Transcendence of Sturmian Numbers over an Algebraic Base

F Luca, J. Ouaknine, and J. Worrell

One World Numeration Seminar, 2023

Normal Numbers are Normal

E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27 (1909).
E. Borel. Sur les chiffres decimaux de $\sqrt{2}$ et divers problemes de probabilités en chaines. C.R. Acad. Sci. Paris, 230 (1950).

Normal Numbers are Normal

E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27 (1909).
E. Borel. Sur les chiffres decimaux de $\sqrt{2}$ et divers problemes de probabilités en chaines. C.R. Acad. Sci. Paris, 230 (1950).

A real number is normal in base b if for all n, all length- n factors appear with asymptotic frequency $\frac{1}{b^{n}}$ in its infinite b-ary expansion

Normal Numbers are Normal

E. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
Circ. Mat. Palermo, 27 (1909).
E. Borel. Sur les chiffres decimaux de $\sqrt{2}$
et divers problemes de probabilités en chaines. C.R. Acad. Sci. Paris, 230 (1950).

A real number is normal in base b if for all n, all length- n factors appear with asymptotic frequency $\frac{1}{b^{n}}$ in its infinite b-ary expansion

Theorem (Borel 1909)

Almost every number in $[0,1]$ is normal.

Specific Cases

- Champernowne (1933): explicit base-10 normal number $0.1234567891011121314 \ldots$

Specific Cases

- Champernowne (1933): explicit base-10 normal number $0.1234567891011121314 \ldots$
- Borel (1950): does decimal expansion of $\sqrt{2}$ have infinitely many 5's? Is it normal?

$$
\sqrt{2}=1.41421356237309504880168872420
$$

Specific Cases

- Champernowne (1933): explicit base-10 normal number $0.1234567891011121314 \ldots$
- Borel (1950): does decimal expansion of $\sqrt{2}$ have infinitely many 5's? Is it normal?

$$
\sqrt{2}=1.41421356237309504880168872420
$$

Conjecture (Borel 1950)

Let x be a real irrational algebraic number and $b \geq 2$ a positive integer. Then x is normal in base b.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base- b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base- b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Cobham's First Conjecture (1968)

The base- b expansion of an irrational algebraic number cannot be generated by a finite automaton.

Conjectures with a Computational Aspect

If the base- b expansion of a real irrational number x is "simple" then x is transcendental.

Hartmanis-Stearns Conjecture (1965)

The base- b expansion of an irrational algebraic number cannot be generated by a linear-time Turing machine.

Cobham's First Conjecture (1968)

The base- b expansion of an irrational algebraic number cannot be generated by a finite automaton.

Cobham's Second Conjecture (1968)

The base- b expansion of an algebraic number cannot be generated by a morphism of exponential growth (equivalently, by a tag machine with exponential dilation factor >1).

- A finite work-tape alphabet,
- B finite output-tape alphabet,
- Start symbol $a \in A$,
- $\sigma: A^{*} \rightarrow A^{*}$ morphism, prolongable on a,
- $\varphi: A^{*} \rightarrow B^{*}$ letter-to-letter morphism.
- A finite work-tape alphabet,
- B finite output-tape alphabet,
- Start symbol $a \in A$,
- $\sigma: A^{*} \rightarrow A^{*}$ morphism, prolongable on a,
- $\varphi: A^{*} \rightarrow B^{*}$ letter-to-letter morphism.

$$
\begin{array}{lllllll}
& & \downarrow & & & \downarrow \\
\text { working } & a & b & a & a & c \\
\text { output } & x & y & & &
\end{array}
$$

Example: The Fibonacci Word

The sequence of finite binary words

$$
F_{0}=0, F_{1}=01, F_{2}=010, F_{2}=01001, \ldots
$$

satisfying recurrence

$$
F_{n}=F_{n-1} F_{n-2} \quad(n \geq 2)
$$

converges to infinite Fibonacci word

$$
F_{\infty}=01001010010010100101001001010 \ldots
$$

Example: Fibonacci Word

- Fibonacci word is morphic: $F_{\infty}=\lim _{n \rightarrow \infty} \sigma^{n}(0)$, where $\sigma:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is given by $\sigma(0)=01$ and $\sigma(1)=0$.

Example: Fibonacci Word

- Fibonacci word is morphic: $F_{\infty}=\lim _{n \rightarrow \infty} \sigma^{n}(0)$, where $\sigma:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is given by $\sigma(0)=01$ and $\sigma(1)=0$.
- Incidence matrix

$$
M_{\sigma}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has spectral radius >1, so σ has exponential growth.

Example: Fibonacci Word

- Fibonacci word is morphic: $F_{\infty}=\lim _{n \rightarrow \infty} \sigma^{n}(0)$, where $\sigma:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is given by $\sigma(0)=01$ and $\sigma(1)=0$.
- Incidence matrix

$$
M_{\sigma}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has spectral radius >1, so σ has exponential growth.

Theorem (Danilov 1972)

Let \boldsymbol{u} be the Fibonacci word. Then for all integers $b \geq 2$ the word

$$
S_{b}(\boldsymbol{u}):=\sum_{n=0}^{\infty} \frac{u_{n}}{b^{n}}
$$

is transcendental.

Sturmian Words

- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.

Sturmian Words

- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- Given $\theta \in[0,1)$, consider rotation map $R_{\theta}:[0,1) \rightarrow[0,1)$, defined by $R_{\theta}(x)=(x+\theta) \bmod 1$.
- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- Given $\theta \in[0,1)$, consider rotation map $R_{\theta}:[0,1) \rightarrow[0,1)$, defined by $R_{\theta}(x)=(x+\theta) \bmod 1$. The θ-coding of $x \in[0,1)$ is the sequence $\left(x_{n}\right)_{n=0}^{\infty}$, where

$$
x_{n}:= \begin{cases}1 & \text { if } R_{\theta}^{n}(x) \in[0, \theta) \\ 0 & \text { otherwise }\end{cases}
$$

- The Fibonacci word has subword complexity $p(n)=n+1$ for all n and is thereby Sturmian.
- A word with subword complexity $p(n)=n$ for some n is ultimately periodic.
- Given $\theta \in[0,1)$, consider rotation map $R_{\theta}:[0,1) \rightarrow[0,1)$, defined by $R_{\theta}(x)=(x+\theta)$ mod 1 . The θ-coding of $x \in[0,1)$ is the sequence $\left(x_{n}\right)_{n=0}^{\infty}$, where

$$
x_{n}:= \begin{cases}1 & \text { if } R_{\theta}^{n}(x) \in[0, \theta) \\ 0 & \text { otherwise }\end{cases}
$$

- Sequence is Sturmian of slope θ iff it is coding of some x

Taxonomy of Simple Words

Theorem (Ferenczi and Mauduit 1997)

Let $b \geq 2$ be an integer. Given $\boldsymbol{u} \in\{0,1, \ldots, b-1\}^{\omega}$, suppose that there exist $\varepsilon>0$ and infinite sequences $\left(U_{n}\right)_{n=0}^{\infty}$ and $\left(V_{n}\right)_{n=0}^{\infty}$ of finite words such that:

- $\lim _{n}\left|V_{n}\right|=\infty$
- $\sup _{n} \frac{\left|U_{n}\right|}{\left|V_{n}\right|}<\infty$
- $U_{n} V_{n}^{2+\varepsilon}$ is a prefix of \boldsymbol{u}

Then $S_{b}(\boldsymbol{u})$ is transcendental.

Transcendence of Sturmian Words

Theorem (Ferenczi and Mauduit 1997)

Let $b \geq 2$ be an integer. Given $\boldsymbol{u} \in\{0,1, \ldots, b-1\}^{\omega}$, suppose that there exist $\varepsilon>0$ and infinite sequences $\left(U_{n}\right)_{n=0}^{\infty}$ and $\left(V_{n}\right)_{n=0}^{\infty}$ of finite words such that:

- $\lim _{n}\left|V_{n}\right|=\infty$
- $\sup _{n} \frac{\left|U_{n}\right|}{\left|V_{n}\right|}<\infty$
- $U_{n} V_{n}^{2+\varepsilon}$ is a prefix of \boldsymbol{u}

Then $S_{b}(\boldsymbol{u})$ is transcendental.

Corollary (Ferenzci and Mauduit 1997)

Let $b \geq 2$ be an integer. If $\boldsymbol{u} \in\{0,1\}^{\omega}$ is Sturmian then $S_{b}(\boldsymbol{u})$ is transcendental.

Theorem (Adamczewski, Bugeaud, Luca 2004)
Let $b \geq 2$ be an integer. Given $\boldsymbol{u} \in\{0,1, \ldots, b-1\}^{\omega}$, suppose that there exist $\varepsilon>0$ and infinite sequences $\left(U_{n}\right)_{n=0}^{\infty}$ and $\left(V_{n}\right)_{n=0}^{\infty}$ of finite words such that:

- $\lim _{n}\left|V_{n}\right|=\infty$
$-\sup _{n} \frac{\left|U_{n}\right|}{\left|V_{n}\right|}<\infty$
- $U_{n} V_{n}^{1+\varepsilon}$ is a prefix of \boldsymbol{u}

Then $S_{b}(\boldsymbol{u})$ is either rational or transcendental.

Transcendence of Automatic Numbers

> Theorem (Adamczewski, Bugeaud, Luca 2004)
> Let $b \geq 2$ be an integer. Given $\boldsymbol{u} \in\{0,1, \ldots, b-1\}^{\omega}$, suppose that there exist $\varepsilon>0$ and infinite sequences $\left(U_{n}\right)_{n=0}^{\infty}$ and $\left(V_{n}\right)_{n=0}^{\infty}$ of finite words such that:
> - $\lim _{n}\left|V_{n}\right|=\infty$
> - $\sup _{n} \frac{\left|U_{n}\right|}{\left|V_{n}\right|}<\infty$
> - $U_{n} V_{n}^{1+\varepsilon}$ is a prefix of \boldsymbol{u}

> Then $S_{b}(\boldsymbol{u})$ is either rational or transcendental.

Corollary

Let $b \geq 2$ be an integer. If $\boldsymbol{u} \in\{0,1\}^{\omega}$ is automatic then $S_{b}(\boldsymbol{u})$ either rational or transcendental.

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

- We have $1 \leq \operatorname{Dio}(\boldsymbol{u}) \leq \infty$ for all \boldsymbol{u}

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

- We have $1 \leq \operatorname{Dio}(\boldsymbol{u}) \leq \infty$ for all \boldsymbol{u}
- Eventually periodic words have infinite Diophantine exponent.

Diophantine Exponent

Definition (Adamczewski and Bugeaud 2007)

The Diophantine exponent of \boldsymbol{u} is the supremum of all real ρ such that \boldsymbol{u} has arbitrarily long prefixes of the form $U V^{\alpha}$, for $\alpha \geq 1$, satisfying

$$
\frac{\left|U V^{\alpha}\right|}{|U V|} \geq \rho
$$

- We have $1 \leq \operatorname{Dio}(\boldsymbol{u}) \leq \infty$ for all \boldsymbol{u}
- Eventually periodic words have infinite Diophantine exponent.

Theorem (Adamczewski-Bugeaud-Luca Reformulated)

For an integer $b \geq 2$ and sequence $\boldsymbol{u} \in\{0, \ldots, b-1\}$, if $\operatorname{Dio}(\boldsymbol{u})>1$ then $S_{b}(\boldsymbol{u})$ is either rational or transcendental.

Combinatorial Part

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >1.

Combinatorial Part

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent >1.

Combinatorial Part

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] shows that sequences with linear subword complexity, i.e., $\lim _{\inf }^{n} \frac{p(n)}{n}<\infty$, have Diophantine exponent >1.

Combinatorial Part

- [Ferenczi and Mauduit 1997] show that Sturmian words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] show that automatic words have Diophantine exponent >1.
- [Adamczewski, Bugeaud, Luca 04] shows that sequences with linear subword complexity, i.e., $\lim _{\inf }^{n} \frac{p(n)}{n}<\infty$, have Diophantine exponent >1.
- [Adamczewski, Cassaigne, Le Gonidec 2020] shows that words generated by morphims of exponential growth have Diophantine exponent >1.

Number-Theoretic Part

Theorem (Schlickewei 75)

Let $m \geq 2$ be an integer, ε a positive real, and S a finite set of prime numbers. Let L_{1}, \ldots, L_{m} be linearly independent linear forms with real algebraic coefficients. Then the set of solutions $\boldsymbol{x} \in \mathbb{Z}^{m}$ of the inequality

$$
\left(\prod_{i=1}^{m} \prod_{p \in S}\left|x_{i}\right|_{p}\right) \cdot \prod_{i=1}^{m}\left|L_{i}(\boldsymbol{x})\right| \leq\left(\max \left\{\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}\right)^{-\varepsilon}
$$

are contained in finitely many proper linear subspaces of \mathbb{Q}^{m}.

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{u_{n}}{b^{n}}$ is algebraic

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{u_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"
(3) Apply Subspace Theorem to obtain a contradiction.

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{U_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"
(3) Apply Subspace Theorem to obtain a contradiction.
(9) Weaker condition $\operatorname{Dio}(\boldsymbol{u})>1$ yields infinite sequence of points in \mathbb{Z}^{3} on which linear form $L\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{1}-\alpha x_{2}-x_{3}$ is "small"

Number-Theoretic Part

(1) Assume $\alpha=\sum_{n=0}^{\infty} \frac{u_{n}}{b^{n}}$ is algebraic
(2) Ferenzci and Mauduit's condition yields sequence of good rational approximants $U_{n} V_{n}^{\omega}$, giving infinite sequence of points in \mathbb{Z}^{2} on which linear form $L\left(x_{1}, x_{2}\right)=\alpha x_{1}-x_{2}$ is "small"
(3) Apply Subspace Theorem to obtain a contradiction.
(9) Weaker condition $\operatorname{Dio}(\boldsymbol{u})>1$ yields infinite sequence of points in \mathbb{Z}^{3} on which linear form $L\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{1}-\alpha x_{2}-x_{3}$ is "small"
(6) Apply Subspace Theorem to conclude that α is rational

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957).

Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957).

[^0]
Transcendence Results over an Algebraic Base

A. Rényi. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957).

Theorem (Adamczewski and Bugeaud 2007a)

Let β be a Pisot or a Salem number and let \boldsymbol{u} be a bounded sequence of integers. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Theorem (Adamczewski and Bugeaud 2007b)

Let β be an algebraic integer with $|\beta|>1$. Let \boldsymbol{u} be a bounded sequence of rational integers. Assume that $\operatorname{Dio}(\boldsymbol{u})>\frac{\log M(\beta)}{\log |\beta|}$. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

Our Main Result

Theorem (Luca, Ouaknine, W. 2022)

Let β be algebraic with $|\beta|>1$. Let $\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(k)}$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}^{(1)}\right), \ldots, S_{\beta}\left(\boldsymbol{u}^{(k)}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Our Main Result

Theorem (Luca, Ouaknine, W. 2022)

Let β be algebraic with $|\beta|>1$. Let $\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(k)}$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}^{(1)}\right), \ldots, S_{\beta}\left(\boldsymbol{u}^{(k)}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Corollary

Let β be algebraic with $|\beta|>1$. Let If \boldsymbol{u} is Sturmian then $S_{\beta}(\boldsymbol{u})$ is transcendental.

Our Main Result

Theorem (Luca, Ouaknine, W. 2022)

Let β be algebraic with $|\beta|>1$. Let $\mathbf{u}^{(1)}, \ldots, \boldsymbol{u}^{(k)}$ be Sturmian sequences, all having the same slope and such that no sequence is a tail of another. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}^{(1)}\right), \ldots, S_{\beta}\left(\boldsymbol{u}^{(k)}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Corollary

Let β be algebraic with $|\beta|>1$. Let If \boldsymbol{u} is Sturmian then $S_{\beta}(\boldsymbol{u})$ is transcendental.

Theorem (Bugeaud, Kim, Laurent, and Nogueira 2021)

Let $\beta \geq 2$ be integer and $\boldsymbol{u}^{(1)}$ and $\boldsymbol{u}^{(2)}$ Sturmian sequences of the same slope, neither a tail of the other. Then $\left\{1, S_{\beta}\left(\boldsymbol{u}^{(1)}\right), S_{\beta}\left(\boldsymbol{u}^{(2)}\right)\right\}$ is linearly independent over $\overline{\mathbb{Q}}$.

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=\underbrace{010010010100101001001010010}_{s_{5}} 01 \ldots
\end{aligned}
$$

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=\underbrace{010010010100101001001010010}_{s_{5}} 01 \ldots
\end{aligned}
$$

$F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots$
$F_{\infty}^{(6)}:=\underbrace{010010100101001001010010010100101001001010010}_{s_{6}} 10 \ldots$

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=\underbrace{010010010100101001001010010}_{s_{5}} 01 \ldots
\end{aligned}
$$

$F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots$
$F_{\infty}^{(6)}:=\underbrace{010010100101001001010010010100101001001010010}_{s_{6}} 10 \ldots$

- Errors come in consecutive symmetric pairs

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=\underbrace{010010010100101001001010010}_{s_{5}} 01 \ldots
\end{aligned}
$$

$$
F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots
$$

$$
F_{\infty}^{(6)}:=\underbrace{010010100101001001010010010100101001001010010}_{s_{6}} 10 \ldots
$$

- Errors come in consecutive symmetric pairs
- Gaps between these pairs expand with n

Diophantine Approximation Modulo Errors

Let $\left(r_{n}\right)_{n=0}^{\infty}$ be Fibonacci sequence and write $F_{\infty}^{(n)}$ for tail of Fibonacci word after dropping first r_{n} letters.

$$
\begin{aligned}
F_{\infty} & :=01001010010010100101001001010 \ldots \\
F_{\infty}^{(5)} & :=\underbrace{010010010100101001001010010}_{s_{5}} 01 \ldots
\end{aligned}
$$

$$
F_{\infty}:=01001010010010100101001001010010010100101001001 \ldots
$$

$$
F_{\infty}^{(6)}:=\underbrace{010010100101001001010010010100101001001010010}_{s_{6}} 10 \ldots
$$

- Errors come in consecutive symmetric pairs
- Gaps between these pairs expand with n
- For all n we have $s_{n} \geq 5 r_{n}$

Stuttering Sequences

Sequence \boldsymbol{u} is stuttering if for all $\rho>0$ there exist sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and $d \geq 2$ such that:

Stuttering Sequences

Sequence \boldsymbol{u} is stuttering if for all $\rho>0$ there exist sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and $d \geq 2$ such that:

S1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all $n ;$

Stuttering Sequences

Sequence \boldsymbol{u} is stuttering if for all $\rho>0$ there exist sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and $d \geq 2$ such that:

S1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all $n ;$
S2 the strings $u_{0} \ldots u_{s_{n}}$ and $u_{r_{n}} \ldots u_{r_{n}+s_{n}}$ differ at d pairs with respective positions $i_{1}(n)<\ldots<i_{d}(n)$;

Stuttering Sequences

Sequence \boldsymbol{u} is stuttering if for all $\rho>0$ there exist sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and $d \geq 2$ such that:

S1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all $n ;$
S2 the strings $u_{0} \ldots u_{s_{n}}$ and $u_{r_{n}} \ldots u_{r_{n}+s_{n}}$ differ at d pairs with respective positions $i_{1}(n)<\ldots<i_{d}(n)$;

S3 we have $i_{d}(n)-i_{1}(n)=\omega\left(\log r_{n}\right)$ and $i_{j+1}(n)-i_{j}(n)=\omega(1)$ for all $j \in\{1, \ldots, d-1\}$;

Stuttering Sequences

Sequence \boldsymbol{u} is stuttering if for all $\rho>0$ there exist sequences $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ and $\left\langle s_{n}\right\rangle_{n=0}^{\infty}$ of positive integers and $d \geq 2$ such that:

S1 $\left\langle r_{n}\right\rangle_{n=0}^{\infty}$ is unbounded and $s_{n} \geq \rho r_{n}$ for all $n ;$
S2 the strings $u_{0} \ldots u_{s_{n}}$ and $u_{r_{n}} \ldots u_{r_{n}+s_{n}}$ differ at d pairs with respective positions $i_{1}(n)<\ldots<i_{d}(n)$;

S3 we have $i_{d}(n)-i_{1}(n)=\omega\left(\log r_{n}\right)$ and $i_{j+1}(n)-i_{j}(n)=\omega(1)$ for all $j \in\{1, \ldots, d-1\}$;

S4 for all $n \in \mathbb{N}$ and $j \in\{1,2 \ldots, d\}$ we have $u_{i j(n)}=u_{i_{j}(n)+r_{n}+1}$ and $u_{i_{j}(n)+1}=u_{i_{j}(n)+r_{n}}$.

Key Number-Theoretic and Combinatorial Ingredients

Theorem

Let A be a finite set of algebraic numbers and suppose that $\boldsymbol{u} \in A^{\omega}$ is a stuttering sequence. Then for any algebraic number β with $|\beta|>1$ the sum $S_{\beta}(\boldsymbol{u})=\sum_{n=0}^{\infty} \frac{u_{n}}{\beta^{n}}$ is transcendental.

Key Number-Theoretic and Combinatorial Ingredients

Theorem

Let A be a finite set of algebraic numbers and suppose that $\boldsymbol{u} \in A^{\omega}$ is a stuttering sequence. Then for any algebraic number β with $|\beta|>1$ the sum $S_{\beta}(\boldsymbol{u})=\sum_{n=0}^{\infty} \frac{u_{n}}{\beta^{n}}$ is transcendental.

- Subspace Theorem with a linear form "adapted to errors"

Key Number-Theoretic and Combinatorial Ingredients

Theorem

Let A be a finite set of algebraic numbers and suppose that $\boldsymbol{u} \in A^{\omega}$ is a stuttering sequence. Then for any algebraic number β with $|\beta|>1$ the sum $S_{\beta}(\boldsymbol{u})=\sum_{n=0}^{\infty} \frac{u_{n}}{\beta^{n}}$ is transcendental.

- Subspace Theorem with a linear form "adapted to errors"

Theorem

Let $\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(k)}$ be Sturmian sequences all having the same slope and such that no sequence is a tail of another. Given $c_{1}, \ldots, c_{k} \in \mathbb{C}$, define $u_{n}:=\sum_{i=1}^{k} c_{i} u_{n}^{(i)}$ for all $n \in \mathbb{N}$. Then $\boldsymbol{u}=\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ is stuttering.

Application to Dynamical Systems

"Are all irrational elements of the Cantor ternary set transcendental?"
K. Mahler, Some suggestions for further research, Bull. Austral. Math. Soc. 29 (1984).

Contracted Rotations

Given $0<\lambda, \delta<1$ such that $\lambda+\delta>1$, map $f: I \rightarrow I$ given by $f(x):=\{\lambda x+\delta\}$ is a contracted rotation with slope λ and offset δ.

Cantor Sets from Rotations

Rotation Number

Consider the limit set $C:=\bigcap_{n=0}^{\infty} f^{n}(I)$. Then f has a rotation number θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \bar{C} is a Cantor set ${ }^{a}$ if θ is irrational.
${ }^{a}$ compact, nowhere dense, no isolated points

Cantor Sets from Rotations

Rotation Number

Consider the limit set $C:=\bigcap_{n=0}^{\infty} f^{n}(I)$. Then f has a rotation number θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \bar{C} is a Cantor set ${ }^{a}$ if θ is irrational.
${ }^{a}$ compact, nowhere dense, no isolated points

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every element of the Cantor set \bar{C} other than 0 and 1 is transcendental.

Cantor Sets from Rotations

Rotation Number

Consider the limit set $C:=\bigcap_{n=0}^{\infty} f^{n}(I)$. Then f has a rotation number θ such that restriction of f to C is conjugate to the rotation map R_{θ} and \bar{C} is a Cantor set ${ }^{a}$ if θ is irrational.
${ }^{a}$ compact, nowhere dense, no isolated points

Theorem (Luca, Ouaknine, W., 2023)

If f has algebraic slope and irrational rotation number then every element of the Cantor set \bar{C} other than 0 and 1 is transcendental.

- Generalises result of Bugeaud, Kim, Laurent, Nogueira, which had $\lambda^{-1} \in \mathbb{Z}$.

MSc Thesis of Pavol Kebis

Let $\Sigma=\{0, \ldots, k-1\}$ for some $k \geq 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity $p(n)=(k-1) n+1$
- for each n there is one left-special and one right-special factor of length n.

MSc Thesis of Pavol Kebis

Let $\Sigma=\{0, \ldots, k-1\}$ for some $k \geq 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is
Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity $p(n)=(k-1) n+1$
- for each n there is one left-special and one right-special factor of length n.

Example

The Tribonacci word is the limit of the infinite sequence defined by recurrence

$$
T_{n}=T_{n-1} T_{n-2} T_{n-3} \quad T_{0}=0, T_{1}=01, T_{2}=0102
$$

MSc Thesis of Pavol Kebis

Let $\Sigma=\{0, \ldots, k-1\}$ for some $k \geq 2$. A sequence $\boldsymbol{u} \in \Sigma^{\omega}$ is
Arnoux-Rauzy if

- it is uniformly recurrent
- it has subword complexity $p(n)=(k-1) n+1$
- for each n there is one left-special and one right-special factor of length n.

Example

The Tribonacci word is the limit of the infinite sequence defined by recurrence

$$
T_{n}=T_{n-1} T_{n-2} T_{n-3} \quad T_{0}=0, T_{1}=01, T_{2}=0102
$$

Also generated by the morphism $\sigma(0)=01, \sigma(1)=02, \sigma(2)=0$.

LTI Reachability

Consider LTI system in \mathbb{R}^{2} with

- Control polyhedron: $U:=[0,1] \times\{0\}$
- Transition matrix $A:=\frac{1}{b}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

LTI Reachability

Consider LTI system in \mathbb{R}^{2} with

- Control polyhedron: $U:=[0,1] \times\{0\}$
- Transition matrix $A:=\frac{1}{b}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Does there exist a sequence of inputs $u_{n} \in U$ such that the orbit

$$
x_{n+1}=A x_{n}+u_{n}, \quad x_{0}=0
$$

reaches the halfspace $x \geq c$?

LTI Reachability

Consider LTI system in \mathbb{R}^{2} with

- Control polyhedron: $U:=[0,1] \times\{0\}$
- Transition matrix $A:=\frac{1}{b}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Does there exist a sequence of inputs $u_{n} \in U$ such that the orbit

$$
x_{n+1}=A x_{n}+u_{n}, \quad x_{0}=0
$$

reaches the halfspace $x \geq c$?

Determine whether $\sum_{n=0}^{\infty} u_{n} \frac{\cos (n \theta)}{b^{n}} \geq c$, where $u_{n}=1$ if $\cos (n \theta) \geq 0$ and $u_{n}=0$ otherwise.

[^0]: Theorem (Adamczewski and Bugeaud 2007a)
 Let β be a Pisot or a Salem number and let \boldsymbol{u} be a bounded sequence of integers. Then $S_{\beta}(\boldsymbol{u})$ either lies in $\mathbb{Q}(\beta)$ or is transcendental.

