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Continued fractions

A continued fraction is an expression of the form

[a0, a1, . . . , an] := a0 +
1

a1 +
1

. . . +
1

an−1 +
1

an

=
pn
qn

In the classical setting, we take the ai to be positive integers for
i > 0.
When this is the case, it make sense to consider an infinite
sequence of ai ’s and the corresponding limit of the values pn/qn.



The classical continued fraction expansion

Starting with a real number α = α0 we define the iteration

an = bαnc
αn+1 = (αn − an)−1

and the recurrence sequences

pn = anpn−1 + pn−2, p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2, q−1 = 0, q−2 = 1.

The an are called partial quotients
The αn are called complete quotients
The pn/qn are called convergents
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Classical results

α =
αi+1pi + pi−1

αi+1qi + qi−1

[a0, . . . , an] = pn/qn and lim
n→∞

pn/qn = α

The expansion is essentially unique

The iteration stops if and only if α is rational
The expansion is eventually periodic if and only if α is a quadratic
irrational (Lagrange). For example φ = [1, 1, 1, . . . ]
The convergents provide very good rational approximations to α.
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A question of Rosen

In 1977 David Rosen asked:

Is it possible to devise a continued fraction that represen-
ts uniquely all real numbers, so that the finite continued
fractions represent the elements of an algebraic number
field, and conversely, every element of the number field is
represented by a finite continued fraction?

Rosen gives one example of such a construction for the field Q(
√

5)

and partial quotients which are integral multiples of φ = 1+
√

5
2 .

Bernat ’06 gives a different construction again for Q(
√

5).
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β-expansions

Let β > 1 be an algebraic integer. Any real number x can be
expanded in base-β as

x = ±
k∑

i=−∞
xiβ

i .

The digits xi belong to the set {0, 1, . . . , dβe − 1}, and are selected
according to a greedy algorithm.

Not all expansions are admissible. φ2 = φ+ 1
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β-integers

Consider the set Zβ of the real numbers whose β-expansion uses
only non-negative powers of β. These numbers are called
β-integers.

They form a discrete subset of the algebraic integers in the field
Q(β).
For some special β’s e.g. for Pisot numbers, it is possible to give
an algebraic characterization of this set in terms of their algebraic
conjugates.
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β-fractionary expansion

For a positive real number x , define

bxcβ = max{a ∈ Zβ | a ≤ x}.

Replace b·c by b·cβ in the definition of the continued fraction
expansion.

Not all expansions are admissible. If 1 < ξ < φ, then
(ξ − 1)−1 > φ.
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Bernat’s result

In 2006 Julien Bernat proved that every positive element of Q(φ)
has a finite φ-fractionary expansion (this had been conjectured by
Akiyama in 2002).
The proof relies on an intricate case-by-case analysis, and it uses
that φ is a quadratic Pisot number smaller than 2.

He writes

. . . we do not know for which numbers β the [finiteness
result] holds, or even for which numbers the weaker result
that, for any p, q ∈ Z+

β with q > 0, the continued β-
fraction of p/q is either finite or ultimately periodic, holds.
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Periodicity and finiteness for the β-fractionary expansion

Let β > 1 be an algebraic integer.

(CFP)

We say that β has the (CFP) property if the β-fractionary expansion
of every element of Q(β) if finite or eventually periodic.

(CFF)

We say that β has the (CFF) property if the β-fractionary expansion
of every element of Q(β) if finite.

We study these properties when [Q(β) : Q] = 2.



A result on expansions of elements in quadratic fields

Let K = Q(
√
D) for a positive squarefree D. For any x ∈ K

denote by x ′ the image of x under the non-trivial Galois
automorphism of K .

Theorem (Másáková,Vávra,Veneziano)

Let ξ = [a0, a1, . . . ] be an infinite continued fraction with an ∈ OK

such that an ≥ 1 and |a′n| ≤ an for n ≥ 0. Assume that ξ ∈ K .
Then the sequence (an)n≥0 is eventually periodic and either all
partial quotients in the period belong to Z, or all belong to

√
DZ.

Moreover, the following bounds hold

H(ξn) ≤
√

3H(ξ),

H(an) ≤ 3H(ξ)2,

and therefore the lengths of the period and preperiod can be
effectively bounded.



Weil height

H : Q→ [0,+∞)

For all non-zero x , y ∈ Q we have

H(x + y) ≤ 2H(x)H(y);

H(xy) ≤ H(x)H(y);

H(xn) = H(x)|n| for all n ∈ Z;

H(σ(x)) = H(x) for all σ ∈ Gal(Q/Q);

H(x) = 1 if and only if x is a root of unity (Kronecker’s
theorem);

for all B,D ≥ 1 the set

{ξ ∈ Q | H(ξ) ≤ B and [Q(ξ) : Q] ≤ D}

is finite (Northcott’s theorem).
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Main ingredients of the proof

The proof is built in three steps.

Using the recurrence relations for pn, qn and the properties of
the Weil height, we establish the height bounds, and thus that
the sequence (an) is eventually periodic;

Using an argument of algebraic number theory, we show that
if the expansion is purely periodic of period lenght n, then the
quantity pn−1 + qn−2 belongs to either Z or

√
DZ;

Using the representation of pn and qn as polinomials
(“continuants”) in the ai ’s we conclude.

The theorem holds for any representation of ξ as a continued
fraction satisfying the hypothesis.



Quadratic Perron numbers have the (CFP)

From now on, let β > 1 be a quadratic integer, and let β′ be its
algebraic conjugate.

Corollary (Másáková,Vávra,Veneziano)

If |β′| < β (i.e. β is a Perron number), then (CFP) holds.
Every purely periodic β-fractionary expansion in Q(β) has partial
quotients in {1, . . . , bβc}.

Check that Z ∩ Z+
β = {1, . . . , bβc}. We give also a second proof

based on an argument of diophantine approximation and a
comparison lemma to estimate the relative growhts of the
sequences pn, qn and their conjugates. This gives a better value for
the bound on the length of the preperiodic part.
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(CFF) for small quadratic Perron numbers

Theorem (Másáková,Vávra,Veneziano)

The four Perron numbers

1 +
√

5

2
, 1 +

√
2,

1 +
√

13

2
,

1 +
√

17

2

have (CFF), and are the only quadratic Perron numbers smaller
than 3 with property (CFF).

We apply the previous theorem and argue about admissible
sequences of partial quotients.

164 + 65
√

17

251
= [1, 1, 2, 1, 1, 2, 2, 2, 2]

164 + 65
√

17

251
= [1, 1, β, 2β3 + β2 + 1, β3 + β + 1, 2, β + 1]
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Theorem (Másáková,Vávra,Veneziano)

The four Perron numbers

1 +
√

5

2
, 1 +

√
2,

1 +
√

13

2
,

1 +
√

17

2

have (CFF), and are the only quadratic Perron numbers smaller
than 3 with property (CFF).

We apply the previous theorem and argue about admissible
sequences of partial quotients.

164 + 65
√

17

251
= [1, 1, 2, 1, 1, 2, 2, 2, 2]

164 + 65
√

17

251
= [1, 1, β, 2β3 + β2 + 1, β3 + β + 1, 2, β + 1]



Quadratic Perron numbers smaller than 3

The set of quadratic Perron numbers is discrete.
β Approximate value Minimal polynomial (CFF)

1
2 (1 +

√
5) 1.618033988... x2 − x − 1 yes

1
2 (1 +

√
13) 2.302775637... x2 − x − 3 yes

1 +
√

2 2.414213562... x2 − 2x − 1 yes
1
2 (1 +

√
17) 2.561552812... x2 − x − 4 yes

1
2 (3 +

√
5) 2.618033988... x2 − 3x + 1 no

1 +
√

3 2.732050807... x2 − 2x − 2 no
1
2 (1 +

√
21) 2.791287847... x2 − x − 5 no

1 +
√

5

2
= [1],

11055 + 10864
√

3

18471
= [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2],

117 + 44
√

21

202
= [1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2].



Why smaller than 3?

The integers 1, 2, . . . , bβc belong to Zβ.

Remark

If the simple continued fraction expansion of some ξ > 0 involves
only partial quotients smaller than bβc, then it coincides with the
β-fractionary expansion of ξ.

If K = Q(
√
D) with D squarefree, standard estimates on the

continued fraction expansion of
⌊√

D
⌋

+
√
D imply that no

β > 2
⌊√

D
⌋

+ 1 in K can satisfy (CFF)



Can we find continued fractions with small partial
quotients in every quadratic field?

Problem (McMullen ’08)

Does every real quadratic field contain infinitely many periodic
continued fractions with partial quotients equal to 1 or 2?

Conjecture (Mercat ’13)

Every real quadratic number field contains a periodic continued
fraction with partial quotients equal to 1 or 2.

Under Mercat’s conjecture, no quadratic β > 3 can have property
(CFF).
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An unconditional statement

Assuming Mercat’s Conjecture, 1+
√

5
2 , 1 +

√
2, 1+

√
13

2 , 1+
√

17
2 are

the only quadratic Perron numbers with property (CFF).

Theorem (Másáková,Vávra,Veneziano)

The only quadratic Pisot units with property (CFF) are
1 +
√

5

2
and 1 +

√
2.

This unconditional result is obtained by explicitely constructing for
every quadratic Pisot unit β an element in Q(β) whose continued
fraction expansion only uses small integers. For example

β = 5+
√

29
2 ≈ 5.19 doesn’t have the (CFF) because

7 + 5
√

29

26
= [1, 3, 3, 1].



Square roots have (CFP)

Corollary (Másáková,Vávra,Veneziano)

Let D be a positive integer with irrational square root β. Then β
has (CFP) and, under Mercat’s conjecture, does not have (CFF).

[4
√

2] = 3 + 2
√

2, [8
√

6, 2
√

6] = 2(5 + 2
√

6),

[3, 4] =
3 + 2

√
3

2
, [

√
7, 2
√

7] =
3 +
√

7

2
,

[32
√

5, 2
√

5] = 16(9 +
√

5), [2
√

8] = 3 +
√

8



Non-Perron quadratic β’s with positive conjugate

Theorem (Másáková,Vávra,Veneziano)

Let β > 1 be a quadratic integer such that β′ > β.

Every purely periodic β-fractionary expansion in Q(β) has
partial quotients in {1, . . . , bβc};
every ξ ∈ Q(β) such that ξ > β and −1 < ξ′ < 0 has an
infinite, aperiodic β-fractionary expansion;

β does not have either (CFP) or (CFF).

We use an argument of algebraic number theory to establish the
first point of the statement.
It is easy to see that elements with −1 < ξ′ < 0 can’t have a finite
β-fractionary expansion because every complete quotient lies in
(−1, 0). A characterization of pure periodicity then shows that the
expansion of ξ is either aperiodic or purely periodic.



Non-Perron quadratic β’s with negative conjugate

The case in which β′ < −β presents additional difficulties because
in this case there are nontrivial elements in Z ∩ Z+

β other than
{1, . . . , bβc}. For instance if β is the positive root of
X 2 + 2X − 9 = 0, then β2 + 2β = 9 ∈ Z ∩ Z+

β .

Theorem (Másáková,Vávra,Veneziano)

Let β > 1 be quadratic integer with conjugate β′ satisfying
β′ ≤ −β − 4. Let ξ ∈ Q(β) be such that ξ′ ∈ (−1, 0). Then ξ
does not have a finite β-expansion.
In particular, β does not satisfy property (CFF).

The idea is similar, but more intricate, than what was done for
β′ > β.



Lemma (Másáková,Vávra,Veneziano)

Assume that β′ ≤ −β − 4. Then for every x ∈ Z+
β we have that

either x = 1, or x ′ ≥ 2, or x ′ < −4.

(0, 1/2)

(−2,−1)

(−1, 0)a′k ≤ −4

a′k = 1

a′k ≥ 2

a′k ≤ −4
a′k ≥ 1

a′k ≤ −4

a′k ≥ 1



(CFP) and (CFF) for quadratic integer β > 1

(CFP) (CFF)

β′ > β NO NO

|β′| < β YES
1+
√

5
2 , 1+

√
2, 1+

√
13

2 , 1+
√

17
2

and no other

β′ = −β YES NO

−β − 3 ≤ β′ < −β Open
Probably NO, but still open
for 20 values of β

β′ ≤ −β − 4 Open NO
Entries in blue assume the validity of Mercat’s Conjecture.


