 1 ≤ N <∞ fully branched uniformly expanding maps
on X (do not assume a common Markov partition).
Ω := {1, 2, . . . ,N}N, p = (p1, . . . , pN) probability vector with∏N

i=1 pi > 0, mp : Bernoulli measure on Ω determined by p.
For a sample ω = (ωn)n∈N ∈ Ω and n ≥ 1,

Tn
ω(x) := Tωn ◦ Tωn−1 ◦ · · · ◦ Tω1(x),T0

ω(x) = x.
By Pelikan’s theorem (1984), ∃! a Borel probability measure λp on
X s.t. λp � Leb and λp =

∑N
i=1 piλp ◦ T−1

i . From the random
ergodic theorem, For mp-a.e. ω ∈ Ω and any ϕ : X → R
continuous,

lim
n→∞

1

n

n−1∑
k=0

ϕ(Tk
ω(x)) =

∫
ϕdλp for λp-a.e. x ∈ X,

namely, for λp-a.e. x ∈ X,

δω,nx :=
1

n

n−1∑
k=0

δTk
ω(x) → λp in the weak* topology as n → ∞.



Random cycle measures
For ω ∈ Ω, define a samplewise random cycle measure ξωn on X by

ξωn =
1

Zω,n

∑
x∈Fix(Tn

ω)

|(Tn
ω)

′x|−1δω,nx (n = 1, 2, . . .),

where (Tn
ω)

′x :=
∏n

i=1(Tωi)
′(Ti−1

ω (x)) and
Zω,n :=

∑
x∈Fix(Tn

ω)
|(Tn

ω)
′x|−1 is the normalizing constant.

(Distribution of random cycles). Does the sequence {ξωn }∞n=1

converge? If so, what is the limit measure?

M(X): the space of Borel probability measures on X.
For ω ∈ Ω, define a samplewise random cycle measure ξ̃ωn on
M(X) by

ξ̃ωn =
1

Zω,n

∑
x∈Fix(Tn

ω)

|(Tn
ω)

′x|−1δδω,n
x (n = 1, 2, . . .),

where δδω,n
x is the unit point mass at δω,nx .



Distribution of random cycles: samplewise result

Theorem A
Let 2 ≤ N <∞, and let T1, . . . ,TN be fully branched uniformly
expanding maps on X. Let p = (p1, . . . , pN) be a probability vector
with

∏N
i=1 pi > 0. For mp-almost every ω ∈ Ω, the sequence

{ξ̃ωn }∞n=1 of samplewise random cycle measures on M(X)
converges to the unit point mass at λp in the weak* topology.

i.e., for any continuous function φ̃ : M(X) → R,
∫
φ̃dξ̃ωn → φ̃(λp).

Corollary 1
For mp-almost every ω ∈ Ω, the sequence (ξωn )

∞
n=1 converges in the

weak* topology to λp as n → ∞.

i.e., for any continuous function φ : X → R,
∫
φdξωn →

∫
φdλp.

Proof of Corollary 1.
Given φ : X → R, apply Theorem A to the continuous function
ν ∈ M(X) 7→

∫
φdν ∈ R.



Distribution of random cycles: samplewise result

Corollary 2 (Inspired by Olsen (2003))
Let T1, . . . ,TN and p = (p1, . . . , pN) be as in Theorem A.
(a) If φ,ψ : X → R are continuous, then for mp-almost every

ω ∈ Ω,

lim
n→∞

1

Zω,n

∑
x∈Fix(Tn

ω)

|(Tn
ω)

′(x)|−1 1

n2
n−1∑
k=0

φ(Tk
ω(x))

n−1∑
k=0

ψ(Tk
ω(x))

=

∫
φdλp

∫
ψdλp.

(b) If φ : X → R, ψ : X → R are continuous with infψ > 0, then
for mp-almost every ω ∈ Ω,

lim
n→∞

1

Zω,n

∑
x∈Fix(Tn

ω)

|(Tn
ω)

′(x)|−1

∑n−1
k=0 φ(Tk

ω(x))∑n−1
k=0 ψ(Tk

ω(x))
=

∫
φdλp∫
ψdλp

.



Corollary 2 (Continued)
(c) If π1, π2 : X → R are continuous and g : R → R is bounded

continuous, then for mp-almost every ω ∈ Ω we have

lim
n→∞

1

Zω,n

∑
x∈Fix(Tn

ω)

|(Tn
ω)

′(x)|−1 1

n2×

n−1∑
k1,k2=0

g(π1(Tk1
ω (x)) + π2(Tk2

ω (x)))

=

∫
gd(λp ◦ π−1

1 ⊗ λp ◦ π−1
2 ),

where ⊗ denotes the convolution.

Proof of Corollary 2.
Apply Theorem A to the continuous functions
ν ∈ M(X) 7→

∫
φdν

∫
ψdν, ν ∈ M(X) 7→

∫
φdν/

∫
ψdν,

ν ∈ M(X) 7→
∫
gd(ν ◦ π−1

1 ⊗ ν ◦ π−1
2 ) respectively.



Distribution of random cycles: sample-averaged result

By Riesz’s representation theorem, for each p = (p1, . . . , pN) and
n ∈ N ∃! a Borel probability measure η̃p,n on M(X) s.t.∫
φ̃dη̃p,n =

∫
dmp(ω)

∫
φ̃dξ̃ωn for any continuous φ̃ : M(X) → R.

Also, ∃! a Borel probability measure ηp,n on X s.t.∫
φdηp,n =

∫
dmp(ω)

∫
φdξωn for any continuous φ : X → R.

Corollary 3
Let T1, . . . ,TN and p = (p1, . . . , pN) be as in Theorem A. Then
(η̃p,n)∞n=1 converges to δλp in the weak* topology as n → ∞ and
(ηp,n)∞n=1 converges to λp in the weak* topology as n → ∞.



Distribution of random cycles: sample-averaged result
For ω ∈ Ω and n ∈ N, write Tω1···ωn = Tn

ω and δω1···ωnx = δω,nx .
For p = (p1, . . . , pN), n ∈ N and ω1 · · ·ωn ∈ {1, . . . ,N}n, put

Qp(ω1 · · ·ωn) :=
N∏

i=1

p#{1≤k≤n : ωk=i}
i .

Define an averaged random cycle measure on X by
κp,n :=∑

ω1···ωn∈{1,...,N}n

normalize

Qp(ω1 · · ·ωn)
∑

x∈Fix(Tω1···ωn )

|(Tω1···ωn)
′x|−1δω1···ωn

x

,
and define an averaged random cycle measure on M(X) by
κ̃p,n :=∑

ω1···ωn∈{1,...,N}n

normalize

Qp(ω1 · · ·ωn)
∑

x∈Fix(Tω1···ωn )

|(Tω1···ωn)
′x|−1δω1···ωn

x

.



Distribution of random cycles: sample-averaged result

Theorem B
Let 2 ≤ N <∞, and let T1, . . . ,TN be fully branched uniformly
expanding maps on a compact interval X. Let p = (p1, . . . , pN) be
a probability vector with

∏N
i=1 pi > 0. The sequence {κ̃p,n}∞n=1 of

sample-averaged random cycle measures converges to the unit
point mass at λp in the weak* topology.

i.e., for any continuous function φ̃ : M(X) → R,∫
φ̃dκ̃p,n → φ̃(λp).

Corollary 4
Let T1, . . . ,TN and p = (p1, . . . , pN) be as in Theorem B. The
sequence {κp,n}∞n=1 of sample-averaged random cycle measures
converges to λp in the weak* topology.

i.e., for any continuous function φ : X → R,
∫
φdκp,n →

∫
φdλp.



Strategy for a proof of Theorem A
Consider a skew product map

R : (ω, x) ∈ Ω× X 7→ (θω,Tω1x) ∈ Ω× X,

where θ : Ω → Ω denotes the left shift (θω)k = ωk+1.

Ω× X R−−−−→ Ω× X

projection
y yprojection

X
Tω1−−−−→ X.

Key observation: x ∈ Fix(Tn
ω) =⇒ (ω′, x) ∈ Fix(Rn), where ω′ is

the repetition of ω1ω2 · · ·ωn and
Fix(Rn) = {(ω, x) ∈ Ω× X : Rn(ω, x) = (ω, x)}.
1. (Level-2) large deviation principle on periodic points of R

(Kifer (1994))
2. Conversion to samplewise large deviations (adapt Aimino/

Nicol/Vaienti (2015))
3. Project to the original space X.



Sample-averaged Level-2 large deviations

M(Ω× X): the space of Borel probability measures on Ω× X.
For (ω, x) ∈ Ω× X and n ≥ 1, let δn

(ω,x) = (1/n)
∑n−1

k=0 δRk(ω,x).
Define a Borel probability measure µ̃n on M(Ω× X) by

µ̃n :=
1

normalize
∑

(ω,x)∈Fix(Rn)

Qp(ω1 · · ·ωn)|(Tn
ω)

′x|−1δδn
(ω,x)

,

where δδn
(ω,x)

is the unit point mass at δn
(ω,x).

Proposition 1 (Kifer (1994) Large Deviation Principle)
There exists a lower semicontinuous function
I : M(Ω× X) → [0,∞] such that: (a) I(µ) = 0 iff µ = mp × λp;
(b) for any Borel set B ⊂ M(Ω× X),

− inf
intB

I ≤ lim inf
n→∞

1

n log µ̃n(intB) ≤ lim sup
n→∞

1

n log µ̃n(clB) ≤ − inf
clB

I.



Conversion to samplewise level-2 large deviations

For each ω ∈ Ω and n ≥ 1, define a Borel probability measure µ̃ωn
on M(Ω× X) by

µ̃ωn :=
1

Zω,n

∑
x∈Fix(Tn

ω)

|(Tn
ω)

′x|−1δδn
(ω,x)

.

Proposition 2 (Samplewise large deviations upper bound)
For mp-almost every ω ∈ Ω and any closed subset C of M(Ω× X),
we have

lim sup
n→∞

1

n log µ̃ωn (C) ≤ − inf
C
I.

For our purpose, there is no need for a lower bound.
Idea of proof of Proposition 2: Adapt the trick of conversion
(sample-averaged =⇒ samplewise) by Aimino/Nicol/Vaienti
(2015) to periodic points (random cycles).



Conversion to samplewise level-2 large deviations

Since M(Ω× X) is metrizable, it is separable. So, enough to show
that for each closed set C, ∃ a Borel set ΩC ⊂ Ω s.t. for mp-a.e.
ω ∈ ΩC ,

lim sup
n→∞

1

n log µ̃ωn (C) ≤ − inf
C
I.

We may assume 0 < infC I <∞. There is a uniform constant
K > 0 such that

µ̃n(C) =
1

normalize
∑

(ω,x)∈Fix(Rn)
δn
(ω,x)∈C

Qp(ω1 · · ·ωn)|(Tn
ω)

′x|−1

=

∫
µ̃ωn (C)

(
Zω,n

/∫
Zω′,ndmp(ω

′)

)
dmp(ω)

≥ K
∫
µ̃ωn (C) dmp(ω).

Key: Zω,n is bounded away from 0 and +∞ uniformly on ω and n.



Conversion to samplewise level-2 large deviations
For ϵ ∈ (0, 1) and n ≥ 1, set

Ωϵ,n =

{
ω ∈ Ω: µ̃ωn (C) ≥ exp

(
−n(1− ϵ) inf

C
I
)}

.

By Markov’s inequality,

mp(Ωϵ,n) ≤ exp
(
n(1− ϵ) inf

C
I
)∫

µ̃ωn (C)dmp(ω)

≤ K−1 exp
(
n(1− ϵ) inf

C
I
)
µ̃n(C).

By Proposition, µ̃n(C) decays exponentially as n → ∞, so mp(Ωϵ,n)
decays exponentially as n → ∞. By Borel-Cantelli’s lemma,

#{n ∈ N : µ̃ωn (C) ≥ exp(−n(1− ϵ) inf
C
I)} <∞

for mp-almost every ω ∈ Ω. Since ϵ is arbitrary, we obtain the
desired upper bound for mp-almost every ω ∈ Ω.



Some possible extensions of the main results
maps with non-full branches (Dajani/de Vries (2005))

maps with neutral fixed points (Liverani/Saussol/Vaienti
(1999) etc.)



Some possible extensions of the main results

maps with infinitely many branches (Kalle/Kempton/
Verbitskiy (2017) etc.)
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Figure: graphs of the Gauss and Rényi transformations

Thank you for your attention.


