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A computation is a temptation that should be resisted as long as
possible.

J.P. Boyd
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Markov and Lagrange spectra
The continued fraction of x ∈ (0,1) is an expression

x = [0;α1, . . . , αn, . . .]∶=
1

α1 +
1

α2 +
1

α3 + ⋱

, αn ∈ N

Consider a set of bi-infinite sequences (N∗)Z and Bernoulli shift
σ∶ (N∗)Z → (N∗)Z; σ ((αn)n∈Z) = (αn+1)n∈Z.

Introduce a map
λ∶ (N∗)Z → R λ(α) = [α0;α1, α2, . . . ] + [0;α−1, α−2, . . . ].

Definition (Perron, 1921)
The Lagrange value of α ∈ (N∗)Z is `(α) ∶= lim sup

n→∞
λ(σnα)

The Markov value of α ∈ (N∗)Z is m(α) ∶= sup
n∈Z

λ(σnα).
The collection of Lagrange (Markov) values is called the Lagrange
(Markov) spectrum.

L ∶= {`(α) ∣ α ∈ (N∗)Z} and M ∶= {m(α) ∣ α ∈ (N∗)Z} .
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Study of the spectra — I

L L

√
5

√
8 3

Markov
(1880)

Markov, 1880
L ∩ (

√
5,3) =M ∩ (

√
5,3) = {

√
5 <

√
8 <

√
221/5 < . . .}

is a countable set. (Proof uses Markov triples).
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Study of the spectra — II

L

Hurwitz

(1890)
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(1880)

Hurwitz, 1890
minL =

√
5. (Proof uses a more classical definition via best

approximants).
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Study of the spectra — III

L

Hurwitz
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Markov
(1880)

Perron
(1921)

Perron, 1921
(
√

12,
√

13) ∩M = ∅, while
√

12,
√

13 ∈ L. Moreover, L ⊂M and both
sets are closed subsets of R.
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Study of the spectra — IV

L

Hurwitz
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Freiman’s
constant
(1975)

√
5

√
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√
12
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13

4.5278
√
21

Markov
(1880)

Perron
(1921)

Hall ray

(1947)

Hall, 1947: There exists c ∈ R such that [c,+∞) ⊂ L ⊂M.
Schecker & Freiman, 1963: One can take c =

√
21 above.

Freiman, 1975: The smallest possible c is

cF = 2221564096 + 283748
√

462

491993569
.
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Study of the spectra — V
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constant
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5

√
8 3 3.11 3.29

√
12

√
13

4.5278
√
21
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(1880)

Perron
(1921)

Hall ray

(1947)

Freiman 1968, 1973; Flahive 1977
Near 3.11 and 3.29 the set M ∖L contains two countable subsets.
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Study of the spectra — VI
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Moreira
(2018)

Perron
(1921)

Cusick’s conjecture

(1975)

Hall ray

(1947)

Cusick’s conjecture, 1975: (M ∖L) ∩ [
√

12,+∞) = ∅.
Bernstein’s conjecture, 1973: [4.1,4.52] ⊂ L.
Moreira, 2018: dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t)) and the
function f ∶ t↦ dim(M∩ (−∞, t)) is continuous. Moreover, f(

√
12) = 1

and f(3 + ε) > 0 for any ε > 0.

8 / 24



Study of the spectra — VII

4.5
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Freiman’s
constant
(1975)

√
5

√
8 3 3.11 3.29

√
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13 3.7096

4.5278
√
21

Markov
(1880)

Moreira
(2018)

Perron
(1921)

Cusick’s conjecture

(1975)

Hall ray

(1947)

Cusick’s conjecture, 1975: (M ∖L) ∩ [
√

12,+∞) = ∅.
Bernstein’s conjecture, 1973: [4.1,4.52] ⊂ L.
Moreira, 2018: dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t)) and the
function f ∶ t↦ dim(M∩ (−∞, t)) is continuous. Moreover, f(

√
12) = 1

and f(3 + ε) > 0 for any ε > 0.
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Intermission

Today we are concerned with the function f from the last statement:

Moreira, 2018: dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t)) and the
function f ∶ t↦ dim(M∩ (−∞, t)) is continuous. Moreover, f(

√
12) = 1

and f(3 + ε) > 0 for any ε > 0.

Clearly, f is a monotone increasing function.

Define the first transition:

t1 ∶= inf {t ∈ R ∣ dim(M ∩ (−∞, t)) = 1}

Can we determine the value of t1? (By Moreira’s result 3 < t1 <
√

12)

the end of part 1: introduction

next is part 2: a method for computing t1
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First transition

Goal for today’s talk
To give a rigourous and accurate estimate on the first transition point

t1 ∶= inf {t ∈ R ∣ dim(M ∩ (−∞, t)) = 1}

In 1982 Bumby gave heuristic bounds: 3.33437 < t1 < 3.33440.
We shall follow the same technique.

Preliminaries
● Consider a set of continued fractions of 1’s and 2’s:

E2 ∶= [a = [0;α1, α2, . . . ] ∣ αj ∈ {1,2}, j ≥ 1]

Then minE2 = 1
2
(
√

3 − 1), maxE2 =
√

3 − 1 and dimE2 > 0.53128.

● Let α ∈ {1,2}Z. Then m(α) ≥
√

5 and m(α) =
√

5 if and only if
α = 1,1,1, . . . .
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Approach to lower bound

Fix T > 0 and construct a finite set F of finite strings of 1’s and 2’s
with a property that if α ∈ {1,2}Z doesn’t contain a string from F ,
then m(α) < T .
Claim. Let K ⊂ E2 be such that for any x ∈K its continued fraction
expansion doesn’t contain a string from F . Then

M ∩ (
√

5, T ) ⊂ 2 +K +K.

Proof: m = λ(α) = [2;α1, α2, . . . ] + [0;α−1, α−2 . . . ].
Since dimH K +K = dimH K + dimBK, dimH K ≤ 0.5 gives t1 ≥ T .

Example (Hall, 1971)
If α ∈ {1,2}Z doesn’t contain a substring 121, then m(α) ≤

√
10.

dim ({[0;α1, α2, . . . ] ∣ αj ∈ {1,2}, (αjαj+1αj+2) ≠ (121), j ≥ 1}) ≤ 0.45,

therefore t1 ≥
√

10 = 3.16 . . . .
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Approach to upper bound

Let S be the maximal Markov value of strings which do not contain a
substring from a finite set of finite strings F :

S = maxm(α), where α ∈ {1,2}Z doesn’t contain a string from F

and let K ⊆ E2 be such that for any x ∈K its continued fraction
expansion doesn’t contain a string from F . It was shown by Moreira
that

min{2 ⋅ dimH K,1} ≤ dimH((
√

5, S) ∩M),
Therefore dimH K ≥ 0.5 implies t1 ≤ S.

Example (Perron )
Note that m(α) ≤

√
12 if and only if α ∈ {1,2}Z. Therefore we may

choose F = ∅ and K = E2. Then

dimH((
√

5,
√

12) ∩M) ≥ min{2 ⋅ dimH E2,1} = min(2 ⋅ 0.54318,1) = 1,

and conclude that t1 ≤
√

12.
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Strategy by Bumby T = 3.334369

2∗

212∗12

21112∗121

111112∗121

21112∗1222

121112∗12

21112∗122112

2221112∗12211

1112∗12111

2̂1̂

1

2

2̂

1

1̂

2̂

21

2̂

1̂2

1

1

1 2

2̂

1̂

1

1̂

2̂1̂

2

2̂

2

1̂

1̂

√
3 < λ(1∗) <

√
12− 1

√
3 + 1 < λ(2∗) <

√
12

√
3 + 1 < λ(2∗2) < 2 + 2/

√
3

3.4 < λ(212∗12) <
√
12
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Lower bound: t1 ≥ 3.334384009

Following this strategy with T = 3.334384009 we get the set F of 24
words of length up to 24:

● The 14 words proposed by Bumby: 21212, 21112121, 211121222,
111112121, 12111212, 111212111, 21112122112, 222111212211,
12211112121122, 112211121221111, 22111121211221,
21122111212211, 2111212211112, 22221111212112222;

● The 10 additional words: 12222111121211222112,
121222211112121122211, 2122221111212112221111;
21111221112122111221, 1211112211121221112222;
2212211121221111112, 21221221112122111111,
122122111212211111111, 111221221112122111111122,
22221221112122111111112

Question
How to estimate the dimension of the set X which we obtain from E2

after removing all numbers whose continued fraction expansion
contains these strings? (It turns out 0.5 − 10−6 < dimX < 0.5 − 10−8.)
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Intermission

The usability of the method of computing the first transition point t1
depends on our ability to estimate the Hausdorff dimension of the
Gauss–Cantor set of continued fractions.

Xr̄ ∶= {[0;a1, a2, . . .] ∣ an ∈ {1,2}, with extra restrictions

ajaj+1 . . . aj+r1 ≠ di1di2 . . . dir1 , i1i2 . . . ir1 ∈ {1,2}r1

ajaj+1 . . . aj+r2 ≠ di1di2 . . . dir2 , i1i2 . . . ir2 ∈ {1,2}r2

∗ ∗ ∗

ajaj+1 . . . aj+rk ≠ di1di2 . . . dirk , i1i2 . . . irk ∈ {1,2}rk} ⊊ E2

with k ≤ 24 and rj ≤ 24 for all 1 ≤ j ≤ k.

the end of part 2: a method for computing t1

next is part 3: computation of dimension
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Step 1: Introduce a dynamical system

Idea
To compute the Hausdorff dimension of a bounded set X ⊂ B ⊂ R we
want to realise it as a limit set of an iterated function scheme.

More precisely, we want to find a finite family of uniformly
contracting maps T = {T1, . . . , Tk} such that Tj(B) ⊂ B for all
1 ≤ j ≤ k and X is the limit set for T :

x ∈X ⇐⇒
there exists y ∈ B and a sequence {jn} ∈ {1, . . . , k}N such that

x = lim
n→∞Tj1 ○ . . . ○ Tjn−1 ○ Tjn(y)

In fact, since all Tj are uniformly contracting, i.e. ∣T ′j ∣ < 1 − ε for some
ε > 0, the limit depends only on the sequence jn, and not on the
reference point y.
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Toy example

X = {[0;a1, a2, . . . , ] ∣ aj ∈ {1,2}, ajaj+1aj+2 ≠ 121,212}

We define a Markov iterated function scheme of 4 maps parametrised
by strings j̄ ∈ A = {1,2}2 and a transition matrix M

Tj1j2(x) =
1

j1 +
1

j2 + x

M =
⎛
⎜⎜⎜
⎝

1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1

⎞
⎟⎟⎟
⎠

Columns and rows encoded by A = {11,12,21,22}
Mi1i2,j1j2 = 1⇐⇒ j1j2i1i2 doesn’t contain 121 or 212.

The limit set of {Tj}j̄∈A with respect to M is

{ lim
n→+∞Tj̄1 ○ ⋯ ○ Tj̄n(0) ∣ j̄k ∈ A,Mj̄k,j̄k+1 =1,1≤k≤n − 1} =X

18 / 24



Step 2: Introduce the operators
Idea
The estimates on the Hausdorff dimension of the limit set of an
iterated function scheme of uniform contractions come from the study
of associated bounded linear operators.

Let S ∶= [0,1] × {1, . . . , ∣A∣}. Define the maps Tj ∶S → S,
Tj(x, k) = (Tj(x), j), consider the Banach space of functions C2(S)
and the family of linear operators Lt ∶ C2(S)→ C2(S):

[Ltw̄]k(x, k) =
∣A∣
∑
j=1

M(j, k) ⋅ ∣Tj(x, k)′∣t ⋅ w̄j(Tj(x, k)) (t > 0)

The operator is called the transfer operator for the iterated function
scheme. Let ρ(t) be the spectral radius of Lt.

Lemma (after Bowen and Ruelle, from 1980s)
The map t↦ ρ(Lt) is strictly monotone decreasing and the solution to
ρ(Lt) = 1 is t = dimH(X).
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Step 3: Estimates on ρ(Lt)
The spectral radius is an isolated eiegenvalue and we can use

Lemma (M. Pollicott & P.V., 2020)
Let ∣A∣ =∶ d and choose t0 < t1

1 If there exist d positive polynomials fj ∶ [0,1]→ R+ such that

inf
x

[Lt0 f̄]j(x)
fj(x)

> 1 for all j = 1, . . . , d Ô⇒ then ρ(Lt0) > 1.

2 If there exist d positive polynomials gj ∶ [0,1]→ R+ such that

sup
x

[Lt1 ḡ]j(x)
gj(x)

< 1 for all j = 1, . . . , d Ô⇒ then ρ(Lt1) < 1.

This lemma gives us a way to estimate the dimension.

Corollary
If we can find fj , gj as above then t0 < dimH(X) < t1.
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Step 4: Collocation method for test
functions

● Fix a small atural number m (e.g., m = 8 works).
● We can introduce

1 pk(x) ∈ C([0,1]) — the Lagrange polynomials (1 ≤ k ≤m ), and
2 xk ∈ [0,1] — the Chebyshev nodes (1 ≤ k ≤m )

so that pi(xj) = δij , for all 1 ≤ i, j ≤m
● Introducing d = ∣A∣ small m ×m matrices

Bj,t(i, l) ∶= ∣T ′j(xi)∣t ⋅ pl(Tj(xi))
we get a dm × dm matrix At given by

At =
⎛
⎜⎜⎜
⎝

M1,1 ⋅B1,t M2,1 ⋅B2,t . . . Md,1 ⋅Bd,t

M1,2 ⋅B1,t M2,2 ⋅B2,t . . . Md,2 ⋅Bd,t

⋮ ⋮ ⋱ ⋮
M1,d ⋅B1,t M2,d ⋅B2,t . . . Md,d ⋅Bd,t

⎞
⎟⎟⎟
⎠
.

● Let wt = (w1
t ,⋯,wdm

t ) be the (left) eigenvector for the largest
eigenvalue.

● Finally, set fj(x) =
m

∑
k=1

w
(j−1)m+k
t pk(x).
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Step 5: Verification

To apply the “min-max” principle, we need to confirm that

1 fj > 0; and

2 supx
[Ltf]j(x)

fj(x) < 1 (or infx
[Ltg]j(x)

gj(x) > 1 )

Fortunately, fj is a polynomial, so its derivative can be computed
with arbitrary precision, this allows us to verify the first inequality.
To verify the second inequality, we differentiate

([Ltf]j
fj

)
′
= ([Ltf]j)′ ⋅ fj − (fj)′ ⋅ [Ltf]j

(fj)2

In the case of X, the numerator is sum a rational functions with

coefficients (x+n1

x+n2
)
t
, n1, n2 ∈ N. It turns out that

([Ltfj])′ ⋅ fj − (fj)′ ⋅ [Ltfj]→ 0 as m→∞

exponentially fast (so that m = 8 is sufficient).
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Numerical challenges

1 The construction of matrix M which gives Markov condition
requires analysing of 22n words of length 2n looking for forbidden
substrings

2 For n = 17 the matrix M would take 2GB (and we need n = 24)

3 The matrix At is even larger: for n = 17 and m = 6 it would take
1512GB to store (and we need its eigenvector!)

4 The best method for the computation of the eigenvector is the
power method, it has complexity a bit more than O(n2.5)

Lemma (Matheus, Moreira, Pollicott, & V. 2021)
Assume that the columns j1 and j2 of the Markov matrix M are
identical, i.e. for all 1 ≤ k ≤md we have that Mk,j1 ≡Mk,j2 . Then any
eigenvector f̄ of At lies in the subspace of S for which fj1 = fj2 .

This is a huge help: In the case of the set X the Markov matrix has
3940388 columns of which only 429 are pairwise distinct. A reduction
procedure allows to replace the matrix At of size ≈ 31 ⋅ 108 with a
matrix of size 429 ⋅ 8 = 3432 only!
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Summary

1 We show that the first transition point

t1 ∶= inf {t ∈ R ∣ dim(M ∩ (−∞, t)) = 1} = 3.334384 . . .

2 We improve the dimension bounds

0.537152 < dim(M ∖L) < 0.796445.

3 We identify several non-affine Cantor sets in M ∖L and
demonstrate that M ∖L has a rich structure.

4 We give a method for computing Hausdorff dimension of fairly
complicated Gauss–Cantor sets.

Thank you for your time
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