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Normal Numbers are Normal

E. Borel. Les probabilités dénombrables et
leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27 (1909).

E. Borel. Sur les chiffres decimaux de
√
2

et divers problemes de probabilités en
chaines. C.R. Acad. Sci. Paris, 230 (1950).

A real number is normal in base b if for all n, all length-n factors
appear with asymptotic frequency 1

bn in its infinite b-ary expansion

Theorem (Borel 1909)

Almost every number in [0, 1] is normal.
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Specific Cases

Champernowne (1933): explicit base-10 normal number

0.1234567891011121314 . . .

Borel (1950): does decimal expansion of
√
2 have infinitely

many 5’s? Is it normal?

√
2 = 1.41421356237309504880168872420

Conjecture (Borel 1950)

Let x be a real irrational algebraic number and b ≥ 2 a positive
integer. Then x is normal in base b.
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Conjectures with a Computational Aspect

If the base-b expansion of a real irrational number x is “simple”
then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base-b expansion of an irrational algebraic number cannot be
generated by a linear-time Turing machine.

Cobham’s First Conjecture (1968)

The base-b expansion of an irrational algebraic number cannot be
generated by a finite automaton.

Cobham’s Second Conjecture (1968)

The base-b expansion of an algebraic number cannot be generated
by a morphism of exponential growth (equivalently, by a tag
machine with exponential dilation factor > 1).
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Tag Machines (Cobham 1968)

A finite work-tape alphabet,

B finite output-tape alphabet,

Start symbol a ∈ A,

σ : A∗ → A∗ morphism, prolongable on a,

φ : A∗ → B∗ letter-to-letter morphism.

↓ ↓
working a b a a c
output x y
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Example: The Fibonacci Word

The sequence of finite binary words

F0 = 0,F1 = 01,F2 = 010,F2 = 01001, . . .

satisfying recurrence

Fn = Fn−1Fn−2 (n ≥ 2)

converges to infinite Fibonacci word

F∞ = 01001010010010100101001001010 . . .



Example: Fibonacci Word

Fibonacci word is morphic: F∞ = limn→∞ σn(0), where
σ : {0, 1}∗ → {0, 1}∗ is given by σ(0) = 01 and σ(1) = 0.

Incidence matrix

Mσ =

(
1 1
1 0

)
has spectral radius > 1, so σ has exponential growth.

Theorem (Danilov 1972)

Let u be the Fibonacci word. Then for all integers b ≥ 2 the word

Sb(u) :=
∞∑
n=0

un
bn

is transcendental.
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Sturmian Words

The Fibonacci word has subword complexity p(n) = n + 1 for
all n and is thereby Sturmian.

A word with subword complexity p(n) = n for some n is
ultimately periodic.

Given θ ∈ [0, 1), consider rotation map Rθ : [0, 1) → [0, 1),
defined by Rθ(x) = (x + θ) mod 1. The θ-coding of x ∈ [0, 1)
is the sequence (xn)

∞
n=0, where

xn :=

{
1 if Rn

θ (x) ∈ [0, θ)
0 otherwise

Sequence is Sturmian of slope θ iff it is coding of some x
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Taxonomy of Simple Words



Transcendence of Sturmian Words

Theorem (Ferenczi and Mauduit 1997)

Let b ≥ 2 be an integer. Given u ∈ {0, 1, . . . , b − 1}ω, suppose
that there exist ε > 0 and infinite sequences (Un)

∞
n=0 and (Vn)

∞
n=0

of finite words such that:

limn |Vn| = ∞

supn
|Un|
|Vn| < ∞

UnV
2+ε
n is a prefix of u

Then Sb(u) is transcendental.

Corollary (Ferenzci and Mauduit 1997)

Let b ≥ 2 be an integer. If u ∈ {0, 1}ω is Sturmian then Sb(u) is
transcendental.
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Transcendence of Automatic Numbers

Theorem (Adamczewski, Bugeaud, Luca 2004 )

Let b ≥ 2 be an integer. Given u ∈ {0, 1, . . . , b − 1}ω, suppose
that there exist ε > 0 and infinite sequences (Un)

∞
n=0 and (Vn)

∞
n=0

of finite words such that:

limn |Vn| = ∞

supn
|Un|
|Vn| < ∞

UnV
1+ε
n is a prefix of u

Then Sb(u) is either rational or transcendental.

Corollary

Let b ≥ 2 be an integer. If u ∈ {0, 1}ω is automatic then Sb(u)
either rational or transcendental.
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Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of u is the supremum of all real ρ
such that u has arbitrarily long prefixes of the form UV α, for
α ≥ 1, satisfying

|UV α|
|UV |

≥ ρ

We have 1 ≤ Dio(u) ≤ ∞ for all u

Eventually periodic words have infinite Diophantine exponent.

Theorem (Adamczewski-Bugeaud-Luca Reformulated)

For an integer b ≥ 2 and sequence u ∈ {0, . . . , b − 1}, if
Dio(u) > 1 then Sb(u) is either rational or transcendental.
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Combinatorial Part

[Ferenczi and Mauduit 1997] show that Sturmian words have
Diophantine exponent > 1.

[Adamczewski, Bugeaud, Luca 04] show that automatic words
have Diophantine exponent > 1.

[Adamczewski, Bugeaud, Luca 04] shows that sequences with

linear subword complexity, i.e., lim infn
p(n)
n < ∞, have

Diophantine exponent > 1.

[Adamczewski, Cassaigne, Le Gonidec 2020] shows that words
generated by morphims of exponential growth have
Diophantine exponent > 1.
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Number-Theoretic Part

Theorem (Schlickewei 75)

Let m ≥ 2 be an integer, ε a positive real, and S a finite set of
prime numbers. Let L1, . . . , Lm be linearly independent linear forms
with real algebraic coefficients. Then the set of solutions x ∈ Zm

of the inequality m∏
i=1

∏
p∈S

|xi |p

 ·
m∏
i=1

|Li (x)| ≤ (max{|x1|, . . . , |xm|})−ε

are contained in finitely many proper linear subspaces of Qm.



Number-Theoretic Part

1 Assume α =
∑∞

n=0
un
bn is algebraic

2 Ferenzci and Mauduit’s condition yields sequence of good
rational approximants UnV

ω
n , giving infinite sequence of points

in Z2 on which linear form L(x1, x2) = αx1 − x2 is “small”

3 Apply Subspace Theorem to obtain a contradiction.

4 Weaker condition Dio(u) > 1 yields infinite sequence of
points in Z3 on which linear form
L(x1, x2, x3) = αx1 − αx2 − x3 is ”small”

5 Apply Subspace Theorem to conclude that α is rational
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Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers
and their ergodic properties. Acta. Math.
Acad. Sci. Hungar. 8 (1957).

Theorem (Adamczewski and Bugeaud 2007a)

Let β be a Pisot or a Salem number and let u be a bounded
sequence of integers. Then Sβ(u) either lies in Q(β) or is
transcendental.

Theorem (Adamczewski and Bugeaud 2007b)

Let β be an algebraic integer with |β| > 1. Let u be a bounded

sequence of rational integers. Assume that Dio(u) > logM(β)
log |β| .

Then Sβ(u) either lies in Q(β) or is transcendental.
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Our Main Result

Theorem (Luca, Ouaknine, W. 2022)

Let β be algebraic with |β| > 1. Let u(1), . . . ,u(k) be Sturmian
sequences, all having the same slope and such that no sequence is
a tail of another. Then

{
1,Sβ(u(1)), . . . ,Sβ(u(k))

}
is linearly

independent over Q.

Corollary

Let β be algebraic with |β| > 1. Let If u is Sturmian then Sβ(u) is
transcendental.

Theorem (Bugeaud, Kim, Laurent, and Nogueira 2021)

Let β ≥ 2 be integer and u(1) and u(2) Sturmian sequences of the
same slope, neither a tail of the other. Then{
1,Sβ(u(1)),Sβ(u(2))

}
is linearly independent over Q.
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Diophantine Approximation Modulo Errors

Let (rn)
∞
n=0 be Fibonacci sequence and write F

(n)
∞ for tail of

Fibonacci word after dropping first rn letters.

F∞ := 01001010010010100101001001010 . . .

F (5)
∞ := 010010010100101001001010010︸ ︷︷ ︸

s5

01 . . .

F∞ := 01001010010010100101001001010010010100101001001 . . .

F (6)
∞ := 010010100101001001010010010100101001001010010︸ ︷︷ ︸

s6

10 . . .

Errors come in consecutive symmetric pairs

Gaps between these pairs expand with n

For all n we have sn ≥ 5rn
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Stuttering Sequences

Sequence u is stuttering if for all ρ > 0 there exist sequences
⟨rn⟩∞n=0 and ⟨sn⟩∞n=0 of positive integers and d ≥ 2 such that:

S1 ⟨rn⟩∞n=0 is unbounded and sn ≥ ρrn for all n;

S2 the strings u0 . . . usn and urn . . . urn+sn differ at d pairs with
respective positions i1(n) < . . . < id(n);

S3 we have id(n)− i1(n) = ω(log rn) and ij+1(n)− ij(n) = ω(1)
for all j ∈ {1, . . . , d − 1};

S4 for all n ∈ N and j ∈ {1, 2 . . . , d} we have uij (n) = uij (n)+rn+1

and uij (n)+1 = uij (n)+rn .
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Key Number-Theoretic and Combinatorial Ingredients

Theorem

Let A be a finite set of algebraic numbers and suppose that
u ∈ Aω is a stuttering sequence. Then for any algebraic number β
with |β| > 1 the sum Sβ(u) =

∑∞
n=0

un
βn is transcendental.

Subspace Theorem with a linear form “adapted to errors”

Theorem

Let u(1), . . . ,u(k) be Sturmian sequences all having the same slope
and such that no sequence is a tail of another. Given

c1, . . . , ck ∈ C, define un :=
∑k

i=1 ciu
(i)
n for all n ∈ N. Then

u = ⟨un⟩∞n=0 is stuttering.
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Application to Dynamical Systems

“Are all irrational elements of the
Cantor ternary set transcendental?”

K. Mahler, Some suggestions for further
research, Bull. Austral. Math. Soc. 29 (1984).



Contracted Rotations

Given 0 < λ, δ < 1 such that λ+ δ > 1, map f : I → I given by
f (x) := {λx + δ} is a contracted rotation with slope λ and
offset δ.

1

δ

δ + λ− 1

0
1−δ
λ

1



Cantor Sets from Rotations

Rotation Number

Consider the limit set C :=
⋂∞

n=0 f
n(I ). Then f has a rotation

number θ such that restriction of f to C is conjugate to the
rotation map Rθ and C is a Cantor seta if θ is irrational.

acompact, nowhere dense, no isolated points

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every
element of the Cantor set C other than 0 and 1 is transcendental.

Generalises result of Bugeaud, Kim, Laurent, Nogueira, which
had λ−1 ∈ Z.
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MSc Thesis of Pavol Kebis

Let Σ = {0, . . . , k − 1} for some k ≥ 2. A sequence u ∈ Σω is
Arnoux-Rauzy if

it is uniformly recurrent

it has subword complexity p(n) = (k − 1)n + 1

for each n there is one left-special and one right-special factor
of length n.

Example

The Tribonacci word is the limit of the infinite sequence defined
by recurrence

Tn = Tn−1Tn−2Tn−3 T0 = 0,T1 = 01,T2 = 0102

Also generated by the morphism σ(0) = 01, σ(1) = 02, σ(2) = 0.
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LTI Reachability

Consider LTI system in R2 with

Control polyhedron: U := [0, 1]× {0}

Transition matrix A :=
1

b

(
cos θ − sin θ
sin θ cos θ

)

Does there exist a sequence of inputs un ∈ U such that the orbit

xn+1 = Axn + un, x0 = 0

reaches the halfspace x ≥ c?

Determine whether
∑∞

n=0 un
cos(nθ)

bn ≥ c , where un = 1 if
cos(nθ) ≥ 0 and un = 0 otherwise.
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