Computing Hausdorff dimension of Gauss-Cantor sets and its applications to the study of classical Markov spectrum

Polina Vytnova (joint work with Carlos Matheus, Carlos Moreira, and Mark Pollicott)

University of Warwick

June 2021

A computation is a temptation that should be resisted as long as possible.

J.P. Boyd

Markov and Lagrange spectra

The continued fraction of $x \in (0, 1)$ is an expression

$$x = [0; \alpha_1, \dots, \alpha_n, \dots] := \frac{1}{\alpha_1} + \frac{1}{\alpha_2} + \frac{1}{\alpha_3} + \frac$$

Consider a set of bi-infinite sequences $(\mathbb{N}^*)^{\mathbb{Z}}$ and Bernoulli shift $\sigma: (\mathbb{N}^*)^{\mathbb{Z}} \to (\mathbb{N}^*)^{\mathbb{Z}}; \qquad \sigma((\alpha_n)_{n \in \mathbb{Z}}) = (\alpha_{n+1})_{n \in \mathbb{Z}}.$

Introduce a map

$$\lambda : (\mathbb{N}^*)^{\mathbb{Z}} \to \mathbb{R} \qquad \lambda(\underline{\alpha}) = [\alpha_0; \alpha_1, \alpha_2, \dots] + [0; \alpha_{-1}, \alpha_{-2}, \dots].$$

Definition (Perron, 1921)

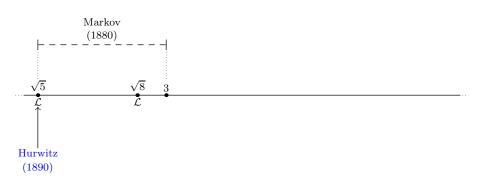
The Lagrange value of $\alpha \in (\mathbb{N}^*)^{\mathbb{Z}}$ is $\ell(\alpha) \coloneqq \limsup_{n \to \infty} \lambda(\sigma^n \alpha)$ The Markov value of $\alpha \in (\mathbb{N}^*)^{\mathbb{Z}}$ is $m(\alpha) \coloneqq \sup_{n \in \mathbb{Z}} \lambda(\sigma^n \alpha)$. The collection of Lagrange (Markov) values is called the Lagrange (Markov) spectrum.

$$\mathcal{L} \coloneqq \left\{ \ell(\alpha) \mid \alpha \in (\mathbb{N}^*)^{\mathbb{Z}} \right\} \quad \text{ and } \quad \mathcal{M} \coloneqq \left\{ m(\alpha) \mid \alpha \in (\mathbb{N}^*)^{\mathbb{Z}} \right\}.$$

Study of the spectra — I

Markov, 1880 $\mathcal{L} \cap (\sqrt{5}, 3) = \mathcal{M} \cap (\sqrt{5}, 3) = \{\sqrt{5} < \sqrt{8} < \sqrt{221}/5 < \dots\}$ is a countable set. (Proof uses Markov triples).

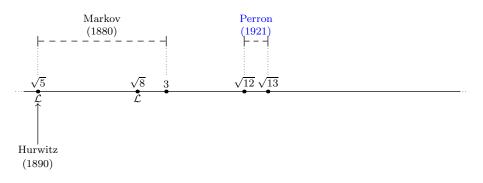
Study of the spectra — II



Hurwitz, 1890

 $\min \mathcal{L}$ = $\sqrt{5}.$ (Proof uses a more classical definition via best approximants).

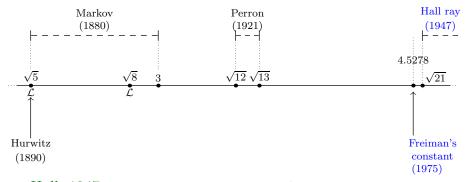
Study of the spectra — III



Perron, 1921

 $(\sqrt{12},\sqrt{13}) \cap \mathcal{M} = \emptyset$, while $\sqrt{12},\sqrt{13} \in \mathcal{L}$. Moreover, $\mathcal{L} \subset \mathcal{M}$ and both sets are closed subsets of \mathbb{R} .

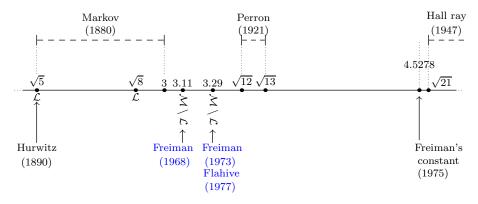
Study of the spectra — IV



Hall, 1947: There exists $c \in \mathbb{R}$ such that $[c, +\infty) \subset \mathcal{L} \subset \mathcal{M}$. Schecker & Freiman, 1963: One can take $c = \sqrt{21}$ above. Freiman, 1975: The smallest possible c is

$$c_F = \frac{2221564096 + 283748\sqrt{462}}{491993569}$$

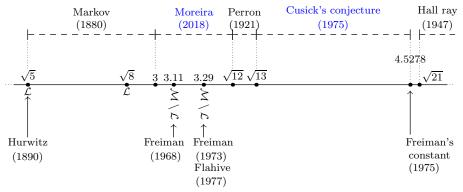
Study of the spectra — V



Freiman 1968, 1973; Flahive 1977

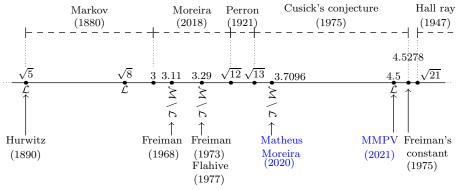
Near 3.11 and 3.29 the set $\mathcal{M} \setminus \mathcal{L}$ contains two countable subsets.

Study of the spectra — VI



Cusick's conjecture, 1975: $(\mathcal{M} \smallsetminus \mathcal{L}) \cap [\sqrt{12}, +\infty) = \emptyset$. Bernstein's conjecture, 1973: $[4.1, 4.52] \subset \mathcal{L}$. Moreira, 2018: $\dim(\mathcal{L} \cap (-\infty, t)) = \dim(\mathcal{M} \cap (-\infty, t))$ and the function $f: t \mapsto \dim(\mathcal{M} \cap (-\infty, t))$ is continuous. Moreover, $f(\sqrt{12}) = 1$ and $f(3 + \varepsilon) > 0$ for any $\varepsilon > 0$.

Study of the spectra — VII



Cusick's conjecture, 1975: $(\mathcal{M} \times \mathcal{L}) \cap [\sqrt{12}, +\infty) = \emptyset$. Bernstein's conjecture, 1973: $[4.1, 4.52] \subset \mathcal{L}$. Moreira, 2018: $\dim(\mathcal{L} \cap (-\infty, t)) = \dim(\mathcal{M} \cap (-\infty, t))$ and the function $f: t \mapsto \dim(\mathcal{M} \cap (-\infty, t))$ is continuous. Moreover, $f(\sqrt{12}) = 1$ and $f(3 + \varepsilon) > 0$ for any $\varepsilon > 0$.

Intermission

Today we are concerned with the function f from the last statement:

Moreira, 2018: $\dim(\mathcal{L} \cap (-\infty, t)) = \dim(\mathcal{M} \cap (-\infty, t))$ and the function $f:t \mapsto \dim(\mathcal{M} \cap (-\infty, t))$ is continuous. Moreover, $f(\sqrt{12}) = 1$ and $f(3 + \varepsilon) > 0$ for any $\varepsilon > 0$.

Clearly, f is a monotone increasing function.

Define the first transition:

 $t_1 \coloneqq \inf \{t \in \mathbb{R} \mid \dim(\mathcal{M} \cap (-\infty, t)) = 1\}$

Can we determine the value of t_1 ? (By Moreira's result $3 < t_1 < \sqrt{12}$)

The end of part 1: introduction next is part 2: a method for computing t_1

Goal for today's talk

To give a rigourous and accurate estimate on the first transition point

$$t_1 \coloneqq \inf \left\{ t \in \mathbb{R} \mid \dim(\mathcal{M} \cap (-\infty, t)) = 1 \right\}$$

In 1982 Bumby gave heuristic bounds: $3.33437 < t_1 < 3.33440$. We shall follow the same technique.

Preliminaries

• Consider a set of continued fractions of 1's and 2's:

$$E_2 \coloneqq [a = [0; \alpha_1, \alpha_2, \dots] \mid \alpha_j \in \{1, 2\}, j \ge 1]$$

Then min $E_2 = \frac{1}{2}(\sqrt{3}-1)$, max $E_2 = \sqrt{3}-1$ and dim $E_2 > 0.53128$.

• Let $\alpha \in \{1,2\}^{\mathbb{Z}}$. Then $m(\alpha) \ge \sqrt{5}$ and $m(\alpha) = \sqrt{5}$ if and only if $\alpha = 1, 1, 1, \ldots$

Approach to lower bound

Fix T > 0 and construct a finite set F of finite strings of 1's and 2's with a property that if $\alpha \in \{1,2\}^{\mathbb{Z}}$ doesn't contain a string from F, then $m(\alpha) < T$.

Claim. Let $K \subset E_2$ be such that for any $x \in K$ its continued fraction expansion doesn't contain a string from F. Then

 $M\cap (\sqrt{5},T) \subset 2+K+K.$

Proof: $m = \lambda(\alpha) = [2; \alpha_1, \alpha_2, \dots] + [0; \alpha_{-1}, \alpha_{-2} \dots].$ Since $\dim_H K + K = \dim_H K + \dim_B K$, $\dim_H K \leq 0.5$ gives $t_1 \geq T$. Example (Hall, 1971) If $\alpha \in \{1, 2\}^{\mathbb{Z}}$ doesn't contain a substring 121, then $m(\alpha) \leq \sqrt{10}.$ $\dim (\{[0; \alpha_1, \alpha_2, \dots] \mid \alpha_j \in \{1, 2\}, (\alpha_j \alpha_{j+1} \alpha_{j+2}) \neq (121), j \geq 1\}) \leq 0.45,$ therefore $t_1 \geq \sqrt{10} = 3.16 \dots$

Approach to upper bound

Let S be the maximal Markov value of strings which do not contain a substring from a finite set of finite strings F:

 $S = \max m(\alpha)$, where $\alpha \in \{1, 2\}^{\mathbb{Z}}$ doesn't contain a string from F

and let $K \subseteq E_2$ be such that for any $x \in K$ its continued fraction expansion doesn't contain a string from F. It was shown by Moreira that

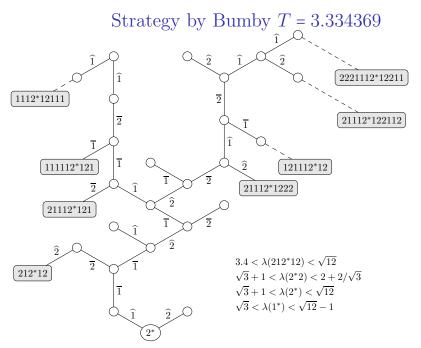
 $\min\{2 \cdot \dim_H K, 1\} \le \dim_H((\sqrt{5}, S) \cap M),$

Therefore $\dim_H K \ge 0.5$ implies $t_1 \le S$.

Example (Perron)

Note that $m(\alpha) \leq \sqrt{12}$ if and only if $\alpha \in \{1,2\}^{\mathbb{Z}}$. Therefore we may choose $F = \emptyset$ and $K = E_2$. Then

 $\dim_H((\sqrt{5}, \sqrt{12}) \cap M) \ge \min\{2 \cdot \dim_H E_2, 1\} = \min(2 \cdot 0.54318, 1) = 1,$ and conclude that $t_1 \le \sqrt{12}$.



Lower bound: $t_1 \ge 3.334384009$

Following this strategy with T = 3.334384009 we get the set F of 24 words of length up to 24:

- The 14 words proposed by Bumby: 21212, 21112121, 211121222, 111112121, 12111212, 111212111, 21112122112, 222111212211, 12211112121122, 11221112121111, 22111121211221, 21122111212112211, 2111212112212;

Question

How to estimate the dimension of the set X which we obtain from E_2 after removing all numbers whose continued fraction expansion contains these strings? (It turns out $0.5 - 10^{-6} < \dim X < 0.5 - 10^{-8}$.)

Intermission

The usability of the method of computing the first transition point t_1 depends on our ability to estimate the Hausdorff dimension of the Gauss–Cantor set of continued fractions.

$$\begin{split} X_{\bar{r}} \coloneqq \left\{ \begin{bmatrix} 0; a_1, a_2, \dots \end{bmatrix} \mid a_n \in \{1, 2\}, \text{ with extra restrictions} \\ & a_j a_{j+1} \dots a_{j+r_1} \neq d_{i_1} d_{i_2} \dots d_{i_{r_1}}, \ i_1 i_2 \dots i_{r_1} \in \{1, 2\}^{r_1} \\ & a_j a_{j+1} \dots a_{j+r_2} \neq d_{i_1} d_{i_2} \dots d_{i_{r_2}}, \ i_1 i_2 \dots i_{r_2} \in \{1, 2\}^{r_2} \\ & * & * \\ & a_j a_{j+1} \dots a_{j+r_k} \neq d_{i_1} d_{i_2} \dots d_{i_{r_k}}, \ i_1 i_2 \dots i_{r_k} \in \{1, 2\}^{r_k} \right\} \not\in E_2 \end{split}$$

with $k \leq 24$ and $r_j \leq 24$ for all $1 \leq j \leq k$.

The end of part 2: A method for computing t_1 Next is part 3: computation of dimension

Idea

To compute the Hausdorff dimension of a bounded set $X \subset B \subset \mathbb{R}$ we want to realise it as a limit set of an iterated function scheme.

More precisely, we want to find a finite family of uniformly contracting maps $\mathcal{T} = \{T_1, \ldots, T_k\}$ such that $T_j(B) \subset B$ for all $1 \leq j \leq k$ and X is the limit set for \mathcal{T} :

 $x \in X \iff$

there exists $y \in B$ and a sequence $\{j_n\} \in \{1, \ldots, k\}^{\mathbb{N}}$ such that

$$x = \lim_{n \to \infty} T_{j_1} \circ \ldots \circ T_{j_{n-1}} \circ T_{j_n}(y)$$

In fact, since all T_j are uniformly contracting, i.e. $|T'_j| < 1 - \varepsilon$ for some $\varepsilon > 0$, the limit depends only on the sequence j_n , and not on the reference point y.

Toy example

$$X = \left\{ [0; a_1, a_2, \dots,] \mid a_j \in \{1, 2\}, a_j a_{j+1} a_{j+2} \neq 121, 212 \right\}$$

We define a Markov iterated function scheme of 4 maps parametrised by strings $\overline{j} \in \mathcal{A} = \{1, 2\}^2$ and a transition matrix M

$$T_{j_1j_2}(x) = \frac{1}{j_1 + \frac{1}{j_2 + x}} \qquad M = \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & 0 & 0 & 1\\ 1 & 0 & 0 & 1\\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Columns and rows encoded by $\mathcal{A} = \{11, 12, 21, 22\}$ $M_{i_1i_2, j_1j_2} = 1 \iff j_1 j_2 i_1 i_2$ doesn't contain 121 or 212. The limit set of $\{T_j\}_{\overline{j} \in \mathcal{A}}$ with respect to M is

$$\left\{\lim_{n \to +\infty} T_{\overline{j}_1} \circ \cdots \circ T_{\overline{j}_n}(0) \mid \overline{j}_k \in \mathcal{A}, M_{\overline{j}_k, \overline{j}_{k+1}} = 1, 1 \le k \le n-1\right\} = X$$

Step 2: Introduce the operators

Idea

The estimates on the Hausdorff dimension of the limit set of an iterated function scheme of uniform contractions come from the study of associated bounded linear operators.

Let $S := [0,1] \times \{1, \ldots, |\mathcal{A}|\}$. Define the maps $T_j : S \to S$, $T_j(x,k) = (T_j(x), j)$, consider the Banach space of functions $C^2(S)$ and the family of linear operators $\mathcal{L}_t : C^2(S) \to C^2(S)$:

$$[\mathcal{L}_t \bar{w}]_k(x,k) = \sum_{j=1}^{|\mathcal{A}|} M(j,k) \cdot |T_j(x,k)'|^t \cdot \bar{w}_j(T_j(x,k)) \qquad (t > 0)$$

The operator is called the transfer operator for the iterated function scheme. Let $\rho(t)$ be the spectral radius of \mathcal{L}_t .

Lemma (after Bowen and Ruelle, from 1980s) The map $t \mapsto \rho(\mathcal{L}_t)$ is strictly monotone decreasing and the solution to $\rho(\mathcal{L}_t) = 1$ is $t = \dim_H(X)$.

Step 3: Estimates on $\rho(\mathcal{L}_t)$

The spectral radius is an isolated eiegenvalue and we can use Lemma (M. Pollicott & P.V., 2020) Let $|\mathcal{A}| =: d$ and choose $t_0 < t_1$

1 If there exist d positive polynomials $f_j : [0,1] \to \mathbb{R}^+$ such that

$$\inf_{x} \frac{[\mathcal{L}_{t_0}\bar{f}]_j(x)}{f_j(x)} > 1 \text{ for all } j = 1, \dots, d \implies \text{ then } \rho(\mathcal{L}_{t_0}) > 1.$$

2 If there exist d positive polynomials $g_j : [0,1] \to \mathbb{R}^+$ such that

$$\sup_{x} \frac{[\mathcal{L}_{t_1}\bar{g}]_j(x)}{g_j(x)} < 1 \text{ for all } j = 1, \dots, d \implies \text{ then } \rho(\mathcal{L}_{t_1}) < 1.$$

This lemma gives us a way to estimate the dimension.

Corollary

If we can find f_j, g_j as above then $t_0 < \dim_H(X) < t_1$.

Step 4: Collocation method for test functions

- Fix a small atural number m (e.g., m = 8 works).
- We can introduce

1 $p_k(x) \in C([0,1])$ — the Lagrange polynomials $(1 \le k \le m)$, and 2 $x_k \in [0,1]$ — the Chebyshev nodes $(1 \le k \le m)$ so that $p_i(x_j) = \delta_{ij}$, for all $1 \le i, j \le m$

• Introducing $d = |\mathcal{A}|$ small $m \times m$ matrices

 $B^{j,t}(i,l) \coloneqq |T'_j(x_i)|^t \cdot p_l(T_j(x_i))$

we get a $dm \times dm$ matrix A^t given by

$$A^{t} = \begin{pmatrix} M_{1,1} \cdot B^{1,t} & M_{2,1} \cdot B^{2,t} & \dots & M_{d,1} \cdot B^{d,t} \\ M_{1,2} \cdot B^{1,t} & M_{2,2} \cdot B^{2,t} & \dots & M_{d,2} \cdot B^{d,t} \\ \vdots & \vdots & \ddots & \vdots \\ M_{1,d} \cdot B^{1,t} & M_{2,d} \cdot B^{2,t} & \dots & M_{d,d} \cdot B^{d,t} \end{pmatrix}$$

• Let $w_t = (w_t^1, \dots, w_t^{dm})$ be the (left) eigenvector for the largest eigenvalue.

• Finally, set
$$f_j(x) = \sum_{k=1}^m w_t^{(j-1)m+k} p_k(x)$$
.

Step 5: Verification

To apply the "min-max" principle, we need to confirm that

1
$$f_j > 0$$
; and
2 $\sup_x \frac{[\mathcal{L}_t f]_j(x)}{f_j(x)} < 1$ (or $\inf_x \frac{[\mathcal{L}_t g]_j(x)}{g_j(x)} > 1$)

Fortunately, f_j is a polynomial, so its derivative can be computed with arbitrary precision, this allows us to verify the first inequality. To verify the second inequality, we differentiate

$$\left(\frac{[\mathcal{L}_t f]_j}{f_j}\right)' = \frac{([\mathcal{L}_t f]_j)' \cdot f_j - (f_j)' \cdot [\mathcal{L}_t f]_j}{(f_j)^2}$$

In the case of X, the numerator is sum a rational functions with coefficients $\left(\frac{x+n_1}{x+n_2}\right)^t$, $n_1, n_2 \in \mathbb{N}$. It turns out that

$$([\mathcal{L}_t f_j])' \cdot f_j - (f_j)' \cdot [\mathcal{L}_t f_j] \to 0 \text{ as } m \to \infty$$

exponentially fast (so that m = 8 is sufficient).

Numerical challenges

- The construction of matrix M which gives Markov condition requires analysing of 2^{2n} words of length 2n looking for forbidden substrings
- **2** For n = 17 the matrix M would take 2GB (and we need n = 24)
- **3** The matrix A^t is even larger: for n = 17 and m = 6 it would take 1512GB to store (and we need its eigenvector!)
- (a) The best method for the computation of the eigenvector is the power method, it has complexity a bit more than $O(n^{2.5})$

Lemma (Matheus, Moreira, Pollicott, & V. 2021)

Assume that the columns j_1 and j_2 of the Markov matrix M are identical, i.e. for all $1 \le k \le md$ we have that $M_{k,j_1} \equiv M_{k,j_2}$. Then any eigenvector \overline{f} of A^t lies in the subspace of S for which $f_{j_1} = f_{j_2}$. This is a huge help: In the case of the set X the Markov matrix has

3940388 columns of which only 429 are pairwise distinct. A reduction procedure allows to replace the matrix A^t of size $\approx 31 \cdot 10^8$ with a matrix of size $429 \cdot 8 = 3432$ only!

Summary

1 We show that the first transition point

 $t_1 := \inf \{ t \in \mathbb{R} \mid \dim(\mathcal{M} \cap (-\infty, t)) = 1 \} = 3.334384...$

2 We improve the dimension bounds

 $0.537152 < \dim(\mathcal{M} \smallsetminus \mathcal{L}) < 0.796445.$

- **3** We identify several non-affine Cantor sets in $\mathcal{M} \times \mathcal{L}$ and demonstrate that $\mathcal{M} \times \mathcal{L}$ has a rich structure.
- (a) We give a method for computing Hausdorff dimension of fairly complicated Gauss–Cantor sets.

Thank you for your time