How inhomogeneous Cantor sets can pass a point

Zhigiang Wang
zhigiangwzy@163.com

Department of Mathematics
East China Normal University, Shanghai, China

One World Numeration Seminar
November 9, 2021

joint work with Wenxia Li



Contents

Motivation

Main results

Outline of proofs



Motivation

[-expansion

m [S-expansion: for 1 < § <2 and x € Iz :=[0,1/(8 — 1)], there exists a
sequence (€,)22, € Q := {0, 1} such that

-LE

Every sequence (£,)52; €  satisfying (1.1) is called an expansion of
in base f3.

(1.1)

Q‘§

m We are concerned with two sets

Up := {z € Ig : x has a unique expansion in base S}, 1 < 8 < 2;
U(x)={1<pB<2:x€lg}, z>0.



Homogeneous IF'S family

The [-expansion can be viewed as an iterated function system (IFS)

x x+1

&= {fpa0) = 5, fuale) = 2} 1< s

m The interval I3 is the invariant set for the IFS ®g4.
m We define the natural projection mg : Q@ — I3 by

mo((en)) = Hm fos 0 fpey o o0 fon(0) =3 o
n=1
Then we have
Us = {z € s ng' ({a}) =1} .
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Inhomogeneous IFS family

Fix a > 0. We consider the inhomogeneous IFS
Ox = Paa:={fao(@) = Az, faa(z) =A%+ 1)}, 0<A <y, (12)

where v := y(«) satisfying the equation v + v* = 1.
m Let K := K o be the invariant set of the IFS ®,.

m When 0 < A <7, every z € K has a unique coding; when A = v,
K., =[0,7*7'] and except for countably many points which has two
codings, every x € K, has a unique coding.

For 0 < z < ~v*~!, we define
Az)=Ao(z) ={0< A<~z € K)\}, (1.3)

which is analogous to % (z) considered in S-expansion.

Question: How about the set A(x) ?
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m When a = 1, the IFS is homogeneous,

Dy ={faol®) =z, far(z) =Az+1)}, 0<A<1/2.

Remark

The set A(x) has been studied in [K. Jiang, D. Kong, W. Li, How likely can
a point be in different Cantor sets, arXiv:2102.13264] for the case o = 1.

m Note that
A(0) = (0,9], A(Y* ™) = {1},

and
vyeA(z) for 0 <z < v 1L

We shall focus on the set A(x) for 0 < x < v~ 1.


https://arxiv.org/abs/2102.13264

Main results

Main results



Main results

Main results-1

Theorem

For 0 <z <~v“7!, the set A(x) is a Cantor set. Moreover, the mapping
x — A(z) is continuous on (0,70"1) with respect to the Hausdorff metric.

It is easy to calculate that

T
1+

minA(z) = ( )1/0‘ and max A(z) = 7.
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Main results-2

Theorem

For 0 <z <~v* ! and X\ € A(x), we have

1
lim dimp (A(z) N (A= 6,A + 0)) = 1Z§ K = dimpy K.

§—0t

Corollary

For 0 < x <~“~!, the set A(x) is a Lebesgue null set with full Hausdorff
dimension in R.
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Main results-3

Theorem

For x1,29, - ;24 € (0,7"‘_1), we have

¢
dim g (ﬂ A(mz)> =1
i=1

10 /29
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m Symbolic space: Q = {0, 1}N. The lexicographical order on € is denoted
by <, this is, 41i283 - - - < j1j2j3 - - - if there exists a n > 1 such that
11 =J1,""* yin-1 = Jn-1,%n < Jn- The metric p on €2 is defined by

plivigis -+, j1jajs - - - ) i= 2~ minin2Linin}

m Projection mapping: for 0 < A <, the mapping my : 2 — K is defined
by

ma(id2ig - -+ ) = nliﬂgo Fain © fais 000 2, (0)

_ Z in>\n+(a7l)(i1+i2+---+in) .

n=1
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For 0 < x < y*~ !, we define the mapping ¥, : A(x) — Q by

U, (\) =7y (z) for A € A(x). (3.1)

m For A € A(z) \ {7}, the mapping 7y : Q@ — K, is one-to-one
correspondence and so 7r;1(:1c) € Q is well-determined.

m For \ = v, the mapping 7, : Q — K., = [0,7*"1] is not injective. We
use 7 }(z) to denote either the unique sequence or the bigger one when

5
there exist two distinct sequences in €2 which maps to = by .
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Symbolic sets of A(z)

Proposition

For 0 < x < v*~1, the mapping W, is strictly decreasing with respect to the
lezicographical order and bijective between A(x) and the set

Q(z) = {irigiz--- € Q: Uy(y) < driniz---}.

Moreover, the mapping ¥, : A(x) — (), p) is a homeomorphism.

Then we can prove the first main result.

Theorem (Main results-1)

For 0 < x <~*~!, the set A(z) is a Cantor set. Moreover, the mapping
x — A(z) is continuous on (0,’ya_1) with respect to the Hausdorff metric.

14 /29
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Proposition

1

For0<ax <~* " and 0 < XA < v, we have

log v
log A\’

Proof
We assume that (-%7)'/* < A < . Consider

A=) N[0, N 225 Q 2 K.
Take A1, A2 € A(x) N[0, A] with Ay < Ay. We can show that

S azr(l—A—A%)

ﬂA(\Px()\l)) — T (\I/x(AQ)) = )\ ()\2 — )\1)

Then we have dimg (A(z) N[0, A]) < dimpg ) 0 ¥, (A(2z) N[0, A]) < dimp K.

15 /29
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Proposition

For 0 <z <~* ! and X € A(z) \ {7}, if the sequence ¥, ()\) does not end
with 0%°, then for any § > 0 we have

dimp (A() N A A+ 4]) > log (3.3)

Write W, () = dydads - - -. Note that ¥, () < U, (N). Choose a ng > 1 such
that U, (y) < dids - - - dy0°°. Then choose an infinite sequence

ng < np < ng < --- such that d,, =1 for £ > 1.

For k > 1, we define

Q= {d1 oo dp, 10917993 - - -+ 9199%3 - - - does not contain Ok} .
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Recall that

Note that Q2 x € ¥, (A(z) N [A,7]) for k& > 1. By the continuity of ¥,
Dk C U, (A(z) N A A+ 6]) for sufficiently large k.

\11;1 (Q)\’k) &) Q)\’k LN WA(Q)\’;C).
Take A1, A2 € U 1(Qy ) with A\; < A2. We can show that

Tz (M) = M (To(A2)) < m

It follows that dimy (A(z) N[\, A+ 6]) > dimpg mA(Q k). Letting k — oo,
we obtain the desired result.
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Proposition

For 0 < x <~*! and X\ € A(z), if the sequence W, (\) does not end with
1°°, then for any § > 0 we have

dimg (A@) N A — 6 X)) > logz. (3.4)

Now we can conclude the second main result.

Theorem (main results-2)

For 0 <z <~v*! and X\ € A(z), we have

log

= dimg K.
log A HILH 2

géi dimg (A(z)N(A =861 +6)) =
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Thickness of Cantor set

Let I be a Cantor set in R and let Fy be the convex hull of F.
m Write Fy \ F' = J;2; V; as the union of countable disjoint open intervals.

m The sequence ¥ = {VJ};il is called a defining sequence for F. If
moreover |Vi| > [Va| > V3| > -+, we call ¥ an ordered defining
sequence for F, where |E| denotes the diameter of the set E.

m Let Fj; = Fy \ Ui=1 Vi, which is a finite union of closed intervals.

m The open interval Vj is contained in some connected component of
F;_1, denoted by F}_;. We can write

iy = Ly (V) UV; U Ry (V),

where Ly (V;) and Ry (V;) are two closed intervals.

19 /29
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We define
Ty (F) =

\Ly (V| By (V)] .
1nf{ Vi W .321}.

The thickness of F is defined by

T(F) = sup 7y (F)
v

where the supremum is taken over all defining sequences ¥ = {V; }OO for F
[Newhouse-1979]. It is shown that 7(F) = 7y (F) for every ordered deﬁmng
sequence ¥ for F' [Williams-1991].

Lemma (Palis-Takens-1993, p. 77)

If F is a Cantor set in R, then we have

log 2

dimy F' > m

20 /29



Outline of proofs

We say that two Cantor sets in R are interleaved if each set intersects the
interior of the convex hull of the other set.

Theorem (Hunt-Kan-Yorke, 1993)

There exists a function ¢ : (0,00) — (0,00) such that for all interleaved
Cantor sets E and F with T7(E) > ¢(t) and 7(F') > ¢(t) there exists a
Cantor subset K C ENF with 7(K) > t.

If ¢ =min F =min F (or £ = max F = max F'), from the proof of the above
theorem, then the resulting Cantor set K also contains £.
Let ¢(t) be as that in the above theorem.

Theorem

If E and F' are two Cantor sets in R with T7(E) > ¢(t), 7(F) > ¢(t), and
£ =max E = max F, then there exists a Cantor subset K C E N F such that

T(K)>tand £ € K.

21 /29
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Construction of large thickness subsets of A(z)

Fix 0 < 2 <71, and write ¥, (y) = didads - - -
mlet{ni<na<---<mp<---}={n>1:d, =0}
m For k > 1, we define

Qz,k = {’iliz-'- eN: d1-~-dnk_110°° <1109 X dl'“dnk_lloo}.

m Let F), = U 1(Q, x). Then we have Fj, C A(x) since 2, x C Q(x).

m Let N = \Ifgl(dldg . 'dnk_lloo), 0, = \Ijgl(dldg .. odnk_110°°).
We define Fy o = [ng, 0], and for £ > 1,

Fro= |J  [92'(drdnyalin-igd™), U (dy - dyyy 11y -+ 00%)].
i1--i0€{0,1}*

N
N}
b
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] f} = (] ij.
£=0
|

Mk 061\ Fre = | Voo,
wen*

where Q* = o2, {0,1}" is the collection of all finite 0-1 words and
Ve = (O3 (drds -+ dpy—11 w 10%°), U (dydy -+ - diyy—11 w 01°°)) .
m We enumerate {Vi, : w € Q*} as ¥, = {Vk};”;l by
Vio.k, Vo, Vi,k, Yoo,k Vou,k, Vio,k, Vit,k, Vooo,k» Voot,k, Vo10,k, Voi1,k6, "+ »

For £ > 1, we define

Co= {7} U | Frx = A(@) N [ne, 7).
k=¢
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Note that
o0 oo o0
e, M\ Ce = | J Ok misr) U U Vi
k=¢ k=t j=1
ne 00 et Ovr1 nMey2 Orv2 gl
Vie Vit Vit
\ZW) Vae V3,041 Va,eq1 Vs.042 Va,o42

F, Fyq Fyyo
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We enumerate {(0g, g+1), Vie : k> ¢, j=1,2,---} as the following

Oesmev1)  (Oeg1sme42)  (Beg2.me43)  (Bevs,Meta)

Vie //////7L%¢ //////7V2x

Vies1 2,041 V3,041 Vaer1
/ /

Vieta Va,eo V3,042 Vaero

which gives us a defining sequence ¥ of C,.
Proposition

We have

1 m 7 CZ — OO7
whlch Zmplies

lim 7(Cf) = oo.

£— 00
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Now we can prove the third main result.

Theorem (main results-3)

For xi,29, - ;24 € (0,70471)’ we have

¢
dim g ﬂA(mZ) =1

i=1
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The two-parameters case

Consider the inhomogeneous IFS

Uop:={fo(r) =az, fi(z)=0b(z+1)}, a>0,b>0,a+b<1
Let g be the invariant set of the IFS ¥, ;. For x > 0, we define

T(x)={(a,b): x € Egp,a>0,b>0,a+b<1}. (3.5)

(i) Y(z) is a Borel subset in R?;

(ii) Y(x) is a Lebesgue null set with full Hausdorff dimension in R?;

(iii) The intersection of Y(x1), Y (z2), -, Y (x¢) still has full Hausdorff
dimension in R? for any finitely many positive real number 1,2, - , Z4.
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