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Continued fractions

Consider
x =

1
a1 + 1

a2+
. . .+ 1

an+
...

the (regular) continued fraction expansion of x

A number x is of bounded type if

B := {x ∈ [0,1] : sup ai < +∞}

Given N ≥ 1, one defines the set

BN := {x ∈ [0,1] : ai ≤ N ∀i ≥ 1}

of N-bounded type numbers.



Bounded continued fractions

Given N ≥ 1, one defines the set

BN := {x ∈ [0,1] : ai ≤ N ∀i ≥ 1}

I B1 := {
√

5−1
2 }

I BN uncountable Cantor set for N ≥ 2
I H.dim BN > 0 for N ≥ 2
I (Jarnı́k, 1928)

lim
N→∞

H.dim BN = 1

I (Hensley, ’92)

H.dim BN = 1− 6
π2N

− 72 log N
π4N2 + O

(
1

N2

)
as N →∞

Also:Hensley, Jenkinson-Pollicott, Das-Fishman-Simmons-Urbański...



Dynamical interpretation
Recall the Gauss map

G(x) :=

{
1
x

}
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Dynamical interpretation

G(x) :=

{
1
x

}
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Remove all points whose orbit intersects [0, 1
N+1 ]

BN =

{
x ∈ [0,1] : Gn(x) ≥ 1

N + 1
∀n ≥ 0

}



Numbers of generalized bounded type

Fix t ∈ [0,1]. Then define

B(t) :=
{

x ∈ [0,1] : Gn(x) ≥ t ∀n ≥ 0
}

Properties.
I B(0) = [0,1]

I B(1) = ∅
I If t < t ′, then

B(t ′) ⊆ B(t).

I If t = 1
N+1 , then

B
(

1
N + 1

)
= BN .



Numbers of generalized bounded type
Fix t ∈ [0,1]. Then define

B(t) :=
{

x ∈ [0,1] : Gn(x) ≥ t ∀n ≥ 0
}

Examples.
I t = g = [0; 1] =

√
5−1
2 . Then

B(g) = {g}

In fact, B(t) = {g} for all t ∈ ([0; 2], [0,1]).
I α = [0; 2,1], then

B(α) = B2 = B(1/3)

is the set of numbers whose c.f. contains only 1 and 2.
I For t = g2 = [0; 2,1],

B(g2) = {in between any two 2s there is an even number of 1s}



Topological bifurcations

Question. How does the (set-valued) function

t 7→ B(t)

behave with t?

Definition
We call t0 a bifurcation parameter if the function t 7→ B(t) is not
locally constant in a neighborhood of t0. The set of bifurcation
parameters is the bifurcation locus.

Theorem
The bifurcation locus for the set-valued function t 7→ B(t) is the
set

E := {x ∈ [0,1] : Gn(x) ≥ x for all n ≥ 0}



The bifurcation locus E

0 1

1

2

1

3

1

4

1

5

2

5

1

6

1

7

2

7

1

8

3

8

1

9

2

9

1

10

3

10

E := {x ∈ [0,1] : Gn(x) ≥ x for all n ≥ 0}

1. E is closed, with Leb(E) = 0.
2. E contains countably many isolated points, which are

quadratic irrationals.
3. H.dim E = 1

Theorem
The points of discontinuity of the set-valued function t 7→ B(t)
are precisely the isolated points of E .



Main results: Hausdorff dimension
Let η(t) := H.dim B(t) the Hausdorff dimension function.
Question. How does

η(t) = H.dim B(t)

vary with t?
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Main results: Hausdorff dimension
Let η(t) := H.dim B(t) the Hausdorff dimension function.
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Main results: Hausdorff dimension
Let η(t) := H.dim B(t) the Hausdorff dimension function.
Question. How does

η(t) = H.dim B(t)

vary with t?
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Main results: Hausdorff dimension
Theorem

1. The function η(t) is continuous;
2. If E(t) := E ∩ [t ,1]. Then for any t

H.dim B(t) = H.dim E(t).

3. The function η(t) is constant on any tuning window Wr with
r ∈ Q ∩ (0, cF ) extremal.
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Main results: Hausdorff dimension

Theorem
Let η(t) := H.dim B(t). Then:

1. The function η(t) is continuous;
2. If E(t) := E ∩ [t ,1]. Then for any t

H.dim B(t) = H.dim E(t).

3. The function η(t) is constant on any tuning window Wr with
r ∈ Q ∩ (0, cF ) extremal.



The structure of E

FACT: Every rational r admits exactly two C.F. expansions.

3
10

=
1

3 +
1
3

=
1

3 +
1

2 +
1
1

3
10

= [0; 3,3] = [0; 3,2,1].

So any r ∈ Q ∩ (0,1) will have two C.F. expansions of the type

r = [0; S1] = [0; S0]

where S0 has even length and S1 odd length.



The structure of E

Every rational r ∈ [0,1] has two continued fraction expansions.

r = [0; S0] = [0; S1]

Let S0 be the one of even length, S1 the one of odd length.

Given r , we define the quadratic interval

Ir := ([0; S1], [0; S0])

E.g.:

I3/10 := ([0; 3,2,1], [0; 3,3])

=

(√
37− 4

7
,

√
13− 3

2

)



Thickening Q
Proposition
The exceptional set E equals

E = [0,1] \
⋃

r∈Q∩(0,1]

Ir



The structure of E
Definition
A rational r is extremal if, is r = [0; S1] is its c.f. expansion of
odd length, then for any splitting

S1 = XY

we have
XY < YX

where < is the alternate lexicographic order.
Example.

21 < 11, 21 < 22

[0; 3,2,1] is extremal, [0; 1,2,3] is not extremal

Lemma
An interval Ir is maximal (i.e. not contained in another Ir ′) if and
only if r is extremal.



The structure of E
Proposition
The connected components of the complement of E are
precisely Ir for r extremal:

E = [0,1] \
⊔

r∈QE

Ir



E vs horoballs
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The real slice of the Mandelbrot set

R := {θ ∈ R/Z : 2nθ /∈ (θ,1− θ) ∀n ∈ N}

The set R equals the set of angles of external rays which ’land’
on the real slice of the Mandelbrot set.



Identity of bifurcation sets

Theorem (Bonanno-Carminati-Isola-T, ’10)
The sets R∩ [0,1/2] and E are homeomorphic. The map
ϕ : [0,1]→ [0,1/2] given by

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

7→ ϕ(x) = 0.0 11 . . . 1︸ ︷︷ ︸
a1

00 . . . 0︸ ︷︷ ︸
a2

11 . . . 1︸ ︷︷ ︸
a3

. . .

is a homeomorphism which maps E onto R∩ [0,1/2].

Question. Is there a renormalization scheme for sets of
numbers of bounded type?



Minkowski’s question mark function

Let α := [0; a1,a2,a3, ...], define

?(α) := 0.00 . . . 0︸ ︷︷ ︸
a1−1

11 . . . 1︸ ︷︷ ︸
a2

00 . . . 0︸ ︷︷ ︸
a3

· · ·
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The dictionary

Continued fractions ⇔ Binary expansions

E ←?→ Λ



From Farey to the tent map, via ?

Minkowski’s question-mark function conjugates the Farey map
with the tent map

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0



Period doubling cascades

Let Z be a finite string of natural numbers. Let Z ′ be the
conjugate of Z , i.e. so that

[0; Z ] = [0; Z ′]

Example.
(3)′ = (2,1) (2,1)′ = 3.

Define, for r ∈ Q = [0; S0] = [0; S1],
Z0(r) := S0
Z1(r) := S1
Zn+1(r) := ZnZ ′n

Proposition
Every isolated point of E \ {g} is of the form [0; Zn(r)] with
n ≥ 1 and r extremal.



Discontinuity points

Define, for r ∈ Q = [0; S0] = [0; S1],
Z0(r) := S0
Z1(r) := S1
Zn+1(r) := ZnZ ′n

Proposition
Every isolated point of E is of the form [0; Zn(r)] with n ≥ 1 and
r extremal.

Proposition
The points of discontinuity of the set-valued function t 7→ B(t)
are precisely the isolated points of E .



The Feigenbaum point
Let us start with Z0 = (1,1), Z1 = (2).
Then the cascade is

α0 = [0; 1,1], α1 = [0; 2], α2 = [0; 2,1,1], α3 = [0; 2,1,1,2,2]

Then

cF := lim
n→∞

αn = [0; 2,1,1,2,2,2,1,1,2,1,1, . . . ]

Its continued fraction expansion is the fixed point of the
substitution {

1 7→ 2
2 7→ 211.

(Compare Thue-Morse sequence)

Question. For which t0 is such that

H.dim B(t) = 0?



The Feigenbaum point
Let us start with Z0 = (1,1).
Then the cascade is

α0 = [0; 1,1], α1 = [0; 2], α2 = [0; 2,1,1], α3 = [0; 2,1,1,2,2]

Then

cF := lim
n→∞

αn = [0; 2,1,1,2,2,2,1,1,2,1,1, . . . ]

Its continued fraction expansion is the fixed point of the
substitution {

1 7→ 2
2 7→ 211.

Theorem
We have

H.dim B(t) = 0

if and only if t ≥ cF .



Main results: Hausdorff dimension

Theorem
Let η(t) := H.dim B(t). Then:

1. The function η(t) is continuous;
2. If E(t) := E ∩ [t ,1]. Then for any t

H.dim B(t) = H.dim E(t).

3. The function η(t) is constant on any tuning window Wr with
r ∈ Q ∩ (0, cF ) extremal.



Tuning operators and windows
Starting with a rational number

r = [0; S0] = [0; S1]

the two continued fraction expansions of r .
Given r ∈ Q, let us define τr : [0,1]→ [0, r ]

[0; a1,a2, . . . ] 7→ [0; S1Sa1−1
0 S1Sa2−1

0 . . . ]

Then:
1. τr (E) ⊆ E
2. E(τr (x)) = E(α) ∪ τr (E(x))

Definition
Define the tuning window

Wr := [ω, α)

with
α := [0; S0] ω := [0; S1,S0]



Tuning operators and cascades
Given r ∈ Q, let us define τr : [0,1]→ [0, r ]

[0; a1,a2, . . . ] 7→ [0; S1Sa1−1
0 S1Sa2−1

0 . . . ]

Proposition
For any extremal rational number r , the cascade generated by r
is just the sequence

{τrτ
n
1/2(g), n ≥ 0}

Theorem
The function η(t) = H.dim B(t) is constant on each tuning
window Wr .

Corollary
The bifurcation locus for the dimension function η(t) is strictly
smaller than the bifurcation locus for the set-valued function.



Scaling at the Feigenbaum point
Theorem
There exist c1, c2 > 0 such that for any t < cF ,

c1

− log |t − cF |
≤ H.dim B(t) ≤ c2

− log |t − cF |
.

Moreover,

lim
n→∞

H.dim B(αn) log
(

1
|cF − αn|

)
= 5 log

√
5 + 1
2

.
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Scaling at the Feigenbaum point

H.dim B(t) ≈ 1
− log |t − cF |
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Note. However,

lim
t→c+

F

H.dim B(t) log
(

1
|t − cF |

)
does not exist.



Comparison with the linear (doubling) case

K (t) := {x ∈ [0,1] : 2nx /∈ [0, t) ∀n ≥ 0}
η′(t) := H.dim K (t) (Urbański, ’86)
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Comparison with the linear (doubling) case

K (t) := {x ∈ [0,1] : 2nx /∈ [0, t) ∀n ≥ 0}

η′(t) := H.dim K (t) (Urbański, ’86)
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I Bifurcation locus is a Cantor set
I The modulus of continuity at t = 1/2 is ω(x) ≈ log log(1/x)

log(1/x)



Further connections

1. E is the bifurcation locus for α-continued fractions
(Carminati-T., Kraaikamp-Schmidt-Steiner...)

2. The recurrence spectrum for Sturmian sequences
(Cassaigne)

3. Markov and Lagrange spectra
(Moreira), but different

4. Bifurcation locus for unimodal maps
(Milnor-Thurston, Isola-Politi, Bonanno-Carminati-Isola-T.)

5. The set U of univoque numbers
(Erdos-Horvath-Joo, Komornik-Loreti, Allaart-Kong)

6. Open dynamical systems: doubling map with “holes”
(Urbański, Carminati-T.)



Correspondence between α-continued fractions and
the Mandelbrot set



A unified approach

The dictionary yields a unified proof of the following results:

1. The set of matching intervals for α-continued fractions has
zero measure and full Hausdorff dimension
(Nakada-Natsui conjecture, CT 2010)

2. The real part of the boundary of the Mandelbrot set has
Hausdorff dimension 1

H.dim(∂M∩ R) = 1

(Zakeri, 2000)



The end
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