On a lower bound of the number of integers in Littlewood's conjecture

Shunsuke Usuki
Department of mathematics, Kyoto University

Apr 23, 2024
(1) Littlewood's conjecture, it's quantitative version and Main Theorem

(2) The diagonal action on $\mathrm{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ and its relation to Littlewood's conjecture

(3) About the proof of Main Theorem

Littlewood's conjecture

Littlewood's conjecture (c.1930).

For every $(\alpha, \beta) \in \mathbb{R}^{2}$,

$$
\liminf _{n \rightarrow \infty} n\langle n \alpha\rangle\langle n \beta\rangle=0
$$

where $\langle x\rangle=\min _{k \in \mathbb{Z}}|x-k|$.

- [Cassles, Swinnerton-Dyer, 1955].

If α and β are in the same cubic number field, then $\liminf _{n \rightarrow \infty} n\langle n \alpha\rangle\langle n \beta\rangle=0$.

- [Pollington, Velani, 2000].

For $\forall \alpha \in \mathbf{B a d}:=\left\{\alpha \in \mathbb{R} \mid \liminf _{n \rightarrow \infty} n\langle n \alpha\rangle>0\right\}$, $\exists \mathbf{G}(\alpha) \subset \mathbf{B a d}$ s.t. $\operatorname{dim}_{H} \mathbf{G}(\alpha)=1$ and, for $\forall \beta \in \mathbf{G}(\alpha)$,

$$
n\langle n \alpha\rangle\langle n \beta\rangle \leq \frac{1}{\log n} \quad \text { for infinitely many } n
$$

The set of exceptions for Littlewood's conjecture has Hausdorff dimension zero.

Theorem [Einsiedler, Katok, Lindenstrauss, 2006].

$$
\operatorname{dim}_{H}\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \liminf _{n \rightarrow \infty} n\langle n \alpha\rangle\langle n \beta\rangle>0\right\}=0 .
$$

Furthermore, this set is an at most countable union of compact sets of box dimension zero.

This Theorem is obtained as a corollary of some property of the diagonal action on $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$.

Quantitative version of Littlewood's conjecture

Littlewood's conjecture says that, for every $(\alpha, \beta) \in \mathbb{R}^{2}$ and any $0<\varepsilon<1, n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon$ for infinitely many n.

Problem (Quantitative version of Littlewood's conjecture).

For $(\alpha, \beta) \in \mathbb{R}^{2}, 0<\varepsilon<1$ and sufficiently large $N \in \mathbb{N}$, how many integers $n \in[1, N]$ are there s.t.

$$
n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon ?
$$

Result on quantitative LC / Main Theorem

- [Pollington, Velani, Zafeiropoulos, Zorin, 2022] (quantitative version of [Pollington, Velani, 2000]). For $\forall \alpha \in \mathbf{B a d}, \forall \gamma \in[0,1], \exists \mathbf{G}(\alpha, \gamma) \subset \mathbf{B a d}$ s.t. $\operatorname{dim}_{H} \mathbf{G}(\alpha, \gamma)=1$ and, for $\forall \beta \in \mathbf{G}(\alpha, \gamma)$, we have

$$
\left|\left\{n \in[1, N] \left\lvert\, n\langle n \alpha\rangle\langle n \beta-\gamma\rangle \leq \frac{1}{\log n}\right.\right\}\right| \gg \log \log N, \quad N \in \mathbb{N}
$$

Main Theorem [U., 2022+, 2024+].

For $0<\forall \gamma<1 / 72$, there exists an "exceptional set" $Z(\gamma) \subset \mathbb{R}^{2}$ with $\operatorname{dim}_{H} Z(\gamma) \leq 90 \sqrt{2 \gamma}$ s.t., for $\forall(\alpha, \beta) \in \mathbb{R}^{2} \backslash Z(\gamma)$ and $0<\forall \varepsilon<4^{-1} e^{-2}$,

$$
\liminf _{N \rightarrow \infty} \frac{(\log \log N)^{2}}{(\log N)^{2}}|\{n \in[1, N] \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\}| \geq \gamma .
$$

Corollary.

There exists an "exceptional set" $Z \subset \mathbb{R}^{2}$ with $\operatorname{dim}_{H} Z=0$ s.t., for $\forall(\alpha, \beta) \in \mathbb{R}^{2} \backslash Z$ and $0<\forall \varepsilon<4^{-1} e^{-2}$,

$$
\liminf _{N \rightarrow \infty} \frac{(\log \log N)^{2}}{(\log N)^{2}}|\{n \in[1, N] \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\}| \geq C_{\alpha, \beta},
$$

where $C_{\alpha, \beta}>0$ is a constant depending only on (α, β).

(1) Littlewood's conjecture, it's quantitative version and Main Theorem

(2) The diagonal action on $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ and its relation to Littlewood's conjecture

(3) About the proof of Main Theorem

The diagonal action on $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$

We write

$$
G:=\mathrm{SL}(3, \mathbb{R}), \Gamma:=\mathrm{SL}(3, \mathbb{Z}), \quad X:=G / \Gamma
$$

- By the one to one correspondence $X=G / \Gamma \ni g \Gamma \longleftrightarrow g \cdot \mathbb{Z}^{3} \in\left\{\Lambda \subset \mathbb{R}^{3}\right.$: lattice of covolume 1$\}$, we can identify X as the space of lattices in \mathbb{R}^{3} of covolume 1 .
- $X=G / \Gamma$ admits a unique G-invariant Borel probability measure m_{X} on X, called the Haar measure. However, X is not compact.

Proposition (Mahler's criterion).

For a subset $B \subset X, B$ is unbounded in X iff

$$
0<\forall \varepsilon<1, \exists v \in \bigcup_{\Lambda \in B} \Lambda \backslash\{0\} \text { s.t. }\|v\|<\varepsilon
$$

Let

$$
A:=\left\{\left.\left(\begin{array}{lll}
e^{t_{1}} & & \\
& e^{t_{2}} & \\
& & e^{t_{3}}
\end{array}\right) \right\rvert\, t_{1}, t_{2}, t_{3} \in \mathbb{R}, t_{1}+t_{2}+t_{3}=0\right\}<G .
$$

The left action of A

$$
A \times X \ni(a, x) \mapsto a x \in X
$$

is called the (higher rank) diagonal action on X.
For the application to Littlewood's conjecture, we consider the action of the positive cone A^{+}of A :

$$
A^{+}:=\left\{a_{s, t}: \left.=\left(\begin{array}{ccc}
e^{-s-t} & & \\
& e^{s} & \\
& & e^{t}
\end{array}\right) \right\rvert\, s, t \geq 0\right\} .
$$

The relation between the diagonal action and LC

Let $U<G$ be the unstable subgroup for conjugation by A^{+}:

$$
\begin{aligned}
U & :=\left\{u \in G \mid a^{-n} u a^{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} e, \forall a \in A^{+} \backslash\{e\}\right\} \\
& =\left\{u_{\alpha, \beta}: \left.=\left(\begin{array}{ccc}
1 & \\
\alpha & 1 & \\
\beta & & 1
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \cong \mathbb{R}^{2} .
\end{aligned}
$$

For $(\alpha, \beta) \in \mathbb{R}^{2}$, we write

$$
\tau_{\alpha, \beta}=u_{\alpha, \beta} \Gamma \in X=G / \Gamma
$$

By Mahler's criterion for $B=A^{+} \tau_{\alpha, \beta} \subset X$, we have the following:

Proposition.

For $(\alpha, \beta) \in \mathbb{R}^{2}, \liminf _{n \rightarrow \infty} n\langle n \alpha\rangle\langle n \beta\rangle=0$ iff the A^{+}orbit of $\tau_{\alpha, \beta}$ is unbounded in X.

Measure rigidity under positive entropy condition

For an A-invariant probability measure μ and $a \in A$, we write $h_{\mu}(a)$ for the entropy of the map $X \ni x \mapsto a x \in X$ w.r.t. μ.

Theorem [Einsiedler, Katok, Lindenstrauss, 2006].

If μ is an A-invariant and ergodic Borel probability measure on $X=\mathrm{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ s.t. $h_{\mu}(a)>0$ for $\exists a \in A$, then μ is the Haar measure m_{X} on X.

As a corollary of this Theorem, we obtain that $\operatorname{dim}_{H}\left\{u \in U \mid A^{+} u \Gamma \subset X\right.$ is bounded $\}=0$ and, by Proposition, this is equivalent to

$$
\operatorname{dim}_{H}\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \liminf _{n \rightarrow \infty} n\langle n \alpha\rangle\langle n \beta\rangle>0\right\}=0
$$

Remarks on measure rigidity for the diagonal action

- Measure rigidity does not hold if $X=\operatorname{SL}(2, \mathbb{R}) / \mathrm{SL}(2, \mathbb{Z})$.
- Theorem is the similar to the following measure rigidity for the $\times 2, \times 3$ action on \mathbb{R} / \mathbb{Z} (by Rudolph, Johnson): if $a, b \in \mathbb{Z}_{\geq 2}$ are multiplicatively independent and μ is a $\times a, \times b$-invariant and ergodic Borel probability measure on \mathbb{R} / \mathbb{Z} s.t. $\operatorname{dim}_{H} \mu>0$, then μ is the Lebesgue measure.
- The positive entropy condition is believed to be dropped.

Full measure rigidity conjecture [Margulis].

For $n \geq 3$, every A-invariant and ergodic Borel probability measure on $\operatorname{SL}(n, \mathbb{R}) / \mathrm{SL}(n, \mathbb{Z})$ is homogeneous.

It is known that if Full measure rigidity conjecture is true, then Littlewood's conjecture follows from it.

(1) Littlewood's conjecture, it's quantitative version and Main Theorem

(2) The diagonal action on $\operatorname{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ and its relation to Littlewood's conjecture

(3) About the proof of Main Theorem

Main Theorem (review)

Main Theorem [U., 2022+, 2024+].

For $0<\forall \gamma<1 / 72$, there exists an "exceptional set" $Z(\gamma) \subset \mathbb{R}^{2}$ with $\operatorname{dim}_{H} Z(\gamma) \leq 90 \sqrt{2 \gamma}$ s.t., for $\forall(\alpha, \beta) \in \mathbb{R}^{2} \backslash Z(\gamma)$ and $0<\forall \varepsilon<4^{-1} e^{-2}$,

$$
\liminf _{N \rightarrow \infty} \frac{(\log \log N)^{2}}{(\log N)^{2}}|\{n \in[1, N] \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\}| \geq \gamma .
$$

To prove this, we want to define $Z(\gamma)$ properly and show that

- on the outside of $Z(\gamma)$, we can obtain the quantitative result, and
- $Z(\gamma)$ has small Hausdorff dimension.

Empirical measures w.r.t. the diagonal action

For $x \in X=\mathrm{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ and $T>0$, we define the T-empirical measure of x w.r.t. A^{+}by

$$
\delta_{A^{+}, x}^{T}:=\frac{1}{T^{2}} \int_{[0, T]^{2}} \delta_{a_{s, t} x} d s d t
$$

We are interested in the behavior of $\delta_{A^{+}, x}^{T}$ as $T \rightarrow \infty$. If
$\delta_{A^{+}, x}^{T}(T>0)$ accumulate to a measure μ on X, (w.r.t. the weak*-topology), then μ is A-invariant but it may be that $\mu(X)<1$ (since X is not compact).

Definition (escape of mass).

For $x \in X$, a sequence $\left(T_{k}\right)_{k=1}^{\infty}$ in $\mathbb{R}_{>0}$ s.t. $T_{k} \rightarrow \infty$ and $0<\gamma<1$, we say that $\delta_{A^{+}, x}^{T_{k}}(k=1,2, \ldots)$ exhibit γ-escape of mass if $\lim \sup _{k \rightarrow \infty} \delta_{A^{+}, x}^{T_{k}}(K) \leq 1-\gamma$ for any compact subset $K \subset X$.

Outline of the proof

We take $(\alpha, \beta) \in \mathbb{R}^{2}$ and $\left(T_{k}\right)_{k=1}^{\infty} \subset \mathbb{R}_{>0}$ s.t. $T_{k} \rightarrow \infty$. We consider the sequence of the empirical measures $\left(\delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}\right)_{k=1}^{\infty}$ of $\tau_{\alpha, \beta} \in X$.

Case 1 (large entropy case): For $0<\gamma<1$, assume that $\left(\delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}\right)_{k=1}^{\infty}$ converges to a Borel measure μ on X s.t.

$$
1-\gamma<\mu(X) \leq 1 \quad \text { and } \quad h_{\widehat{\mu}}\left(a_{1}\right)>\gamma
$$

where $\widehat{\mu}=\mu(X)^{-1} \mu$ and $a_{1}=\operatorname{diag}\left(e^{-1}, e, 1\right) \in A^{+} \backslash\{e\}$.
If we write $\widehat{\mu}=\int_{E_{A}(X)} \nu d \sigma(\nu)$ for the A-ergodic decomposition of $\widehat{\mu}$, then, by the measure rigidity,

$$
h_{\widehat{\mu}}\left(a_{1}\right)=\int_{E_{A}(X)} h_{\nu}\left(a_{1}\right) d \sigma(\nu)=\sigma\left(\left\{m_{X}\right\}\right) h_{m_{X}}\left(a_{1}\right)=4 \sigma\left(\left\{m_{X}\right\}\right)
$$

and hence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}=\mu \geq \mu(X) \cdot \sigma\left(\left\{m_{X}\right\}\right) m_{X} \geq 4^{-1}(1-\gamma) \gamma \cdot m_{X} \tag{1}
\end{equation*}
$$

(The following "tessellation" idea is from [Björklund, Fregoli, Gorodnik, 2022+].)
For $T>1$ and $0<\varepsilon<4^{-1} e^{-1}$, we define

$$
\begin{array}{r}
\Omega_{T, \varepsilon}=\left\{(y , x _ { 1 } , x _ { 2 }) \in \mathbb { R } ^ { 3 } \left|0<y<e^{2 T}, 0<\left|x_{1}\right|,\left|x_{2}\right|<2^{-1}\right.\right. \\
\left.y\left|x_{1}\right|\left|x_{2}\right|<\varepsilon\right\} \subset \mathbb{R}^{3}
\end{array}
$$

Then

$$
\left|\left\{n<e^{2 T} \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\right\}\right|=\left|\Omega_{T, \varepsilon} \cap\left(u_{\alpha, \beta} \cdot \mathbb{Z}^{3}\right)\right| .
$$

If we define

$$
\begin{aligned}
& \Delta_{\varepsilon}=\left\{(y , x _ { 1 } , x _ { 2 }) \in \mathbb { R } ^ { 3 } \left|0<y<1,(2 e)^{-1}<\left|x_{1}\right|,\left|x_{2}\right|<2^{-1}\right.\right. \\
&\left.y\left|x_{1}\right|\left|x_{2}\right|<\varepsilon\right\} \subset \mathbb{R}^{3}
\end{aligned}
$$

we have the following partial tessellation of $\Omega_{T, \varepsilon}$:

$$
\Omega_{T, \varepsilon} \supset \bigsqcup_{m, n \in \mathbb{Z}_{\geq 0}, 0 \leq m, n \leq T} a_{m, n}^{-1} \Delta_{\varepsilon},
$$

and hence,

$$
\begin{align*}
\frac{1}{T^{2}}\left|\left\{n<e^{2 T} \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\right\}\right| & =\frac{1}{T^{2}}\left|\Omega_{T, \varepsilon} \cap\left(u_{\alpha, \beta} \cdot \mathbb{Z}^{3}\right)\right| \\
& \geq \frac{1}{T^{2}} \sum_{0 \leq m, n \leq T}\left|\Delta_{\varepsilon} \cap\left(a_{m, n} u_{\alpha, \beta} \cdot \mathbb{Z}^{3}\right)\right| \tag{2}
\end{align*}
$$

By using (1) and (2) and Siegel integral formula, we obtain:

Theorem (large entropy case).

Under our assumption of Case 1 (large entropy case), for $0<\forall \varepsilon<4^{-1} e^{-2}$, we have

$$
\liminf _{k \rightarrow \infty} \frac{1}{T_{k}^{2}}\left|\left\{n<e^{2 T_{k}} \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\right\}\right| \geq \gamma(1-\gamma) \varepsilon .
$$

Case 2 (escape of mass): For $0<\gamma<1$, assume that $\left(\delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}\right)_{k=1}^{\infty}$ exhibits γ-escape of mass.
For $0<\varepsilon<1 / 2$, we define $X_{\varepsilon}=\left\{x \in X \mid \exists v \in x \backslash\{0\}\right.$ s.t. $\left.\|v\|_{\infty} \leq \varepsilon\right\}$. X_{ε} is the complement of a bounded subset in X (Mahler's criterion), and hence,

$$
\begin{align*}
& \liminf _{k \rightarrow \infty} \delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}\left(X_{\varepsilon}\right) \\
= & \liminf _{k \rightarrow \infty} \frac{1}{T_{k}^{2}} m_{\mathbb{R}^{2}}\left(\left\{(s, t) \in\left[0, T_{k}\right]^{2} \mid a_{s, t} \tau_{\alpha, \beta} \in X_{\varepsilon}\right\}\right) \\
= & \liminf _{k \rightarrow \infty} \frac{1}{T_{k}^{2}} m_{\mathbb{R}^{2}}\left(\bigcup_{n \in \mathbb{Z}^{3} \backslash\{0\}} d_{\varepsilon, n} \cap\left[0, T_{k}\right]^{2}\right) \\
\geq & \gamma \tag{3}
\end{align*}
$$

where, for $\boldsymbol{n}={ }^{t}\left(n, m_{1}, m_{2}\right) \in \mathbb{Z}^{3} \backslash\{0\}(n>0)$,

$$
\begin{aligned}
& d_{\varepsilon, \boldsymbol{n}}=\left\{(s, t) \in \mathbb{R}^{2} \mid\left\|a_{s, t} u_{\alpha, \beta} \boldsymbol{n}\right\|_{\infty} \leq \varepsilon\right\} \\
= & \left\{(s, t) \in \mathbb{R}^{2} \left\lvert\, s \leq \log \frac{\varepsilon}{\left|n \alpha+m_{1}\right|}\right., t \leq \log \frac{\varepsilon}{\left|n \beta+m_{2}\right|}, s+t \geq \log \frac{|n|}{\mid}\right\} .
\end{aligned}
$$

Figure: Illustration of $\bigcup_{n \in \mathbb{Z}^{3} \backslash\{0\}} d_{\varepsilon, n} \cap\left[0, T_{k}\right]^{2}$.
For $\boldsymbol{n}={ }^{t}\left(n, m_{1}, m_{2}\right) \in \mathbb{Z}^{3} \backslash\{0\}$, if $d_{\varepsilon, \boldsymbol{n}} \cap\left[0, T_{k}\right]^{2} \neq \emptyset$, we have

$$
n \leq \varepsilon e^{2 T_{k}}<e^{2 T_{k}} \text { and } n\langle n \alpha\rangle\langle n \beta\rangle \leq n\left|n \alpha+m_{1}\right|\left|n \beta+m_{2}\right| \leq \varepsilon^{3}<\varepsilon .
$$

Furthermore, if $d_{\varepsilon, n} \cap\left[0, T_{k}\right]^{2}$ is large, we can see that

$$
k n<e^{2 T_{k}} \text { and } k n\langle k n \alpha\rangle\langle k n \beta\rangle<\varepsilon \text { for many } k \in \mathbb{N} \text {. }
$$

Using (3) and a counting method, we can obtain the following:

Theorem (escape of mass).

Under our assumption of Case 2 (escape of mass), for $0<\forall \varepsilon<1 / 2$, we have

$$
\liminf _{k \rightarrow \infty} \frac{\left(\log T_{k}\right)^{2}}{T_{k}^{2}}\left|\left\{n<e^{2 T_{k}} \mid n\langle n \alpha\rangle\langle n \beta\rangle<\varepsilon\right\}\right| \geq \frac{\gamma}{18} .
$$

If the sequence of the empirical measures $\left(\delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}\right)_{k=1}^{\infty}$ of $\tau_{\alpha, \beta}$ converges to a measure with large entropy or exhibits escape of mass, then we can obtain a quantitative result on LC for (α, β).

The exceptional case

To prove Main Theorem, we must consider the exceptional case, that is, $(\alpha, \beta) \in \mathbb{R}^{2}$ s.t. some subsequence $\left(\delta_{A^{+}, \tau_{\alpha, \beta}}^{T_{k}}\right)_{k=1}^{\infty}$ of the empirical measures of $\tau_{\alpha, \beta}$ converges to a measure μ on X s.t.

$$
1-\gamma<\mu(X) \leq 1 \quad \text { and } \quad h_{\widehat{\mu}}\left(a_{1}\right) \leq \gamma
$$

Actually, we can show that the set of such (α, β) has small Hausdorff dimension.

Theorem (Hausdorff dimension of the exceptional set).

Let $x_{0} \in X$ and $0<\gamma<1$. We write $Z_{x_{0}}(\gamma)$ for the set of $u \in \overline{B_{1}^{U}}=\left\{u_{\alpha, \beta} \in U| | \alpha|,|\beta| \leq 1\}\right.$ s.t. $\delta_{A^{+}, u x_{0}}^{T}(T>0)$ accumulate to some A-invariant measure μ on X s.t. $1-\gamma<\mu(X) \leq 1$ and $h_{\widehat{\mu}}\left(a_{1}\right) \leq \gamma$. Then we have

$$
\operatorname{dim}_{H} Z_{x_{0}}(\gamma) \leq 15 \sqrt{\gamma}
$$

This Theorem is based on the following result by R. Bowen.

Proposition [Bowen, 1973].

Let $T: X \rightarrow X$ be a continuous map on a compact metric space X. For $\gamma>0$, we write $Q R(\gamma)$ for the set of $x \in X$ s.t. the empirical measures $N^{-1} \sum_{n=0}^{N-1} \delta_{T^{n} x}(N>0)$ accumulate to some T-invariant probability measure μ s.t. $h_{\mu}(T) \leq \gamma$. Then we have

$$
h(T, Q R(\gamma)) \leq \gamma
$$

where $h(T, A)$ for $A \subset X$ is Bowen's topological entropy (for an arbitrary subset).
If T is $\times a$ map on $\mathbb{R} / \mathbb{Z}(a \geq 2), h(T, A)=\log a \cdot \operatorname{dim}_{H} A$. In Bowen's argument and ours, the following combinatorial lemma is important:

Lemma [Bowen, 1973].

For $k \in \mathbb{N}$ and $\gamma>0$,

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \log \left|\left\{c \in\{1, \ldots, k\}^{N} \mid H(\operatorname{dist}(c)) \leq \gamma\right\}\right| \leq \gamma
$$

In our setting, empirical measures are of two-parameter action, but the entropy is of one-parameter subaction. In addition, the space $X=\mathrm{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ is not compact.
Theorem is based on the following result on the $\times a, \times b$ action.

Theorem [U., 2023].

Let $a, b \in \mathbb{Z}_{\geq 2}$. We take $0<\gamma<\min \left\{\log b,(\log a)^{2} / \log b\right\}$ and write $K(\gamma)$ for the set of $x \in \mathbb{R} / \mathbb{Z}$ such that the empirical measures $N^{-2} \sum_{m, n=0}^{N-1} \delta_{a^{m} b^{n} x}(N \in \mathbb{N})$ accumulate to a probability measure μ s.t. $h_{\mu}(\times a) \leq \gamma$. Then we have

$$
\operatorname{dim}_{H} K(\gamma) \leq \frac{2 \sqrt{\log b} \sqrt{\gamma}}{\log a+\sqrt{\log b} \sqrt{\gamma}}
$$

The A^{+}-action on each U-orbit is expanding. But, we need more argument because $X=\mathrm{SL}(3, \mathbb{R}) / \mathrm{SL}(3, \mathbb{Z})$ is not compact. This can be done by the assumption that the accumulation measure μ satisfies $\mu(X)>1-\gamma$.

