Extensions of the random beta-transformation

Younès Tierce

Université de Rouen-Normandie, LMRS, supervised by Thierry de la Rue and Jean-Baptiste Bardet

November 9, 2021

$\begin{tabular}{ll} \hline \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{ta$

2 The random β -transformation

3 Extensions and results

Expansions in base β

•
$$\beta > 1$$

• $x \in I_{\beta} := \left[0; \frac{\lfloor \beta \rfloor}{\beta - 1}\right]$

Expansions in base β

$$x = \sum_{n=1}^{+\infty} \frac{x_n}{\beta^n}, \ x_n \in \{0, \dots, \lfloor \beta \rfloor\}.$$

We will now fix $1 < \beta < 2$.

The greedy map (Rényi, 1957)

$$egin{array}{cccc} I_{eta} & o & I_{eta} \ T_g \colon & & & & & & \\ x & \mapsto & & & & & \\ \beta x - 1 & ext{otherwise} \end{array}$$

Provides the greatest expansion of a given number in the lexicographic order (Erdös, Joo).

The lazy map

Provides the smallest expansion of a given number in the lexicographic order.

Rényi (1957) and Parry (1960)

The greedy map T_g has a unique absolutely continuous invariant probability measure v_β , whose density is proportional to the function

$$\sum_{n=0}^{+\infty} \frac{1}{\beta^n} \mathbf{1}_{[0,T_g^n(1)]}(x).$$

Smorodinsky (1973)

The natural extension of the system $(I_{\beta}, v_{\beta}, T_g)$ is a Bernoulli shift.

Dajani and Kraaikamp (2002)

The systems associated to the greedy and lazy maps are isomorphic.

2 The random β -transformation

3 Extensions and results

- Idea : choose between greedy and lazy at each step.
- Formally : $\Omega = \{g, \ell\}^{\mathbb{N}}$, with the Bernoulli measure m_p .

Random dynamical system

$$egin{array}{rcl} K_eta : & \Omega imes I_eta &
ightarrow & \Omega imes I_eta \ (\omega,x) & \mapsto & (\sigma(\omega),T_{\omega_0}(x)) \end{array}$$

where $\boldsymbol{\sigma}$ is the left shift.

- Existence of an absolutely continuous probability measure μ_p on I_β such that $m_p \otimes \mu_p$ is K_β -invariant? Uniqueness?
- Explicit expression of its density?
- Ergodic properties of the associated system?

- Idea : Construct an extension of K_{β} with a "simple" invariant measure, then project this measure on I_{β} .
- 2014 : extension in the case $p = \frac{1}{2}$ by Kempton. \rightarrow Expression of the density of $\mu_{1/2}$.
- 2019 : Generalised expression with transfer operators by Suzuki. $\rightarrow \mu_p$ for any *p*.
- Our work : extension of the system for any *p*.

 \rightarrow Provides an expression of $\mu_p,$ and ergodic properties of the random β -transformation.

2 The random β -transformation

3 Extensions and results

Younès Tierce

The graph of transitions

Density of μ_p (T.)

$$\rho_{p}(x) = \sum_{n=0}^{+\infty} \frac{1}{\beta^{n}} \left(C_{g} \sum_{\omega_{1},...,\omega_{n} \in \{g,\ell\}^{n}} m_{p}([\omega_{1},...,\omega_{n}]_{0}^{n-1}) \mathbf{1}_{[0,T_{\omega_{1},...,\omega_{n}}(1^{+})]}(x) + C_{\ell} \sum_{\omega_{1},...,\omega_{n} \in \{g,\ell\}^{n}} m_{p}([\omega_{1},...,\omega_{n}]_{0}^{n-1}) \mathbf{1}_{[T_{\omega_{1},...,\omega_{n}}(s(1)^{-});\frac{1}{\beta-1}]}(x) \right).$$

where :

• C_g and C_ℓ are two positive explicit constants,

• $m_p([\omega_1,...,\omega_n]_0^{n-1})$ is the Bernoulli measure of the cylinder $[\omega_1,...,\omega_n]_0^{n-1}$. Similar form of the density previously obtained by Suzuki.

The induced system on E_g

- Induced transformation of \mathcal{K} on the greedy base E_g : look at the returns to the base E_g .
- Partition *E_g* according to the encountered floors until the next return to *E_g*.

- \rightarrow Provides a sequence of independent partitions.
- ightarrow Generates the induced system.

- \mathcal{K} not invertible.
- Add the information of the past floors !
- New system : the natural extension of the initial random β -transformation.

- Ergodicity of the natural extension ⇒ Ergodicity of the initial random dynamical system + uniqueness of the measure μ_p as an invariant absolutely continuous probability measure.
- Consequence : for m_p ⊗ Leb a.e (ω, x) ∈ Ω × I_β,

$$\frac{1}{N}\sum_{n=0}^{N-1}\delta_{\pi(K^n_\beta(\omega,x))}\to\mu_p.$$

Bernoulli system (T.)

The natural extension of the system $(\Omega \times I_{\beta}, m_p \otimes \mu_p, K_{\beta})$ is a Bernoulli shift.

Merci! Thank you!