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Part 1: Khintchine’s theorem

Given a function Ψ : N→ [0,∞), we define

J(Ψ) = {x ∈ R : ‖x − p
q‖ ≤ Ψ(q) for i.m. (p, q) ∈ Z×N}

An application of the Borel-Cantelli lemma shows that

L(J(Ψ)) = 0 if
∑
q∈N

qΨ(q) <∞.

Khintchine proved a partial converse.

Theorem (Khintchine, 1926)

Assume that Ψ : N→ [0,∞) is decreasing and∑
q∈N

qΨ(q) =∞.

Then, L-almost every x ∈ R is in J(Ψ).
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Duffin-Schaeffer conjecture

The monotonicity assumption cannot be removed (Duffin &
Schaeffer, 1941) which motivated the (now proven) conjecture:

Theorem (Koukoulopoulos & Maynard, 2020)

Let Ψ : N→ [0,∞). Then,

L -a.e. x ∈ R is in J(Ψ)⇐⇒
∑
q∈N

Ψ(q)φ(q) =∞.

Note that the monotonicity condition shows that there are
subtleties in the geometry of rational numbers that can be explored
by different Ψ.

We will use this approach to study Diophantine sets on “fractals”.
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101 on fractal sets.

Let A be a finite alphabet, A∗ =
⋃∞

n=1A
n be all finite words over

A, and AN be all infinite words.
Let Φ = {φa}a∈A be a (finite) collection of strict contractions on
Rd indexed by A. We write φw = φw1 ◦ φw2 ◦ · · · ◦ φwn for
w = w1 . . .wn ∈ An.
There exists a unique, non-empty, compact set X = X (Φ) ⊂ Rd

that satisfies
X =

⋃
w∈A

φw (X ).

The invariant set X is also called the attractor of X .
In fact, for any fixed x ∈ Rd ,

dH

( ⋃
w∈An

φw(x),X

)
→ 0 as n→∞.
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Some pictures

Sierpinski triangle for similarities with Lipschitz constants 1/2 and
11/20, and similarity dimensions log 3/ log 2 = 1.584 . . . and
log 3/ log(20/11) = 1.837 . . . , respectively.
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Some pictures

Sierpinski triangle with Lipschitz constant 3/5 and similarity
dimension log 3/ log(5/3) = 2.150 . . . .
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Diophantine approximation on fractal sets

We emulate Diophantine approximation by replacing the role of
rational numbers with those in the dynamical/iterative structure.
Let Ψ : A∗ → [0,∞) and z ∈ Rd . We define

WΦ(z ,Ψ) = {x ∈ Rd : ‖x − ϕw‖ ≤ Ψ(w) for i.m. w ∈ A∗}.

We ask:

Motivating Question

Are there similar dichotomies with divergence conditions for the
natural volume, e.g. does the following hold:∑

n∈N

∑
w∈An

Ψ(w)dimH X =⇒ HdimH (WΦ(z ,Ψ)) = HdimH X (X )?
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Diophantine approximation on fractal sets

The implication holds, e.g. when ϕi are similarities or conformal
mappings under separation conditions.

The behaviour above appears for suitable classes of Ψ in a variety
of settings. It is closely linked to the general shrinking target
problem. Recent important progress: Allen and Bárány; Baker;
Persson and Reeve; and Levesly, Salp, and Velani;. . . .

Studying the classes of Ψ for which such a statement holds
provides information on how “spread out” the points in X are.

Similarity dimension, affinity dimension, etc.: The similarity
dimension, affinity dimension, are the zero of a suitable pressure

P(s) = lim
n→∞

log
∑
wAn

sup
x∈X
‖φ′w(x)‖s

[The derivative being replaced by a “singular value function” in the
affine case.]
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Exceeding expectations

The zero of the pressure is the “best guess” to the dimension of
the attractor X . They coincide in many cases.

The interesting case is when the value exceeds the ambient space
dimension. Then we would expect dimH X = d and X to have
positive Lebesgue measure.

To give such a result we need some more notation. Let B ⊂ N.
Recall the upper density

d(B) = lim sup
n→∞

#{1 ≤ j ≤ n : j ∈ B}
n

and write G =
⋃
γ∈(0,1) Gγ , where

Gγ =

{
g : N→ [0,∞) :

∑
n∈B

g(n) =∞, ∀B ⊆ N with d(B) > γ

}
.
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A Diophantine fractal example

Let Φt = {φi (x) = λ · Ox + ti}i∈A be a finite collection of
equicontractive similarities on Rd , where t = (ti )i∈cA is a collection
of translation vectors. Write Xt for the invariant set.

Proposition (Baker, 2019)

Suppose log #A / log(1/λ) > d . Then, for Lebesgue almost every
t ∈ R#A d , for any g ∈ G and z ∈ Xt, the set{

x ∈ Rd : |x − φw(z)| ≤
(

g(| w |)
(#A)| w |

)1/d

for i.m. w ∈ A

}

has positive Lebesgue measure.

Using different test functions g (such as 1/n) allows one to get
detailed information on the “bunching” of these typical attractors.
Another consequence is that any such Xt has (typically) positive
Lebesgue measure.
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Randomness to smooth things out

The last result already made use of the common observation that
randomisation enables a “smoothing” of the object under
consideration. Adding a random translation goes back to Falconer
(1988) where the dimension of generic self-affine sets was
calculated.

Jordan, Pollicott, and Simon considered self-affine attractors with
random perturbations, whereas Peres, Simon, and Solomyak
considered random constructions where the contraction rates at
every level of the construction are randomly chosen.

We follow a similar approach but consider stochastically self-similar
and self-affine sets. These were first introduced (independently) by
Falconer and Graf in the 80s and satisfy an invariance in
distribution.
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Stochastic self-similarity - Intuition

A stochastically self-similar set is one where each (random) image
looks the same (in distribution) as the entire set:

Fω ≡d

N⋃
i=1

φω,i (Fω′,i )

12 / 26



Stochastic self-similarity - (Slightly more) rigorous

Let Md denote the set of invertible d × d matrices with ‖A‖ < 1
for all A ∈ Md . Write Sd ⊂ Md for those which are similarities
(scalar multiple of orthogonal matrices). For all i ∈ A we let
Ωi ⊂ Md be a subset with measure ηi supported on Ωi .

We define a product measure on Ω =
∏

w∈A∗ Ω`(w) by
η =

∏
w∈A∗ µ`(w) where `(w) is the last letter of w ∈ A∗. A

particular realisation ω ∈ Ω is a collection of randomly chosen
matrices, indexed by w ∈ A∗. We write Aω,w(x) = ωw · x to
highlight the matrix/linear component associated with address w

and realisation ω.

Note that for distinct v, w ∈ A∗, the matrices Av,ω and Aw,ω are
independent though only identical in distribution if `(w) = `(v).
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Random framework, continued

Let ti for i ∈ A be a finite choice of distinct translations in Rd .
For every w ∈ A∗ we define the random maps

fω,w(x) = Aω,w(x) + t`(w)

and
φω,w(x) = fω,w1 ◦ · · · ◦ fωw| w | .

Given a realisation ω ∈ Ω, and an infinite word w ∈ AN, we define
its projection Πω(w) : AN → Rd by

Πω(w) = lim
n→∞

φω,w |n(0) = lim
n→∞

fω,w1 ◦ · · · ◦ fωwn(0)

and the random attractor by

Fω =
⋃

w∈AN

Πω(w).
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Random framework, continued

By definition, we have

Fω ≡d

⋃
i∈A

fω′,i (Fω′′i )

where ω, ω′, ω′′1 , . . . , ω
′′
#A are independent realisations in (ω, η).

Given Ψ : A∗ → [0,∞), v ∈ AN, and ω ∈ Ω we want to investigate

Wω(v,Ψ) =
{
x ∈ Rd : |x − Πω(w v)| ≤ Ψ(w) for infinitely many w ∈ A∗

}
Doing this directly is difficult. Instead we consider an auxiliary
family to deduce results about Wω(v,Ψ).

Let µ be a slowly decaying measure defined on AN such that

µ([w1, . . . ,wn+1)/µ([w1, . . . ,wn]) ≥ c

for all n and µ almost all w ∈ AN.
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Random framework, continued

Let Lµ,n be all the finite words w such that µ([w]) ∼ cn. We
investigate

Uω(v, µ, g) =
{
x ∈ Rd : |x − Πω(w v)| ≤ (µ([w])g(n))1/d

for some w ∈ Lµ,n for i.m. n
}
.

We will also write

λ(η, µ) =
∑
i∈A

µ([i ]) · λ′(ηi ),

where

λ′(ηi ) = −
∫

Ωi

log(|Det(A)|)dηi (A)

for the Lyapunov exponent of the random system with respect to µ.
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Assumptions

We need to make certain assumptions on the random matrices
such as the logarithmic moment condition to allow use of Cramér’s
theorem on large deviations:

log

∫
Ωi

exp(s log |Det(A)|)dηi (A) <∞.

We say that our RIFS is non-singular if there exists C > 0 such
that for all i ∈ A, x ∈

⋃
ω∈Ω

∏
ω(AN) and B(y , r),

ηi (A ∈ Ωi : A · x ∈ B(y , r)) ≤ Crd .

We say that our RIFS is distantly non-singular if there exists
C > 0 such that for all i ∈ A, x ∈

⋃
ω∈Ω

∏
ω(AN) and

y ∈ Rd \B(0,mini 6=j |ti − tj |/8),

ηi (A ∈ Ωi : A · x ∈ B(y , r)) ≤ Crd .
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Inspiration for condition

Peres, Solomyak, and Simon considered a similar question for
random similarities in R such that (in our notation)
Aω,w = Y| w |c`(w), where ci only depends on the last letter of
w ∈ A∗ and Y is a random variable depending only on the length
of the word w ∈ A∗.
The random perturbation Y is therefore “homogeneously” applied
everywhere at the same level in the construction.

Theorem (Peres, Simon, Solomyak 2006)

Let Y be an absolutely continuous random variable with
distribution ν satisfying, for some C > 0,

dν

dx
≤ C

1

x
.

Let µ be an ergodic shift invariant measure on AN. Assume further
that h(µ)/λ(η, µ) > 1. Then, Fω has positive Lebesgue measure.
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Result

Theorem (Baker-T., 2020)

Let ({Ωi}i∈A , {ηi}i∈A , {ti}i∈A) be a RIFS and assume one of:

A. Assume Ωi ⊂ Sd for all i ∈ A and the RIFS is distantly
non-singular.

B. Assume Ωi ⊂ Md for all i ∈ A and the RIFS is non-singular.

Suppose µ is a slowly decaying shift invariant ergodic probability
measure with h(µ)/λ(η, µ) > 1. Then the following hold:

1. For any v ∈ AN, for η almost every ω ∈ Ω, for any g ∈ G , the
set Uω(v, µ, g) has positive Lebesgue measure.

2. For any v ∈ AN, for η almost every ω ∈ Ω, for any
Ψ : A∗ → [0,∞) the set Wω(v,Ψ) has positive Lebesgue
measure if there exists g ∈ G such that
Ψ(w) ≈ (m([w])g(n))1/d .
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Some Corollaries

Corollary

Let ({Ωi}i∈A , {ηi}i∈A , {ti}i∈A) be a RIFS and assume one of:

A. Assume Ωi ⊂ Sd for all i ∈ A and that the RIFS is distantly
non-singular.

B. Assume Ωi ⊂ Md for all i ∈ A and the RIFS is non-singular.

Let (pi )i∈A be a probability vector satisfying −
∑

pi log pi∑
piλ′(ηi )

> 1. Then

for all v ∈ AN, for η-almost every ω ∈ Ω the setx ∈ Rd : |x − Πω(w v)| ≤

(∏| w |
k=1 pwk

| w |

)1/d

for i.m. w ∈ A∗


has positive Lebesgue measure.
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Some Corollaries (cont.)

The compactness of Fω implies that Uω(v, µ, g) ⊆ Fω whenever g
is bounded. This gives

Corollary

Let ({Ωi}i∈A , {ηi}i∈A , {ti}i∈A) be a RIFS and assume one of:

A. Assume Ωi ⊂ Sd for all i ∈ A and that the RIFS is distantly
non-singular.

B. Assume Ωi ⊂ Md for all i ∈ A and the RIFS is non-singular.

If there exists a slowly decaying shift invariant ergodic probability
measure µ satisfying h(µ)/λ(η, µ) > 1, then for η-almost every
ω ∈ Ω the set Fω has positive Lebesgue measure.
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Examples

Self-similar. For each i ∈ A let 0 ≤ r−i < r+
i < 1 and set

Ωi =
{
λ · O : λ ∈ [r−i , r

+
i ], O ∈ O(d)

}
,

where O(d) is the set of orthogonal d × d matrices. For each
i ∈ A let ηi be the product measure of the Haar measure and the
Lebesgue measure, restricted and normalised to [r−i , r

+
i ].

It can be checked that this setup satisfies all conditions, and
letting #A be sufficiently large and r+ uniformly bounded away
from zero, we can find Bernoulli measures µ such that
h(µ)/λ(η, µ) > 1 and our Theorem and its Corollaries apply.
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Affine Cases

Self-affine. Similar examples can be created when considering
self-affine constructions. For instance, letting Zi ⊂ Md be compact
with

Ωi =
{
λ · OB : λ ∈ [r−i , r

+
i ], O ∈ O(d), B ∈ Zi

}
,

and assuming {ti} are large enough such that

B(0, δ) ∩
⋃
ω∈Ω

Πω(AN) = ∅

we can apply our results under the non-singular condition.

23 / 26



Observations

In the stochastic self-similar / self-affine setting one usually
expects the “correct” Lyapunov exponent to be

log

∫
Ωi

|Det(A)|dηi (A)

instead of ∫
Ωi

log |Det(A)|dηi (A).

This e.g. applies when calculating the almost sure Hausdorff
dimension.
In our case the near optimal use of large deviations suggests that
the latter exponent is the correct to use. We suspect that this has
to do with needing “level specific” information for our Diophantine
results, as opposed to “eventually averaging”.
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Thank you

Image by www.traveljunction.com

25 / 26



The distantly singular condition

To use a transversality argument we need to show for distinct
w, w′ ∈ A∗ that∫

Ω
χ[−r ,r ]

(
|Πω(w v)− Πω(w′ v)|

)
· χ
(
ω : Det(Âω,w1...wn) ∼ e−sn, ∀1 ≤ n ≤ | w |

)
· χ
(
ω : Det(Âω,w ′1...w ′n) ∼ e−sn, ∀1 ≤ n ≤ | w′ |

)
dη

= O(rde | w∧ w
′ |s)

We need to make sure that Πω(w v) and Πω(w v′) are not “too
close”. [Tablet time!]
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