How inhomogeneous Cantor sets can pass a point

Zhiqiang Wang zhiqiangwzy@163.com

Department of Mathematics East China Normal University, Shanghai, China

> One World Numeration Seminar November 9, 2021

joint work with Wenxia Li

Contents

2 Main results

3 Outline of proofs

β -expansion

• β -expansion: for $1 < \beta \leq 2$ and $x \in I_{\beta} := [0, 1/(\beta - 1)]$, there exists a sequence $(\varepsilon_n)_{n=1}^{\infty} \in \Omega := \{0, 1\}^{\mathbb{N}}$ such that

$$x = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{\beta^n}.$$
 (1.1)

Every sequence $(\varepsilon_n)_{n=1}^{\infty} \in \Omega$ satisfying (1.1) is called an expansion of x in base β .

• We are concerned with two sets

 $\begin{aligned} \mathcal{U}_{\beta} &:= \left\{ x \in I_{\beta} : x \text{ has a unique expansion in base } \beta \right\}, \ 1 < \beta \leq 2; \\ \mathscr{U}(x) &:= \left\{ 1 < \beta \leq 2 : x \in \mathcal{U}_{\beta} \right\}, \ x \geq 0. \end{aligned}$

Homogeneous IFS family

The β -expansion can be viewed as an iterated function system (IFS)

$$\Phi_{\beta} := \left\{ f_{\beta,0}(x) = \frac{x}{\beta}, \ f_{\beta,1}(x) = \frac{x+1}{\beta} \right\}, \ 1 < \beta \le 2.$$

- The interval I_{β} is the invariant set for the IFS Φ_{β} .
- We define the natural projection $\pi_{\beta}: \Omega \to I_{\beta}$ by

$$\pi_{\beta}((\varepsilon_{n})) := \lim_{n \to \infty} f_{\beta,\varepsilon_{1}} \circ f_{\beta,\varepsilon_{2}} \circ \cdots \circ f_{\beta,\varepsilon_{n}}(0) = \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{\beta^{n}}.$$

Then we have

$$\mathcal{U}_{\beta} = \left\{ x \in I_{\beta} : \#\pi_{\beta}^{-1}(\{x\}) = 1 \right\}.$$

Inhomogeneous IFS family

Fix $\alpha > 0$. We consider the inhomogeneous IFS

$$\Phi_{\lambda} = \Phi_{\lambda,\alpha} := \{ f_{\lambda,0}(x) = \lambda x, \ f_{\lambda,1}(x) = \lambda^{\alpha}(x+1) \}, \ 0 < \lambda \le \gamma,$$
(1.2)

where $\gamma := \gamma(\alpha)$ satisfying the equation $\gamma + \gamma^{\alpha} = 1$.

- Let $K_{\lambda} := K_{\lambda,\alpha}$ be the invariant set of the IFS Φ_{λ} .
- When 0 < λ < γ, every x ∈ K_λ has a unique coding; when λ = γ, K_γ = [0, γ^{α-1}] and except for countably many points which has two codings, every x ∈ K_γ has a unique coding.

For $0 \le x \le \gamma^{\alpha - 1}$, we define

$$\Lambda(x) = \Lambda_{\alpha}(x) := \{ 0 < \lambda \le \gamma : x \in K_{\lambda} \}, \qquad (1.3)$$

which is analogous to $\mathscr{U}(x)$ considered in β -expansion.

Question: How about the set $\Lambda(x)$?

• When $\alpha = 1$, the IFS is homogeneous,

$$\Phi_{\lambda} = \{f_{\lambda,0}(x) = \lambda x, \ f_{\lambda,1}(x) = \lambda(x+1)\}, \ 0 < \lambda \le 1/2.$$

Remark

The set $\Lambda(x)$ has been studied in [K. Jiang, D. Kong, W. Li, How likely can a point be in different Cantor sets, arXiv:2102.13264] for the case $\alpha = 1$.

Note that

$$\Lambda(0) = (0, \gamma], \ \Lambda(\gamma^{\alpha - 1}) = \{\gamma\},\$$

and

$$\gamma \in \Lambda(x)$$
 for $0 \le x \le \gamma^{\alpha - 1}$

We shall focus on the set $\Lambda(x)$ for $0 < x < \gamma^{\alpha-1}$.

2 Main results

3 Outline of proofs

Main results-1

Theorem

For $0 < x < \gamma^{\alpha-1}$, the set $\Lambda(x)$ is a Cantor set. Moreover, the mapping $x \mapsto \Lambda(x)$ is continuous on $(0, \gamma^{\alpha-1})$ with respect to the Hausdorff metric.

It is easy to calculate that

$$\min \Lambda(x) = \left(\frac{x}{1+x}\right)^{1/\alpha}$$
 and $\max \Lambda(x) = \gamma$.

Main results-2

Theorem

For
$$0 < x < \gamma^{\alpha-1}$$
 and $\lambda \in \Lambda(x)$, we have

$$\lim_{\delta \to 0^+} \dim_H \left(\Lambda(x) \cap (\lambda - \delta, \lambda + \delta) \right) = \frac{\log \gamma}{\log \lambda} = \dim_H K_{\lambda}.$$

Corollary

For $0 < x < \gamma^{\alpha-1}$, the set $\Lambda(x)$ is a Lebesgue null set with full Hausdorff dimension in \mathbb{R} .

Main results-3

Theorem

For
$$x_1, x_2, \cdots, x_\ell \in (0, \gamma^{\alpha-1})$$
, we have

$$\dim_H \left(\bigcap_{i=1}^{\ell} \Lambda(x_i)\right) = 1.$$

1 Motivation

2 Main results

3 Outline of proofs

• Symbolic space: $\Omega = \{0, 1\}^{\mathbb{N}}$. The *lexicographical order* on Ω is denoted by \prec , this is, $i_1 i_2 i_3 \cdots \prec j_1 j_2 j_3 \cdots$ if there exists a $n \ge 1$ such that $i_1 = j_1, \cdots, i_{n-1} = j_{n-1}, i_n < j_n$. The metric ρ on Ω is defined by

$$\rho(i_1 i_2 i_3 \cdots, j_1 j_2 j_3 \cdots) := 2^{-\min\{n \ge 1: i_n \ne j_n\}}.$$

Projection mapping: for $0 < \lambda \leq \gamma$, the mapping $\pi_{\lambda} : \Omega \to K_{\lambda}$ is defined by

$$\pi_{\lambda}(i_{1}i_{2}i_{3}\cdots) := \lim_{n \to \infty} f_{\lambda,i_{1}} \circ f_{\lambda,i_{2}} \circ \cdots \circ f_{\lambda,i_{n}}(0)$$
$$= \sum_{n=1}^{\infty} i_{n}\lambda^{n+(\alpha-1)(i_{1}+i_{2}+\cdots+i_{n})}.$$

For $0 < x < \gamma^{\alpha-1}$, we define the mapping $\Psi_x : \Lambda(x) \to \Omega$ by

$$\Psi_x(\lambda) = \pi_\lambda^{-1}(x) \text{ for } \lambda \in \Lambda(x).$$
(3.1)

- For $\lambda \in \Lambda(x) \setminus \{\gamma\}$, the mapping $\pi_{\lambda} : \Omega \to K_{\lambda}$ is one-to-one correspondence and so $\pi_{\lambda}^{-1}(x) \in \Omega$ is well-determined.
- For $\lambda = \gamma$, the mapping $\pi_{\gamma} : \Omega \to K_{\gamma} = [0, \gamma^{\alpha-1}]$ is not injective. We use $\pi_{\gamma}^{-1}(x)$ to denote either the unique sequence or the bigger one when there exist two distinct sequences in Ω which maps to x by π_{γ} .

Symbolic sets of $\Lambda(x)$

Proposition

For $0 < x < \gamma^{\alpha-1}$, the mapping Ψ_x is strictly decreasing with respect to the lexicographical order and bijective between $\Lambda(x)$ and the set

 $\Omega(x) = \{i_1 i_2 i_3 \cdots \in \Omega : \Psi_x(\gamma) \preceq i_1 i_2 i_3 \cdots \}.$

Moreover, the mapping $\Psi_x : \Lambda(x) \to (\Omega(x), \rho)$ is a homeomorphism.

Then we can prove the first main result.

Theorem (Main results-1)

For $0 < x < \gamma^{\alpha-1}$, the set $\Lambda(x)$ is a Cantor set. Moreover, the mapping $x \mapsto \Lambda(x)$ is continuous on $(0, \gamma^{\alpha-1})$ with respect to the Hausdorff metric.

Proposition

For
$$0 < x < \gamma^{\alpha-1}$$
 and $0 < \lambda \leq \gamma$, we have

$$\dim_H \left(\Lambda(x) \cap [0, \lambda] \right) \le \dim_H K_\lambda = \frac{\log \gamma}{\log \lambda}.$$
(3.2)

Proof

We assume that $(\frac{x}{x+1})^{1/\alpha} < \lambda < \gamma$. Consider

$$\Lambda(x) \cap [0,\lambda] \xrightarrow{\Psi_x} \Omega \xrightarrow{\pi_\lambda} K_{\lambda}.$$

Take $\lambda_1, \lambda_2 \in \Lambda(x) \cap [0, \lambda]$ with $\lambda_1 < \lambda_2$. We can show that

$$\pi_{\lambda}(\Psi_{x}(\lambda_{1})) - \pi_{\lambda}(\Psi_{x}(\lambda_{2})) \geq \frac{\alpha x(1 - \lambda - \lambda^{\alpha})}{\lambda}(\lambda_{2} - \lambda_{1}).$$

Then we have $\dim_H (\Lambda(x) \cap [0, \lambda]) \leq \dim_H \pi_\lambda \circ \Psi_x (\Lambda(x) \cap [0, \lambda]) \leq \dim_H K_\lambda$.

Proposition

For $0 < x < \gamma^{\alpha-1}$ and $\lambda \in \Lambda(x) \setminus \{\gamma\}$, if the sequence $\Psi_x(\lambda)$ does not end with 0^{∞} , then for any $\delta > 0$ we have

$$\dim_H \left(\Lambda(x) \cap [\lambda, \lambda + \delta] \right) \ge \frac{\log \gamma}{\log \lambda}.$$
(3.3)

Proof

Write $\Psi_x(\lambda) = d_1 d_2 d_3 \cdots$. Note that $\Psi_x(\gamma) \prec \Psi_x(\lambda)$. Choose a $n_0 \ge 1$ such that $\Psi_x(\gamma) \prec d_1 d_2 \cdots d_{n_0} 0^{\infty}$. Then choose an infinite sequence $n_0 < n_1 < n_2 < \cdots$ such that $d_{n_k} = 1$ for $k \ge 1$. For $k \ge 1$, we define

$$\Omega_{\lambda,k} = \left\{ d_1 \cdots d_{n_k-1} 0 i_1 i_2 i_3 \cdots : i_1 i_2 i_3 \cdots \text{ does not contain } 0^k \right\}$$

Proof

Recall that

$$\Psi_x(\Lambda(x)\cap[\lambda,\gamma]) = \{i_1i_2i_3\cdots\in\Omega: \Psi_x(\gamma)\preceq i_1i_2i_3\cdots\preceq\Psi_x(\lambda)\}.$$

Note that $\Omega_{\lambda,k} \subseteq \Psi_x(\Lambda(x) \cap [\lambda, \gamma])$ for $k \ge 1$. By the continuity of Ψ_x , $\Omega_{\lambda,k} \subseteq \Psi_x(\Lambda(x) \cap [\lambda, \lambda + \delta])$ for sufficiently large k.

$$\Psi_x^{-1}(\Omega_{\lambda,k}) \xrightarrow{\Psi_x} \Omega_{\lambda,k} \xrightarrow{\pi_\lambda} \pi_\lambda(\Omega_{\lambda,k}).$$

Take $\lambda_1, \lambda_2 \in \Psi_x^{-1}(\Omega_{\lambda,k})$ with $\lambda_1 < \lambda_2$. We can show that

$$\pi_{\lambda}(\Psi_{x}(\lambda_{1})) - \pi_{\lambda}(\Psi_{x}(\lambda_{2})) \leq \frac{C_{\alpha}(\lambda_{2} - \lambda_{1})}{\lambda^{k+\alpha}(1 - \lambda^{\alpha})}.$$

It follows that $\dim_H (\Lambda(x) \cap [\lambda, \lambda + \delta]) \ge \dim_H \pi_{\lambda}(\Omega_{\lambda,k})$. Letting $k \to \infty$, we obtain the desired result.

Proposition

For $0 < x < \gamma^{\alpha-1}$ and $\lambda \in \Lambda(x)$, if the sequence $\Psi_x(\lambda)$ does not end with 1^{∞} , then for any $\delta > 0$ we have

$$\dim_H \left(\Lambda(x) \cap [\lambda - \delta, \lambda] \right) \ge \frac{\log \gamma}{\log \lambda}.$$
(3.4)

Now we can conclude the second main result.

Theorem (main results-2)

For $0 < x < \gamma^{\alpha - 1}$ and $\lambda \in \Lambda(x)$, we have

$$\lim_{\delta \to 0^+} \dim_H \left(\Lambda(x) \cap (\lambda - \delta, \lambda + \delta) \right) = \frac{\log \gamma}{\log \lambda} = \dim_H K_{\lambda}.$$

Thickness of Cantor set

Let F be a Cantor set in \mathbb{R} and let F_0 be the convex hull of F.

- Write $F_0 \setminus F = \bigcup_{j=1}^{\infty} V_j$ as the union of countable disjoint open intervals.
- The sequence $\mathscr{V} = \{V_j\}_{j=1}^{\infty}$ is called a *defining sequence* for F. If moreover $|V_1| \ge |V_2| \ge |V_3| \ge \cdots$, we call \mathscr{V} an ordered defining sequence for F, where |E| denotes the diameter of the set E.
- Let $F_j = F_0 \setminus \bigcup_{k=1}^j V_k$, which is a finite union of closed intervals.
- The open interval V_j is contained in some connected component of F_{j-1} , denoted by F_{j-1}^* . We can write

$$F_{j-1}^* = L_{\mathscr{V}}(V_j) \cup V_j \cup R_{\mathscr{V}}(V_j),$$

where $L_{\mathscr{V}}(V_j)$ and $R_{\mathscr{V}}(V_j)$ are two closed intervals.

We define

$$\tau_{\mathscr{V}}(F) = \inf \left\{ \frac{|L_{\mathscr{V}}(V_j)|}{|V_j|}, \frac{|R_{\mathscr{V}}(V_j)|}{|V_j|} : j \ge 1 \right\}.$$

The *thickness* of F is defined by

$$\tau(F) = \sup_{\mathscr{V}} \tau_{\mathscr{V}}(F)$$

where the supremum is taken over all defining sequences $\mathscr{V} = \{V_j\}_{j=1}^{\infty}$ for F [Newhouse-1979]. It is shown that $\tau(F) = \tau_{\mathscr{V}}(F)$ for every ordered defining sequence \mathscr{V} for F [Williams-1991].

Lemma (Palis-Takens-1993, p. 77)

If F is a Cantor set in \mathbb{R} , then we have

$$\dim_H F \ge \frac{\log 2}{\log\left(2 + \frac{1}{\tau(F)}\right)}.$$

We say that two Cantor sets in \mathbb{R} are *interleaved* if each set intersects the interior of the convex hull of the other set.

Theorem (Hunt-Kan-Yorke, 1993)

There exists a function $\varphi : (0, \infty) \to (0, \infty)$ such that for all interleaved Cantor sets E and F with $\tau(E) \ge \varphi(t)$ and $\tau(F) \ge \varphi(t)$ there exists a Cantor subset $K \subseteq E \cap F$ with $\tau(K) \ge t$.

If $\xi = \min E = \min F$ (or $\xi = \max E = \max F$), from the proof of the above theorem, then the resulting Cantor set K also contains ξ . Let $\varphi(t)$ be as that in the above theorem.

Theorem

If E and F are two Cantor sets in \mathbb{R} with $\tau(E) \ge \varphi(t)$, $\tau(F) \ge \varphi(t)$, and $\xi = \max E = \max F$, then there exists a Cantor subset $K \subseteq E \cap F$ such that

 $\tau(K) \ge t \text{ and } \xi \in K.$

Construction of large thickness subsets of $\Lambda(x)$

Fix $0 < x < \gamma^{\alpha - 1}$, and write $\Psi_x(\gamma) = d_1 d_2 d_3 \cdots$.

- Let $\{n_1 < n_2 < \dots < n_k < \dots\} = \{n \ge 1 : d_n = 0\}.$
- For $k \ge 1$, we define

$$\Omega_{x,k} = \left\{ i_1 i_2 \cdots \in \Omega : d_1 \cdots d_{n_k-1} 10^\infty \leq i_1 i_2 \cdots \leq d_1 \cdots d_{n_k-1} 1^\infty \right\}.$$

• Let $F_k = \Psi_x^{-1}(\Omega_{x,k})$. Then we have $F_k \subseteq \Lambda(x)$ since $\Omega_{x,k} \subseteq \Omega(x)$. • Let $\eta_k = \Psi_x^{-1}(d_1d_2\cdots d_{n_k-1}1^\infty), \ \theta_k = \Psi_x^{-1}(d_1d_2\cdots d_{n_k-1}10^\infty)$. We define $F_{k,0} = [\eta_k, \theta_k]$, and for $\ell \ge 1$,

$$F_{k,\ell} = \bigcup_{i_1 \cdots i_\ell \in \{0,1\}^\ell} \left[\Psi_x^{-1}(d_1 \cdots d_{n_k-1} 1 i_1 \cdots i_\ell 1^\infty), \Psi_x^{-1}(d_1 \cdots d_{n_k-1} 1 i_1 \cdots i_\ell 0^\infty) \right].$$

•
$$F_k = \bigcap_{\ell=0}^{\infty} F_{k,\ell}.$$

$$[\eta_k, \theta_k] \setminus F_k = \bigcup_{\omega \in \Omega^*} V_{w,k},$$

where $\Omega^* = \bigcup_{n=0}^{\infty} \{0,1\}^n$ is the collection of all finite 0-1 words and $V_{\omega,k} = \left(\Psi_x^{-1}(d_1d_2\cdots d_{n_k-1}1\ \omega\ 10^\infty), \Psi_x^{-1}(d_1d_2\cdots d_{n_k-1}1\ \omega\ 01^\infty)\right).$ • We enumerate $\{V_{w,k}: \omega \in \Omega^*\}$ as $\mathscr{V}_k = \{V_{j,k}\}_{j=1}^{\infty}$ by $V_{\vartheta,k}, V_{0,k}, V_{1,k}, V_{00,k}, V_{01,k}, V_{11,k}, V_{000,k}, V_{001,k}, V_{010,k}, V_{011,k}, \cdots,$ For $\ell \ge 1$, we define

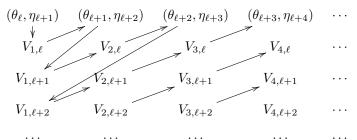
$$C_{\ell} = \{\gamma\} \cup \bigcup_{k=\ell}^{\infty} F_k = \Lambda(x) \cap [\eta_{\ell}, \gamma].$$

Note that

$$[\eta_{\ell}, \gamma] \setminus C_{\ell} = \bigcup_{k=\ell}^{\infty} (\theta_k, \eta_{k+1}) \cup \bigcup_{k=\ell}^{\infty} \bigcup_{j=1}^{\infty} V_{j,k}.$$

η_{ℓ}	θ_ℓ	$\eta_{\ell+1}$	$\theta_{\ell+1}$	$\eta_{\ell+2}$	$\theta_{\ell+2}$	γ
V _{1,ℓ}		V_{1,\ell+1}		V _{1,ℓ+2}		
V_{3,\ell}	V_{2,\ell}	$V_{3,\ell+1}$	$V_{2,\ell+1}$	$V_{3.\ell+2}$	$V_{2,\ell+2}$	
F_ℓ		$F_{\ell+1}$		$F_{\ell+2}$	2	

We enumerate $\{(\theta_k, \eta_{k+1}), V_{j,k} : k \ge \ell, j = 1, 2, \dots\}$ as the following



which gives us a defining sequence \mathscr{V} of C_{ℓ} .

Proposition

We have

$$\lim_{\ell \to \infty} \tau_{\mathscr{V}} (C_{\ell}) = \infty,$$

which implies

$$\lim_{\ell \to \infty} \tau \left(C_{\ell} \right) = \infty.$$

Now we can prove the third main result.

Theorem (main results-3)

For $x_1, x_2, \cdots, x_{\ell} \in (0, \gamma^{\alpha-1})$, we have

$$\dim_H\left(\bigcap_{i=1}^{\ell}\Lambda(x_i)\right) = 1.$$

The two-parameters case

Consider the inhomogeneous IFS

$$\Psi_{a,b} := \{f_0(x) = ax, \ f_1(x) = b(x+1)\}, \ a > 0, b > 0, a+b \le 1.$$

Let $E_{a,b}$ be the invariant set of the IFS $\Psi_{a,b}$. For x > 0, we define

$$\Upsilon(x) = \{(a,b) : x \in E_{a,b}, a > 0, b > 0, a + b \le 1\}.$$
(3.5)

Theorem

(i) $\Upsilon(x)$ is a Borel subset in \mathbb{R}^2 ;

(ii) $\Upsilon(x)$ is a Lebesgue null set with full Hausdorff dimension in \mathbb{R}^2 ; (iii) The intersection of $\Upsilon(x_1), \Upsilon(x_2), \cdots, \Upsilon(x_\ell)$ still has full Hausdorff dimension in \mathbb{R}^2 for any finitely many positive real number x_1, x_2, \cdots, x_ℓ .

B. R. Hunt, I. Kan, J. A. Yorke,
When Cantor sets intersect thickly.
Trans. Amer. Math. Soc. 339 (1993), no. 2, 869-888.

S. E. Newhouse,

The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms.

Publ. Math. No. 50 (1979), 349-399.

J. Palis, F. Takens,

Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcation. Cambridge University Press, 1993.

R. F. Williams,

How big is the intersection of two thick Cantor sets?

Continuum theory and dynamical systems, 163-175, Contemp. Math., 117, Amer. Math. Soc., Providence, RI, 1991.

Thank you!