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β-expansion

β-expansion: for 1 < β ≤ 2 and x ∈ Iβ := [0, 1/(β − 1)], there exists a

sequence (εn)∞n=1 ∈ Ω := {0, 1}N such that

x =
∞∑
n=1

εn
βn
. (1.1)

Every sequence (εn)∞n=1 ∈ Ω satisfying (1.1) is called an expansion of x

in base β.

We are concerned with two sets

Uβ := {x ∈ Iβ : x has a unique expansion in base β} , 1 < β ≤ 2;

U (x) := {1 < β ≤ 2 : x ∈ Uβ} , x ≥ 0.
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Homogeneous IFS family

The β-expansion can be viewed as an iterated function system (IFS)

Φβ :=

ß
fβ,0(x) =

x

β
, fβ,1(x) =

x+ 1

β

™
, 1 < β ≤ 2.

The interval Iβ is the invariant set for the IFS Φβ .

We define the natural projection πβ : Ω→ Iβ by

πβ((εn)) := lim
n→∞

fβ,ε1 ◦ fβ,ε2 ◦ · · · ◦ fβ,εn(0) =
∞∑
n=1

εn
βn
.

Then we have

Uβ =
¶
x ∈ Iβ : #π−1

β ({x}) = 1
©
.
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Inhomogeneous IFS family

Fix α > 0. We consider the inhomogeneous IFS

Φλ = Φλ,α := {fλ,0(x) = λx, fλ,1(x) = λα(x+ 1)} , 0 < λ ≤ γ, (1.2)

where γ := γ(α) satisfying the equation γ + γα = 1.

Let Kλ := Kλ,α be the invariant set of the IFS Φλ.

When 0 < λ < γ, every x ∈ Kλ has a unique coding; when λ = γ,

Kγ = [0, γα−1] and except for countably many points which has two

codings, every x ∈ Kγ has a unique coding.

For 0 ≤ x ≤ γα−1, we define

Λ(x) = Λα(x) := {0 < λ ≤ γ : x ∈ Kλ} , (1.3)

which is analogous to U (x) considered in β-expansion.

Question: How about the set Λ(x) ?
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When α = 1, the IFS is homogeneous,

Φλ = {fλ,0(x) = λx, fλ,1(x) = λ(x+ 1)} , 0 < λ ≤ 1/2.

Remark

The set Λ(x) has been studied in [K. Jiang, D. Kong, W. Li, How likely can

a point be in different Cantor sets, arXiv:2102.13264] for the case α = 1.

Note that

Λ(0) = (0, γ], Λ(γα−1) = {γ} ,

and

γ ∈ Λ(x) for 0 ≤ x ≤ γα−1.

We shall focus on the set Λ(x) for 0 < x < γα−1.
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Main results-1

Theorem

For 0 < x < γα−1, the set Λ(x) is a Cantor set. Moreover, the mapping

x 7→ Λ(x) is continuous on
(
0, γα−1

)
with respect to the Hausdorff metric.

It is easy to calculate that

min Λ(x) =

Å
x

1 + x

ã1/α

and max Λ(x) = γ.
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Main results-2

Theorem

For 0 < x < γα−1 and λ ∈ Λ(x), we have

lim
δ→0+

dimH

(
Λ(x) ∩ (λ− δ, λ+ δ)

)
=

log γ

log λ
= dimH Kλ.

Corollary

For 0 < x < γα−1, the set Λ(x) is a Lebesgue null set with full Hausdorff

dimension in R.
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Main results-3

Theorem

For x1, x2, · · · , x` ∈
(
0, γα−1

)
, we have

dimH

(⋂̀
i=1

Λ(xi)

)
= 1.
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Symbolic space: Ω = {0, 1}N. The lexicographical order on Ω is denoted

by ≺, this is, i1i2i3 · · · ≺ j1j2j3 · · · if there exists a n ≥ 1 such that

i1 = j1, · · · , in−1 = jn−1, in < jn. The metric ρ on Ω is defined by

ρ(i1i2i3 · · · , j1j2j3 · · · ) := 2−min{n≥1:in 6=jn}.

Projection mapping: for 0 < λ ≤ γ, the mapping πλ : Ω→ Kλ is defined

by

πλ(i1i2i3 · · · ) := lim
n→∞

fλ,i1 ◦ fλ,i2 ◦ · · · ◦ fλ,in(0)

=
∞∑
n=1

inλ
n+(α−1)(i1+i2+···+in).
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For 0 < x < γα−1, we define the mapping Ψx : Λ(x)→ Ω by

Ψx(λ) = π−1
λ (x) for λ ∈ Λ(x). (3.1)

For λ ∈ Λ(x) \ {γ}, the mapping πλ : Ω→ Kλ is one-to-one

correspondence and so π−1
λ (x) ∈ Ω is well-determined.

For λ = γ, the mapping πγ : Ω→ Kγ = [0, γα−1] is not injective. We

use π−1
γ (x) to denote either the unique sequence or the bigger one when

there exist two distinct sequences in Ω which maps to x by πγ .
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Symbolic sets of Λ(x)

Proposition

For 0 < x < γα−1, the mapping Ψx is strictly decreasing with respect to the

lexicographical order and bijective between Λ(x) and the set

Ω(x) = {i1i2i3 · · · ∈ Ω : Ψx(γ) � i1i2i3 · · ·} .

Moreover, the mapping Ψx : Λ(x)→ (Ω(x), ρ) is a homeomorphism.

Then we can prove the first main result.

Theorem (Main results-1)

For 0 < x < γα−1, the set Λ(x) is a Cantor set. Moreover, the mapping

x 7→ Λ(x) is continuous on
(
0, γα−1

)
with respect to the Hausdorff metric.
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Proposition

For 0 < x < γα−1 and 0 < λ ≤ γ, we have

dimH

(
Λ(x) ∩ [0, λ]

)
≤ dimH Kλ =

log γ

log λ
. (3.2)

Proof

We assume that ( x
x+1 )1/α < λ < γ. Consider

Λ(x) ∩ [0, λ]
Ψx−−−→ Ω

πλ−−−→ Kλ.

Take λ1, λ2 ∈ Λ(x) ∩ [0, λ] with λ1 < λ2. We can show that

πλ
(
Ψx(λ1)

)
− πλ

(
Ψx(λ2)

)
≥ αx(1− λ− λα)

λ
(λ2 − λ1).

Then we have dimH

(
Λ(x)∩ [0, λ]

)
≤ dimH πλ ◦Ψx

(
Λ(x)∩ [0, λ]

)
≤ dimH Kλ.
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Proposition

For 0 < x < γα−1 and λ ∈ Λ(x) \ {γ}, if the sequence Ψx(λ) does not end

with 0∞, then for any δ > 0 we have

dimH

(
Λ(x) ∩ [λ, λ+ δ]

)
≥ log γ

log λ
. (3.3)

Proof

Write Ψx(λ) = d1d2d3 · · · . Note that Ψx(γ) ≺ Ψx(λ). Choose a n0 ≥ 1 such

that Ψx(γ) ≺ d1d2 · · · dn0
0∞. Then choose an infinite sequence

n0 < n1 < n2 < · · · such that dnk = 1 for k ≥ 1.

For k ≥ 1, we define

Ωλ,k =
{
d1 · · · dnk−10i1i2i3 · · · : i1i2i3 · · · does not contain 0k

}
.
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Proof

Recall that

Ψx

(
Λ(x) ∩ [λ, γ]

)
= {i1i2i3 · · · ∈ Ω : Ψx(γ) � i1i2i3 · · · � Ψx(λ)} .

Note that Ωλ,k ⊆ Ψx

(
Λ(x) ∩ [λ, γ]

)
for k ≥ 1. By the continuity of Ψx,

Ωλ,k ⊆ Ψx(Λ(x) ∩ [λ, λ+ δ]) for sufficiently large k.

Ψ−1
x

(
Ωλ,k

) Ψx−−−→ Ωλ,k
πλ−−−→ πλ(Ωλ,k).

Take λ1, λ2 ∈ Ψ−1
x (Ωλ,k) with λ1 < λ2. We can show that

πλ(Ψx(λ1))− πλ(Ψx(λ2)) ≤ Cα(λ2 − λ1)

λk+α(1− λα)
.

It follows that dimH

(
Λ(x) ∩ [λ, λ+ δ]

)
≥ dimH πλ(Ωλ,k). Letting k →∞,

we obtain the desired result.

17 / 29



Motivation Main results Outline of proofs

Proposition

For 0 < x < γα−1 and λ ∈ Λ(x), if the sequence Ψx(λ) does not end with

1∞, then for any δ > 0 we have

dimH

(
Λ(x) ∩ [λ− δ, λ]

)
≥ log γ

log λ
. (3.4)

Now we can conclude the second main result.

Theorem (main results-2)

For 0 < x < γα−1 and λ ∈ Λ(x), we have

lim
δ→0+

dimH

(
Λ(x) ∩ (λ− δ, λ+ δ)

)
=

log γ

log λ
= dimH Kλ.
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Thickness of Cantor set

Let F be a Cantor set in R and let F0 be the convex hull of F .

Write F0 \F =
⋃∞
j=1 Vj as the union of countable disjoint open intervals.

The sequence V = {Vj}∞j=1 is called a defining sequence for F . If

moreover |V1| ≥ |V2| ≥ |V3| ≥ · · · , we call V an ordered defining

sequence for F , where |E| denotes the diameter of the set E.

Let Fj = F0 \
⋃j
k=1 Vk, which is a finite union of closed intervals.

The open interval Vj is contained in some connected component of

Fj−1, denoted by F ∗j−1. We can write

F ∗j−1 = LV (Vj) ∪ Vj ∪RV (Vj),

where LV (Vj) and RV (Vj) are two closed intervals.
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We define

τV (F ) = inf

ß |LV (Vj)|
|Vj |

,
|RV (Vj)|
|Vj |

: j ≥ 1

™
.

The thickness of F is defined by

τ(F ) = sup
V
τV (F )

where the supremum is taken over all defining sequences V = {Vj}∞j=1 for F

[Newhouse-1979]. It is shown that τ(F ) = τV (F ) for every ordered defining

sequence V for F [Williams-1991].

Lemma (Palis-Takens-1993, p. 77)

If F is a Cantor set in R, then we have

dimH F ≥
log 2

log
(
2 + 1

τ(F )

) .
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We say that two Cantor sets in R are interleaved if each set intersects the

interior of the convex hull of the other set.

Theorem (Hunt-Kan-Yorke, 1993)

There exists a function ϕ : (0,∞)→ (0,∞) such that for all interleaved

Cantor sets E and F with τ(E) ≥ ϕ(t) and τ(F ) ≥ ϕ(t) there exists a

Cantor subset K ⊆ E ∩ F with τ(K) ≥ t.

If ξ = minE = minF (or ξ = maxE = maxF ), from the proof of the above

theorem, then the resulting Cantor set K also contains ξ.

Let ϕ(t) be as that in the above theorem.

Theorem

If E and F are two Cantor sets in R with τ(E) ≥ ϕ(t), τ(F ) ≥ ϕ(t), and

ξ = maxE = maxF , then there exists a Cantor subset K ⊆ E ∩ F such that

τ(K) ≥ t and ξ ∈ K.
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Construction of large thickness subsets of Λ(x)

Fix 0 < x < γα−1, and write Ψx(γ) = d1d2d3 · · · .
Let {n1 < n2 < · · · < nk < · · ·} = {n ≥ 1 : dn = 0}.
For k ≥ 1, we define

Ωx,k = {i1i2 · · · ∈ Ω : d1 · · · dnk−110∞ � i1i2 · · · � d1 · · · dnk−11∞} .

Let Fk = Ψ−1
x (Ωx,k). Then we have Fk ⊆ Λ(x) since Ωx,k ⊆ Ω(x).

Let ηk = Ψ−1
x (d1d2 · · · dnk−11∞), θk = Ψ−1

x (d1d2 · · · dnk−110∞).

We define Fk,0 = [ηk, θk], and for ` ≥ 1,

Fk,` =
⋃

i1···i`∈{0,1}`

[
Ψ−1
x (d1 · · · dnk−11i1 · · · i`1∞),Ψ−1

x (d1 · · · dnk−11i1 · · · i`0∞)
]
.

22 / 29



Motivation Main results Outline of proofs

Fk =
∞⋂
`=0

Fk,`.

[ηk, θk] \ Fk =
⋃
ω∈Ω∗

Vw,k,

where Ω∗ =
⋃∞
n=0 {0, 1}

n
is the collection of all finite 0-1 words and

Vω,k =
(
Ψ−1
x (d1d2 · · · dnk−11 ω 10∞),Ψ−1

x (d1d2 · · · dnk−11 ω 01∞)
)
.

We enumerate {Vw,k : ω ∈ Ω∗} as Vk = {Vj,k}∞j=1 by

Vϑ,k, V0,k, V1,k, V00,k, V01,k, V10,k, V11,k, V000,k, V001,k, V010,k, V011,k, · · · ,

For ` ≥ 1, we define

C` = {γ} ∪
∞⋃
k=`

Fk = Λ(x) ∩ [η`, γ].

23 / 29



Motivation Main results Outline of proofs

Note that

[η`, γ] \ C` =
∞⋃
k=`

(θk, ηk+1) ∪
∞⋃
k=`

∞⋃
j=1

Vj,k.

η` θ`

V1,`

V3,` V2,`

F`

η`+1 θ`+1

V1,`+1

V3,`+1 V2,`+1

F`+1

η`+2 θ`+2

V1,`+2

V3.`+2 V2,`+2

F`+2

γ
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We enumerate {(θk, ηk+1), Vj,k : k ≥ `, j = 1, 2, · · ·} as the following

(θ`, η`+1)

��

(θ`+1, η`+2)

||

(θ`+2, η`+3)

xx

(θ`+3, η`+4) · · ·

V1,`

66

V2,`

55

V3,`

55

V4,` · · ·

V1,`+1

55

V2,`+1

55

V3,`+1

55

V4,`+1 · · ·

V1,`+2

55

V2,`+2

55

V3,`+2

55

V4,`+2 · · ·

· · · · · · · · · · · · · · ·
which gives us a defining sequence V of C`.

Proposition

We have

lim
`→∞

τV
(
C`
)

=∞,

which implies

lim
`→∞

τ
(
C`
)

=∞.
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Now we can prove the third main result.

Theorem (main results-3)

For x1, x2, · · · , x` ∈
(
0, γα−1

)
, we have

dimH

(⋂̀
i=1

Λ(xi)

)
= 1.
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The two-parameters case

Consider the inhomogeneous IFS

Ψa,b := {f0(x) = ax, f1(x) = b(x+ 1)} , a > 0, b > 0, a+ b ≤ 1.

Let Ea,b be the invariant set of the IFS Ψa,b. For x > 0, we define

Υ(x) = {(a, b) : x ∈ Ea,b, a > 0, b > 0, a+ b ≤ 1} . (3.5)

Theorem

(i) Υ(x) is a Borel subset in R2;

(ii) Υ(x) is a Lebesgue null set with full Hausdorff dimension in R2;

(iii) The intersection of Υ(x1),Υ(x2), · · · ,Υ(x`) still has full Hausdorff

dimension in R2 for any finitely many positive real number x1, x2, · · · , x`.
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