
On a lower bound of the number of integers in

Littlewood’s conjecture

Shunsuke Usuki

Department of mathematics, Kyoto University

Apr 23, 2024

Shunsuke Usuki (Department of mathematics, Kyoto University)On a lower bound of the number of integers in Littlewood’s conjectureApr 23, 2024 1 / 25



1 Littlewood’s conjecture, it’s quantitative version and Main
Theorem

2 The diagonal action on SL(3,R)/SL(3,Z) and its relation to
Littlewood’s conjecture

3 About the proof of Main Theorem

Shunsuke Usuki (Department of mathematics, Kyoto University)On a lower bound of the number of integers in Littlewood’s conjectureApr 23, 2024 2 / 25



Littlewood’s conjecture

Littlewood’s conjecture (c.1930).

For every (α, β) ∈ R2,

lim inf
n→∞

n〈nα〉〈nβ〉 = 0,

where 〈x〉 = mink∈Z |x− k|.

[Cassles, Swinnerton-Dyer, 1955].
If α and β are in the same cubic number field, then
lim infn→∞ n〈nα〉〈nβ〉 = 0.
[Pollington, Velani, 2000].
For ∀α ∈ Bad := {α ∈ R |lim infn→∞ n〈nα〉 > 0},
∃G(α) ⊂ Bad s.t. dimH G(α) = 1 and, for ∀β ∈ G(α),

n〈nα〉〈nβ〉 ≤ 1

log n
for infinitely many n.
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The set of exceptions for Littlewood’s conjecture

has Hausdorff dimension zero.

Theorem [Einsiedler, Katok, Lindenstrauss, 2006].

dimH

{
(α, β) ∈ R2

∣∣∣ lim inf
n→∞

n〈nα〉〈nβ〉 > 0
}
= 0.

Furthermore, this set is an at most countable union of compact sets
of box dimension zero.

This Theorem is obtained as a corollary of some property of the
diagonal action on SL(3,R)/SL(3,Z).
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Quantitative version of Littlewood’s conjecture

Littlewood’s conjecture says that, for every (α, β) ∈ R2 and any
0 < ε < 1, n〈nα〉〈nβ〉 < ε for infinitely many n.

Problem (Quantitative version of Littlewood’s
conjecture).

For (α, β) ∈ R2, 0 < ε < 1 and sufficiently large N ∈ N, how many
integers n ∈ [1, N ] are there s.t.

n〈nα〉〈nβ〉 < ε?
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Result on quantitative LC / Main Theorem

[Pollington, Velani, Zafeiropoulos, Zorin, 2022]
(quantitative version of [Pollington, Velani, 2000]).
For ∀α ∈ Bad,∀γ ∈ [0, 1], ∃G(α, γ) ⊂ Bad s.t.
dimH G(α, γ) = 1 and, for ∀β ∈ G(α, γ), we have∣∣∣∣{n ∈ [1, N ]

∣∣∣∣ n〈nα〉〈nβ − γ〉 ≤ 1

log n

}∣∣∣∣� log logN, N ∈ N.
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Main Theorem [U., 2022+, 2024+].

For 0 < ∀γ < 1/72, there exists an “exceptional set” Z(γ) ⊂ R2

with dimH Z(γ) ≤ 90
√
2γ s.t., for ∀(α, β) ∈ R2 \ Z(γ) and

0 < ∀ε < 4−1e−2,

lim inf
N→∞

(log logN)2

(logN)2
|{n ∈ [1, N ] | n〈nα〉〈nβ〉 < ε}| ≥ γ.

Corollary.

There exists an “exceptional set” Z ⊂ R2 with dimH Z = 0 s.t., for
∀(α, β) ∈ R2 \ Z and 0 < ∀ε < 4−1e−2,

lim inf
N→∞

(log logN)2

(logN)2
|{n ∈ [1, N ] | n〈nα〉〈nβ〉 < ε}| ≥ Cα,β,

where Cα,β > 0 is a constant depending only on (α, β).
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The diagonal action on SL(3,R)/SL(3,Z)
We write

G := SL(3,R), Γ := SL(3,Z), X := G/Γ.

By the one to one correspondence

X = G/Γ 3 gΓ←→ g · Z3 ∈ {Λ ⊂ R3 : lattice of covolume 1},
we can identify X as the space of lattices in R3 of covolume 1.
X = G/Γ admits a unique G-invariant Borel probability measure
mX on X, called the Haar measure. However, X is not
compact.

Proposition (Mahler’s criterion).

For a subset B ⊂ X, B is unbounded in X iff

0 < ∀ε < 1, ∃v ∈
⋃
Λ∈B

Λ \ {0} s.t. ‖v‖ < ε.
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Let

A :=


et1

et2

et3

∣∣∣∣∣∣ t1, t2, t3 ∈ R, t1 + t2 + t3 = 0

 < G.

The left action of A

A×X 3 (a, x) 7→ ax ∈ X

is called the (higher rank) diagonal action on X.
For the application to Littlewood’s conjecture, we consider the action
of the positive cone A+ of A:

A+ :=

as,t :=

e−s−t

es

et

∣∣∣∣∣∣ s, t ≥ 0

 .
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The relation between the diagonal action and LC

Let U < G be the unstable subgroup for conjugation by A+:

U :=
{
u ∈ G

∣∣∣ a−nuan −−−→
n→∞

e, ∀a ∈ A+ \ {e}
}

=

uα,β :=

1
α 1
β 1

∣∣∣∣∣∣α, β ∈ R

 ∼= R2.

For (α, β) ∈ R2, we write

τα,β = uα,βΓ ∈ X = G/Γ.

By Mahler’s criterion for B = A+τα,β ⊂ X, we have the following:

Proposition.

For (α, β) ∈ R2, lim infn→∞ n〈nα〉〈nβ〉 = 0 iff the A+ orbit of τα,β
is unbounded in X.
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Measure rigidity under positive entropy condition

For an A-invariant probability measure µ and a ∈ A, we write hµ(a)
for the entropy of the map X 3 x 7→ ax ∈ X w.r.t. µ.

Theorem [Einsiedler, Katok, Lindenstrauss, 2006].

If µ is an A-invariant and ergodic Borel probability measure on
X = SL(3,R)/SL(3,Z) s.t. hµ(a) > 0 for ∃a ∈ A, then µ is the
Haar measure mX on X.

As a corollary of this Theorem, we obtain that
dimH {u ∈ U |A+uΓ ⊂ X is bounded} = 0 and, by Proposition, this
is equivalent to

dimH

{
(α, β) ∈ R2

∣∣∣ lim inf
n→∞

n〈nα〉〈nβ〉 > 0
}
= 0.
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Remarks on measure rigidity for the diagonal action

Measure rigidity does not hold if X = SL(2,R)/SL(2,Z).
Theorem is the similar to the following measure rigidity for the
×2,×3 action on R/Z (by Rudolph, Johnson): if a, b ∈ Z≥2 are
multiplicatively independent and µ is a ×a,×b-invariant and
ergodic Borel probability measure on R/Z s.t. dimH µ > 0, then
µ is the Lebesgue measure.

The positive entropy condition is believed to be dropped.

Full measure rigidity conjecture [Margulis].

For n ≥ 3, every A-invariant and ergodic Borel probability measure
on SL(n,R)/SL(n,Z) is homogeneous.

It is known that if Full measure rigidity conjecture is true, then
Littlewood’s conjecture follows from it.
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Main Theorem (review)

Main Theorem [U., 2022+, 2024+].

For 0 < ∀γ < 1/72, there exists an “exceptional set” Z(γ) ⊂ R2

with dimH Z(γ) ≤ 90
√
2γ s.t., for ∀(α, β) ∈ R2 \ Z(γ) and

0 < ∀ε < 4−1e−2,

lim inf
N→∞

(log logN)2

(logN)2
|{n ∈ [1, N ] | n〈nα〉〈nβ〉 < ε}| ≥ γ.

To prove this, we want to define Z(γ) properly and show that

on the outside of Z(γ), we can obtain the quantitative result,
and

Z(γ) has small Hausdorff dimension.
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Empirical measures w.r.t. the diagonal action

For x ∈ X = SL(3,R)/SL(3,Z) and T > 0, we define the
T -empirical measure of x w.r.t. A+ by

δTA+,x :=
1

T 2

∫
[0,T ]2

δas,tx dsdt.

We are interested in the behavior of δTA+,x as T →∞. If

δTA+,x (T > 0) accumulate to a measure µ on X, (w.r.t. the
weak*-topology), then µ is A-invariant but it may be that µ(X) < 1
(since X is not compact).

Definition (escape of mass).

For x ∈ X, a sequence (Tk)
∞
k=1 in R>0 s.t. Tk →∞ and 0 < γ < 1,

we say that δTk

A+,x (k = 1, 2, . . . ) exhibit γ-escape of mass if

lim supk→∞ δTk

A+,x(K) ≤ 1− γ for any compact subset K ⊂ X.
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Outline of the proof

We take (α, β) ∈ R2 and (Tk)
∞
k=1 ⊂ R>0 s.t. Tk →∞. We consider

the sequence of the empirical measures (δTk

A+,τα,β
)∞k=1 of τα,β ∈ X.

Case 1 (large entropy case): For 0 < γ < 1, assume that
(δTk

A+,τα,β
)∞k=1 converges to a Borel measure µ on X s.t.

1− γ < µ(X) ≤ 1 and hµ̂(a1) > γ,

where µ̂ = µ(X)−1µ and a1 = diag(e−1, e, 1) ∈ A+ \ {e}.

If we write µ̂ =
∫
EA(X)

ν dσ(ν) for the A-ergodic decomposition of µ̂,

then, by the measure rigidity,

hµ̂(a1) =

∫
EA(X)

hν(a1) dσ(ν) = σ({mX})hmX
(a1) = 4σ({mX}),

and hence,
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lim
k→∞

δTk

A+,τα,β
= µ ≥ µ(X) · σ({mX})mX ≥ 4−1(1− γ)γ ·mX . (1)

(The following “tessellation” idea is from [Björklund, Fregoli, Gorodnik,
2022+].)
For T > 1 and 0 < ε < 4−1e−1, we define

ΩT,ε =
{
(y, x1, x2) ∈ R3

∣∣ 0 < y < e2T , 0 < |x1|, |x2| < 2−1,

y|x1||x2| < ε} ⊂ R3.

Then ∣∣{n < e2T | n〈nα〉〈nβ〉 < ε
}∣∣ = ∣∣ΩT,ε ∩ (uα,β · Z3)

∣∣ .
If we define

∆ε =
{
(y, x1, x2) ∈ R3

∣∣ 0 < y < 1, (2e)−1 < |x1|, |x2| < 2−1,

y|x1||x2| < ε} ⊂ R3,

we have the following partial tessellation of ΩT,ε:

ΩT,ε ⊃
⊔

m,n∈Z≥0,0≤m,n≤T

a−1
m,n∆ε,
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and hence,

1

T 2

∣∣{n < e2T | n〈nα〉〈nβ〉 < ε
}∣∣ = 1

T 2

∣∣ΩT,ε ∩ (uα,β · Z3)
∣∣

≥ 1

T 2

∑
0≤m,n≤T

∣∣∆ε ∩ (am,nuα,β · Z3)
∣∣ .
(2)

By using (1) and (2) and Siegel integral formula, we obtain:

Theorem (large entropy case).

Under our assumption of Case 1 (large entropy case), for
0 < ∀ε < 4−1e−2, we have

lim inf
k→∞

1

T 2
k

∣∣{n < e2Tk | n〈nα〉〈nβ〉 < ε
}∣∣ ≥ γ(1− γ)ε.
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Case 2 (escape of mass): For 0 < γ < 1, assume that (δTk

A+,τα,β
)∞k=1

exhibits γ-escape of mass.

For 0 < ε < 1/2, we define Xε = {x ∈ X |∃v ∈ x \ {0} s.t. ‖v‖∞ ≤ ε}.
Xε is the complement of a bounded subset in X (Mahler’s criterion), and
hence,

lim inf
k→∞

δTk

A+,τα,β
(Xε)

= lim inf
k→∞

1

T 2
k

mR2

({
(s, t) ∈ [0, Tk]

2 | as,tτα,β ∈ Xε

})
= lim inf

k→∞

1

T 2
k

mR2

 ⋃
n∈Z3\{0}

dε,n ∩ [0, Tk]
2


≥ γ, (3)

where, for n = t(n,m1,m2) ∈ Z3 \ {0} (n > 0),

dε,n =
{
(s, t) ∈ R2 | ‖as,tuα,βn‖∞ ≤ ε

}
=

{
(s, t) ∈ R2

∣∣∣∣ s ≤ log
ε

|nα+m1|
, t ≤ log

ε

|nβ +m2|
, s+ t ≥ log

|n|
ε

}
.
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Figure: Illustration of
⋃

n∈Z3\{0} dε,n ∩ [0, Tk]
2.

For n = t(n,m1,m2) ∈ Z3 \ {0}, if dε,n ∩ [0, Tk]
2 6= ∅, we have

n ≤ εe2Tk < e2Tk and n〈nα〉〈nβ〉 ≤ n|nα+m1||nβ +m2| ≤ ε3 < ε.

Shunsuke Usuki (Department of mathematics, Kyoto University)On a lower bound of the number of integers in Littlewood’s conjectureApr 23, 2024 21 / 25



Furthermore, if dε,n ∩ [0, Tk]
2 is large, we can see that

kn < e2Tk and kn〈knα〉〈knβ〉 < ε for many k ∈ N.

Using (3) and a counting method, we can obtain the following:

Theorem (escape of mass).

Under our assumption of Case 2 (escape of mass), for 0 < ∀ε < 1/2,
we have

lim inf
k→∞

(log Tk)
2

T 2
k

∣∣{n < e2Tk | n〈nα〉〈nβ〉 < ε
}∣∣ ≥ γ

18
.

If the sequence of the empirical measures (δTk

A+,τα,β
)∞k=1 of τα,β

converges to a measure with large entropy or exhibits escape of mass,
then we can obtain a quantitative result on LC for (α, β).
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The exceptional case

To prove Main Theorem, we must consider the exceptional case, that
is, (α, β) ∈ R2 s.t. some subsequence (δTk

A+,τα,β
)∞k=1 of the empirical

measures of τα,β converges to a measure µ on X s.t.

1− γ < µ(X) ≤ 1 and hµ̂(a1) ≤ γ.

Actually, we can show that the set of such (α, β) has small Hausdorff
dimension.

Theorem (Hausdorff dimension of the exceptional set).

Let x0 ∈ X and 0 < γ < 1. We write Zx0(γ) for the set of

u ∈ BU
1 = {uα,β ∈ U ||α|, |β| ≤ 1} s.t. δTA+,ux0

(T > 0) accumulate
to some A-invariant measure µ on X s.t. 1− γ < µ(X) ≤ 1 and
hµ̂(a1) ≤ γ. Then we have

dimH Zx0(γ) ≤ 15
√
γ.
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This Theorem is based on the following result by R. Bowen.

Proposition [Bowen, 1973].
Let T : X → X be a continuous map on a compact metric space X. For
γ > 0, we write QR(γ) for the set of x ∈ X s.t. the empirical measures

N−1
∑N−1

n=0 δTnx (N > 0) accumulate to some T -invariant probability
measure µ s.t. hµ(T ) ≤ γ. Then we have

h(T,QR(γ)) ≤ γ,

where h(T,A) for A ⊂ X is Bowen’s topological entropy (for an arbitrary
subset).

If T is ×a map on R/Z (a ≥ 2), h(T,A) = log a · dimH A. In Bowen’s
argument and ours, the following combinatorial lemma is important:

Lemma [Bowen, 1973].
For k ∈ N and γ > 0,

lim sup
N→∞

1

N
log

∣∣{c ∈ {1, . . . , k}N |H(dist(c)) ≤ γ
}∣∣ ≤ γ.
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In our setting, empirical measures are of two-parameter action, but the
entropy is of one-parameter subaction. In addition, the space
X = SL(3,R)/SL(3,Z) is not compact.
Theorem is based on the following result on the ×a,×b action.

Theorem [U., 2023].

Let a, b ∈ Z≥2. We take 0 < γ < min{log b, (log a)2/ log b} and write
K(γ) for the set of x ∈ R/Z such that the empirical measures

N−2
∑N−1

m,n=0 δambnx (N ∈ N) accumulate to a probability measure µ s.t.

hµ(×a) ≤ γ. Then we have

dimH K(γ) ≤
2
√
log b
√
γ

log a+
√
log b
√
γ
.

The A+-action on each U -orbit is expanding. But, we need more
argument because X = SL(3,R)/SL(3,Z) is not compact. This can be
done by the assumption that the accumulation measure µ satisfies
µ(X) > 1− γ.
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