From the Thue-Morse sequence to the apwenian sequences

Wen WU

South China University of Technology

Based on joint work with Y.-J. Guo and G.-N. Han.

One World Numeration Seminar

November 8, 2022

- 1 Thue-Morse sequence
 - Zero-one Thue-Morse sequence
 - Thue-Morse constant
 - Plus minus one Thue-Morse sequence

- 2 Apwenian sequences
 - Results
 - Examples and remarks

Thue-Morse sequence on $\{0, 1\}$

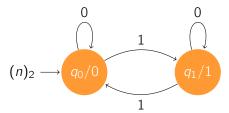
Let $t_0 = 0$ and $t_{2n} = t_n$ and $t_{2n+1} = 1 - t_n$ for all $n \ge 0$. Then

$$\mathbf{t} = (t_0, t_1, t_2, \dots) = (0, 1, 1, 0, 1, 0, 0, 1, \dots)$$

is the famous Thue-Morse sequence.

It is also

- a fix point of the substitution $0 \mapsto 01$ and $1 \mapsto 10$, and
- a 2-automatic sequence.



The Thue-Morse constant

The **generating function** of **t** is

$$f_0(z) = t_0 + t_1 z + t_2 z^2 + \cdots$$

In base-2,

$$au_{TM} := \frac{1}{2} f_0(1/2) = \sum_{n \geq 0} \frac{t_n}{2^{n+1}} = 0.01101001 \dots \in \mathbb{Q}^c$$

is the Thue-Morse constant.

Questions related to τ_{TM} :

- Is τ_{TM} an algebraic number?
- How well can rational numbers approximate τ_{TM} ?

Let $\xi \in \mathbb{Q}^c$, the **irrationality exponent** of ξ , denoted by $\mu(\xi)$, is

$$\mu(\xi) = \sup \left\{ \mu > 0 : \exists \text{ i.m. } \frac{p}{q} \in \mathbb{Q} \text{ s.t. } \left| \xi - \frac{p}{q} \right| < \frac{1}{q^{\mu}} \right\}.$$

Some arithmetic properties of τ_{TM} :

- (Mahler 1929') τ_{TM} is transcendental;
- (Adamczewski & Cassaigne 06', A. & Rivoal 09') $\mu(\tau_{TM}) \leq 5$ (06'), 4 (09');
- (Bugeaud 11') $\mu(\tau_{TM}) = 2$;
- (Bugeaud & Queffélec 13') i.m. partial quotients of $\tau_{TM} = 4$ or 5 and i.m. \geq 50;
- (Badziahin & Zorin 15') τ_{TM} is not badly approximable;
 - τ_{TM} is $\frac{C}{a^2 \log \log a}$ -well approximable for some C > 0.
- ...

Thue-Morse sequence on $\{-1, +1\}$

• Recall that $f_0(z) = \sum_{n \geq 0} t_n z^n$. Applying the recurrence relations $t_{2n} = t_n$ and $t_{2n+1} = 1 - t_n$, one has

$$f_0(z) = (1-z) \cdot f_0(z^2) + \frac{z}{1-z^2}.$$
 (1)

Let

$$f_1(z) = \frac{1}{1-z} - 2f_0(z) = \sum_{n>0} (1-2t_n)z^n.$$

• Eq. (1) implies

$$f_1(z) = (1-z) \cdot f_1(z^2)$$

$$= (1-z) \cdot (1-z^2) \cdot f_1(z^4) = \dots = \prod_{n=0}^{\infty} (1-z^{2^n}).$$

• For $n \ge 0$, let $t'_n := 1 - 2t_n$. The **Thue-Morse sequence on** $\{-1, +1\}$ is

$$\mathbf{t}'=(t_n')_{n\geq 0},$$

which satisfies $t_0'=1$, $t_{2n}'=t_n'$ and $t_{2n+1}'=-t_n'$ for all $n\geq 0$.

Recall that

$$f_1(z) = \sum_{n\geq 0} t'_n z^n = (1-z^2) \cdot f_1(z^2) = \prod_{n=0}^{\infty} (1-z^{2^n}).$$

ullet This inspires us to study the ± 1 sequences with generating functions given by

$$g(z) = (v_0 + v_1 z + \dots + v_{p-1} z^{p-1}) g(z^p) =: P(z) g(z^p)$$

where $p \ge 2$ and $v_0, \ldots, v_{p-1} \in \{-1, +1\}$.

Diophantine property of g(1/b)

- Let \mathbb{F} be a field and $f(x) = \sum_{i=0}^{\infty} u_i x^i$ is a formal power series over \mathbb{F} .
- For each $n \ge 1$ and $p \ge 0$, the Hankel determinant of the series f (or of the sequence $(u_n)_{n\ge 0}$) is defined by

$$H_n^p(f) = \begin{vmatrix} u_p & u_{p+1} & \cdots & u_{p+n-1} \\ u_{p+1} & u_{p+2} & \cdots & u_{p+n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{p+n-1} & u_{p+n} & \cdots & u_{p+2n-2} \end{vmatrix} \in \mathbb{F}.$$

• (Brezinski 1980) If $H_k(f) := H_n^0(f) \neq 0$, then there exist P(x), $Q(x) \in \mathbb{Q}[x]$ with $\deg P(x) \leq k-1$ and $\deg Q(x) \leq k$ such that

$$f(z) - \frac{P(z)}{Q(z)} = \frac{H_{k+1}(f)}{H_k(f)} z^{2k} + \mathcal{O}(z^{2k+1}).$$

• $\frac{P(z)}{Q(z)}$ is the (k-1,k)-order Padé approximation of f. It is also a convergent of f.

Let $b \ge 2$ be an integer such that $P(\frac{1}{hp^m}) \ne 0$ for all $m \ge 0$.

(Buguead, Han, Wen and Yao 2016) If $\exists (n_i)_{i\geq 0} \uparrow$ such that

$$H_{n_i}(g) \neq 0 \quad \forall i \geq 0 \quad \text{and} \quad \limsup_{i \to \infty} \frac{n_{i+1}}{n_i} = 1,$$

then g(1/b) is transcendental and $\mu(g(1/b)) = 2$.

(Badziahin 2019) If $g(1/z) \notin \mathbb{Q}(z)$, then

$$\mu(g(1/b)) = 1 + \limsup_{k \to \infty} \frac{d_{k+1}}{d_k}$$

where d_k is the degree of the denominator of the (co-prime) *n*th convergent of g(1/z).

• Need either the Hankel determinants or the continued fraction of q.

Hankel determinants of Thue-Morse sequence

Recall that \mathbf{t} and \mathbf{t}' are the Thue-Morse sequences on $\{0,1\}$ and $\{-1,+1\}$ respectively.

• (Allouche, Peyrière, Wen and Wen 98') For all $n \ge 1$,

$$\frac{H_n(\mathbf{t}')}{2^{n-1}} \equiv 1 \pmod{2}$$

and

$$H_n(\mathbf{t}) \equiv 1 \pmod{2}$$
.

• Using BHWY's (or Badziahin's) result, the non-vanishing of Hankel determinants of f_1 yields for all integer $b \ge 2$,

$$f_1(1/b)$$
 is transcendental and $\mu(f_1(1/b)) = 2$.

• How about g(1/b)?

- 1 Thue-Morse sequence
 - Zero-one Thue-Morse sequence
 - Thue-Morse constant
 - Plus minus one Thue-Morse sequence

- Apwenian sequences
 - Results
 - Examples and remarks

Apwenian sequences

Fu and Han (2016) introduced the apwenian sequences in honour of APWW.

Definition (Apwenian sequences)

A sequence $\mathbf{d} \in \{-1, 1\}^{\infty}$ is ± 1 apwenian if

$$\forall n \geq 1, \quad \frac{H_n(\mathbf{d})}{2^{n-1}} \equiv 1 \pmod{2}.$$

We restrict our interest on the ± 1 sequences **d** whose generating function satisfies

$$g(z) = \sum_{n>0} d_n z^n = (v_0 + v_1 z + \dots + v_{p-1} z^{p-1}) g(z^p)$$

where $v_i \in \{-1, 1\}$.

- Are there any other apwenian sequences?
- Moreover, how many apwenian sequences are there?

Are there any other apwenian sequences?

Apwenian sequences occur in pairs: \mathbf{d} and $-\mathbf{d}$.

For p = 2, 3, 5, 7, 11, 13, 17, **Fu and Han** (2016) showed that apwenian sequences are **quite rare**.

Han and Fu's computer assistant proof gives

Results

When p is odd, the mapping $j \mapsto 2j \pmod{p}$ induces the permutation

$$\tau: \begin{pmatrix} 1 & 2 & \cdots & \frac{p-1}{2} & \frac{p+1}{2} & \frac{p+3}{2} & \cdots & p-1 \\ 2 & 4 & \cdots & p-1 & 1 & 3 & \cdots & p-2 \end{pmatrix}.$$

Theorem (Guo, Han and W. 2021)

If p is even, then

d is apwenian
$$\iff$$
 d = **t**' or - **t**'.

If p is **odd**, then there are

- no apwenian sequences if the cycle decomposition of τ has a cycle of odd length;
- 2^k apwenian sequences if the cycle decomposition of τ has only k cycles of even lengths and no cycles of odd length.

Proposition (GHW 2021)

Let $p \ge 3$ be **odd** and

$$\mu(p) := \min\{1 \le j \le p - 1 \mid p \mid (2^{j} - 1)\}.$$

Then there are k cycles in the cycle decomposition of τ where

$$k = \frac{1}{\mu(p)} \sum_{j=1}^{\mu(p)-1} \gcd(2^j - 1, p) - 1.$$

p	cycle decomposition of $ au$	k	Num
3	(1, 2)	1	2
5	(1, 2, 4, 3)	1	2
7	(1, 2, 4)(3, 6, 5)	2	0
9	(1, 2, 4, 8, 7, 5)(3, 6)	2	4
11	(1, 2, 4, 8, 5, 10, 9, 7, 3, 6)	1	2
13	(1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7)	1	2
15	(1, 2, 4, 8)(3, 6, 12, 9)(5, 10)(7, 14, 13, 11)	4	16
17	(1, 2, 4, 8, 16, 15, 13, 9)(3, 6, 12, 7, 14, 11, 5, 10)	2	4
19	(1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10)	1	2
21		5	0
23		2	0
25		2	4
27		3	8
29		1	2
	ı		

0-1 awpenian sequences

If $\mathbf{d} \in \{-1, 1\}^{\infty}$ satisfies $d_0 = 1$ and

$$g(z) = \sum_{n\geq 0} d_n z^n = (v_0 + v_1 z + \cdots + v_{p-1} z^{p-1}) g(z^p),$$

then **d** is the fixed point of the morphism

$$1 \mapsto v_0 v_1 \cdots v_{p-1}, \quad -1 \mapsto \bar{v}_0 \bar{v}_1 \cdots \bar{v}_{p-1}$$

where $\bar{x} = -x$ for $x \in \{-1, 1\}$.

We restrict on the 0-1 sequences $\mathbf{c} = \sigma(1)^{\infty} \in \{0, 1\}^{\infty}$ where

$$\sigma: 1 \mapsto 1a_2 \cdots a_p, \quad 0 \mapsto b_1b_2 \cdots b_p.$$

Definition (0-1 awpenian sequences)

A sequence $\mathbf{c} \in \{0, 1\}^{\infty}$ is 0-1 apwenian if

$$\forall n \geq 1$$
, $H_n(\mathbf{c}) \equiv 1 \pmod{2}$.

Example

Let σ be the morphism

$$1 \mapsto 10, \ 0 \mapsto 11.$$

The **period doubling** sequence $\mathbf{p} = \sigma^{\infty}(1)$ is apwenian.

• How many 0-1 sequences are apwenian?

How many 0-1 sequences are apwenian?

The only 0-1 apwenian sequence that is a fixed point of substitution of constant length is the period doubling sequence.

Theorem (Guo, Han and W. 2021)

Let
$$\mathbf{c} = \sigma(1)^{\infty} \in \{0, 1\}^{\infty}$$
 where

$$\sigma: 1 \mapsto 1a_2 \cdots a_p, \quad 0 \mapsto b_1 b_2 \cdots b_p.$$

Then **c** is apwenian \iff **c** = **p**.

If we allow projection, then there are more apwenian sequences. For example, consider the projection $\iota: 1 \mapsto 11, 0 \mapsto 00$. Then $\iota(\mathbf{p})$ is also apwenian.

Criterion for apwenian sequences

Theorem (0-1 criterion, Guo, Han and W. 2021)

 $\mathbf{c} \in \{0,1\}^{\infty}$ is apwenian if and only if

$$c_0 = 1 \text{ and } c_n \equiv c_{2n+1} + c_{2n+2} \pmod{2}, \forall n \ge 0.$$
 (2)

Theorem (± 1 criterion, Guo, Hand and W. 2021)

 $\mathbf{d} \in \{+1, -1\}^{\infty}$ is apwenian if and only if

$$\frac{d_n + d_{n+1}}{2} - \frac{d_{2n+1} + d_{2n+2}}{2} \equiv 1 \pmod{2}, \forall n \ge 0.$$

An application

Let $p \ge 3$ be an odd number and $P(z) = v_0 + v_1 z + \cdots + v_{p-1} z^{p-1}$ with $v_0 = 1$ and $v_i \in \{-1, 1\}$ for $i = 1, \dots, p-1$. Recall that

$$g(z) = P(z)g(z^p) = \prod_{i=0}^{\infty} P(z^{p^i}).$$

For $m \ge p$, define $v_m := v_i$ with $m \equiv i \pmod{p}$ and $0 \le i < p$.

Theorem (Guo, Han and W. 2021)

Assume that $b \in \mathbb{Z}_{\geq 2}$ such that $P(\frac{1}{b^{p^i}}) \neq 0$ for all $i \geq 0$. If

$$\frac{v_j + v_{j+1} + v_{2j+1} + v_{2j+2}}{2} \equiv 1 \pmod{2}, 0 \le j \le p - 2,$$

then the real number g(1/b) is transcendental and its irrationality exponent equals 2.

General cases

Let $\mathbf{d} \in \{-1, 1\}^{\infty}$ given by

$$\sigma: 1 \mapsto v_0 v_1 \cdots v_{p-1}, \quad -1 \mapsto w_0 w_1 \cdots w_{p-1}$$

where v_i , $w_i \in \{-1, 1\}$.

In the previous discussion, we know about the case

$$w_i = -v_i$$

for all $0 \le j \le p - 1$.

Write

$$A := \{j \mid w_j = v_j, 0 \le j \le p - 1\}.$$

- $\sharp A = 0$ is the previous case.
- If $\sharp A = p$, then **d** is periodic which can not be apwenian.

The following is a criterion which applies to σ .

Theorem (Guo, Han and W. 2021)

If $\sharp A > 0$, then **d** is not apwenian.

That is to say, if \mathbf{d} is a pure substitution of constant length sequence, then \mathbf{d} could be apwenian only if the substitution is of the form

$$1 \mapsto v_0 v_1 \cdots v_{p-1}, \quad -1 \mapsto \overline{v}_0 \overline{v}_1 \cdots \overline{v}_{p-1}$$

or its generating function is of the form

$$g(z) = \prod_{n \geq 0} (v_0 + v_1 z^{p^n} + \cdots + v_{p-1} z^{p^n(p-1)}).$$

Conjecture (GHW)

If ${\bf d}$ is a pure substitution (of non-constant length) sequence, then ${\bf d}$ is not apwenian.

• GHW (2021) verified that all Sturmian sequences are not apwenian.

Examples

Example

Apply the projection $1\mapsto 11$, $-1\mapsto -1-1$ to the Thue-Morse sequence \mathbf{t}' . Then by our criterion, the resulting sequence is awpenian. However, it is not a pure substitution sequence.

 In general, we are still not clear about when substitution sequences (with projection) is apwenian or not. For concrete examples, our criterion could be applied.

Example

Assume that $\mathbf{c} \in \{0, 1\}^{\infty}$ satisfies

$$c_0 = 1, c_n \equiv c_{2n+1} + c_{2n+2} \pmod{2} \quad (\forall n \ge 0)$$

and $(c_{2n+1})_{n\geq 0}$ is the Fibonacci sequence given by $1\mapsto 10$, $0\mapsto 1$. Then by our criterion, **c** is apwenian.

- One can also pick a 0-1 sequence with high complexity to be the odd sub-sequence of c. So that c is not a substitution sequence but still apwenian.
- (Allouche, Han and Niederreiter 2020) c is 2-automatic if and only if $(c_{2n+1})_{n>0}$ is 2-automatic.

Connection with PLCP sequences

Let $\mathbf{s} = (s_m)_{m \ge 1}$ be a sequence of elements in a field \mathbb{F} .

• **s** is called a k-th order *shift-register sequence* if there exist constants $a_0, a_1, \ldots, a_{k-1}$ in $\mathbb F$ such that, for all $i \ge 1$,

$$s_{i+k} + a_{k-1}s_{i+k-1} + \cdots + a_1s_{i+1} + a_0s_i = 0.$$

- The *n*-th *linear complexity* L(n) of **s** is defined as the least k such that s_1, s_2, \ldots, s_n are the first n terms of a k-th order shift-register sequence.
- **s** is said to have a **perfect linear complexity profile** (PLCP) if for all $n \ge 1$ one has $L(n) = \lfloor \frac{n+1}{2} \rfloor = \lceil \frac{n}{2} \rceil$.

Let $\mathbf{s} = (s_n)_{n \geq 1}$ be a sequence in \mathbb{F}_2 with $s_1 = 1$. Let

$$f(t) = s_1 t + s_2 t^2 + s_3 t^3 \cdots \in \mathbb{F}_2[[t]].$$

Let $\mathbf{c} = (c_n)_{n \ge 0}$ be the sequence defined by $c_n = s_{n+1}$ for all $n \ge 0$.

Allouche, Han and Niederreiter (2020) found that

s has a PLCP ⇐⇒ c is apwenian.

They also address the question of which 0-1 apwenian sequences are automatic.

• If **s** has a PLCP, then f(t) is algebraic over $\mathbb{F}_2(t)$ if and only if it can be written as $f(t) = v^2 + tu^2$, with u any series in $1 + t\mathbb{F}_2[[t]]$ algebraic over $\mathbb{F}_2(t)$ and v the root of $v^2 + v = 1 + u + tu^2$ lying in $t\mathbb{F}_2[[t]]$.

Thank you!