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Motivation

[f-transformations

Let 8 > 1.
m The greedy transformation T [Rényil957] on [0,1):

Tgx = fz — |fz] = fz  (mod 1).

m Tg-invariant Parry measure;[Gelfond1959, Parry1960]

® unique measure that is equivalent to Lebesgue
measure;[Rényil957,Parry1960]

unique Ts-invariant measure of maximal entropy.[Hofbauer1980]



Motivation

[f-transformations

m The greedy transformation T on [0, %)

(z) = Bxr (mod 1), f0<a<l,
S e - 18], if1<a <42

m The lazy transformation Lg on [0, %)
2
e : J ;
o4 B AN A
%’1 ,i(?;—Jn L8] . 1
R
(a) the greedy map T (b) the lazy map Lg




[f-transformations

m fsinfs n s
0 s 3 s s
b b Iy o

Eel

m ({0, 1} x [0, %], Kj3) [Dajani & Kraaikamp, 2003]

((w,Bz—1), ifreE,1=0,...,|8],

Kg(w,x) = { (o(w), Bx —1), ifwy=1andxz € S,l=1,...
((o(w),fr—1+1), ifw =0,andze S;,l=1,...
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Motivation

[f-transformations

= ({0, l}N x [0, %], Kjg)[Dajani & Kraaikamp, 2003]

m unique Kg-invariant measure of maximal entropy;[Dajani & de Vries,
2005]

m unique Kg-invariant probability measure, absolutely continuous with

respect to myp ® A1; the measure of maximal entropy and m, ® A are

mutually singular.[Dajani & de Vries, 2007]

m Question: S-transformations on R2?
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Motivation

Sierpinski gasket
m Let 8 > 1. Consider the iterated function system(IFS)
2+ ¢

where ¢y, 1, ¢> are (0,0),(1,0), (0,1), respectively. qo < ¢1 < G2
m There exists a unique non-empty compact set Sz C R? such that

f‘fn(sﬁ) U flﬂ (SB) U flfz(Sﬁ)

Sg =
. € {do, 1, @2} such that

m For Z € Sp, there exists a sequence (a;)$2
7= lim f,, o
n—oo

z Ofan q0 Z

We call (a;)52, a coding of Zand ) .-, a;3~" a representation of 7 in

base 5.
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Motivation

For different

A : the convex hull of Sg;
a triangle with vertices at (0,0), (z17,0) and (0, 7=1)-

Y

1
B—1

1
B

1
B(B—1))

1 1 1z
B(B—1PB B-1

(c) fz,(A) for B> 2

Y
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7

1 _ 1 1z 11 1«
B B(B—AY1 BB D1
() fg,(A) for 1< B <3 (f) fg,(0) for § <p<2



1

T

1 1
B(B—D)B B-1

Figure: fgz (A) for 8> 2

Since Sg = f7,(58) U f7,(S8) U f7,(S5) and fg,(Ss) are disjoint, then we
define

(=12, if 2 € fg(Sp),
T(7) = { f712, it 7€ f3,(55),
\f5'2 i Z€ f5,(5p).

Question: how is the transformation like if there is overlap?



Motivation

Transformations for 1 < § < 3/2

N
1
5—1
1
BB—1) NE2
Co2 C12
1
B
Eo Co1 By
AN
L4

1 1 1«
B B(B—1) B—1

Figure: fz(A)for1<p <2

The greedy transformation T3 from Sz into Sg is given by
(f-1z, if 7€ By,
Ty(2) = 1 £l if 7€ CuUE,
qu:;,i" if 7€ Cp12 U C12 U Cya U Es.
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Motivation

Transformations for 1 < § < 3/2

The lazy transformation Lg from Sg into Sg is given by

I{fili, if 7€ Cp1o0UCor UCho U Ey,
Ls(2) = { f'2, ifZeCrUE,
\f5'2 ifZ€ B,

Let p be an arbitrary Tg-invariant probability measure on (Sg,S).

Proposition

For 8 € (1,3/2], the systems (Ss,S, 1, Tp) and (Sg,S,v, Lg) are isomorphic,
where v = popL.
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Motivation

Transformations for 1 < § < 3/2

Co2 Ci12
1
B
Eo Co1 2\

Figure: fz,(A) for 1< g <2

m To define a random transformation, we need to randomly select the
map used in the switch regions C;; and Coqa.

m Inspired by the method in [Dajani & Kraaikamp, 2003], we introduce
two symbolic spaces: Q = {0,1} and T = {0,1,2}".



Motivation

Transformations for 1 < § < 3/2

Define random transformation Kz on 2 x T x Sg

(w0, f7'7), ifZeE,i=0,12,

i (Uw,v,fqiili'), if w; =0, Z€ Gy, ij € {01,12,02},
(o—w,uf:jlz), if wy =1, 2 € Gy, ij € {01,12,02},
(

For these transformations, we consider
m the existence of acim;

m the existence of the measure of maximal entropy.
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main results

main results
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main results

For 1 < 8 < 3/2

Theorem (Main results-1)

Ts admits an acim. And so does Lg.

Theorem (Main results-2)

Let B € (1,3/2). Then Kg has an invariant measure of the form
m1 ® ma ® g, where pg s absolutely continuous with respect to Ag.

Theorem (Main results-3)

Let B € (1,8.), where B, ~ 1.4656 is the root of x> — x> — 1= 0. The
measure vg(A) = P(p(Z N A)) is the unique Kg-invariant measure of
maximal entropy.



main results

For 3/2 < 8 < B*

Broomhead, Montaldi and Sidorov(2004) gave a special class of Sierpinski
gasket with positive Hausdorff measure. By a simple affine map, we have
this proposition.

Proposition

Let 3* = 1.5437 be the root of ® — 22% + 2z = 2. Then S has a non-empty
interior if B € (%,B*], and each hole has the form f%(H), see the following
figure.
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main results

For 3/2 < 8 < B*

7/’~
1
71
\ _
B(B—1) F2
1 | o2 Ci2
5 \Q
Bo Co1\ E1 .
4
1 1 1 x
5 BGA-D BT

Figure: fg,(A) for 3 < 8 < B*
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m The triple overlapping region Cy12 disappears.

m S3 has holes and duplex overlapping areas.



main results

For 3/2 < 8 < B*

Define the random transformation Kg : Q2 x Sg — 2 x Sj:

Theorem (Main results-4)

Let 3/2 < B < B*. The dynamical systems (2 x Sg, Ax S,vg, Kg) and
(Y,B,P,0') are isomorphic. Moreover, the measure vg is the unique
Kg-invariant measure of mazimal entropy.
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Outline of

Outline of proofs
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Outline of proofs

0 0 9 0
Piecewise C° and expanding maps

Let S be a bounded region in RV,

Let P = {S1,952,...,5m,} be a finite partition of S.

Let 7 be a transformation from S into S.

We say 7 is piecewise C? and expanding with respect to P if:

m each S; is a bounded closed domain having a piecewise C? boundary of
finite (N — 1)-dimensional measure;

m 7, =7l is a C?, 1-1 transformation from int(S;) onto its image and
can be extended as a C? transformation onto S;;

m there exists 0 < ¢ < 1 such that for any i =1,2,...,m,

1D <c,
where D7, " is the derivative matrix of 7, ' and || - || is the euclidean
matrix norm, ie., |4l = (3%, 27:1 a%j)% for m x n order matrix

A = (agy).
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Outline of p

Assume that the faces of 95; meet at angles bounded uniformly away from 0.

Theorem (Boyarsky & Géra 1989, Corollary 1)

Let7:S — 5,5 C RY, be piecewise C? and such that some iterate 7"
satisfies ¢(1 4 1/a) < 1(c and a corresponds to 7% ), then T admits an
absolutely continuous invariant measure (acim).

Then we can prove the first main result.

Theorem (Main results-1)

Ts admits an acim. And so does Lg.
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Outline of proofs

Theorem (Main results-2)

Let 5 € (1,3/2). Then Kg has an invariant measure of the form
mi1 ® mg ® ug, where pg is absolutely continuous with respect to As.

m Idea: Bahsoun and Géra (2005), gave a sufficient condition for the
existence of an acim for a random map with position dependent
probabilities on a bounded domain of RV,

m Steps:

step 1:
step 2:
step 3:
step 4:

a random map R with position dependent probabilities on Sjs;
for the skew product transformation R’ on Sg x [0, 1);

for the skew product transformation Rg on 2 x T X Sg;

for the random transformation Kg on 2 x T x Sg.



Outline of proofs

The position dependent random map R

Let P be a partition of Sg: P = {S1,...,5,}.

For k=1,...,K, let 7 : S5 — Sp be piecewise one-to-one and C? ,
non-singular maps.

Let pi, : Sg — [0, 1] be piecewise C'* functions such that Zzilpk =1.

Denote the position dependent random map by

— —
)

R= {le-'aTK;pl(z) 7pK(Z)}7

which means R(Z) = 7(Z) with probability px(2).
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Outline of proofs

The Perron-Frobenius operator Ppr

The transition function for R:
Zpk V4 (Tk(Z)) & T7LH(A)

--» An operator P, on the set of probability measure on (Sg,S):

--+ The Perron-Frobenius operator of the random map R:
/PRf (£)dNo(Z ZZ/_l k(2) f(2)dNa(2).
k=1 i=1 (A)

We call Pr the Perron-Frobenius operator of the random map R.
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Outline of proofs

The Perron-Frobenius operator Ppr

The properties of Pg:
m P is linear;
m Ppg is non-negative;
m Ppf=f < p=f- ) is R-invariant;
m ||Prfll1 < ||fll1, where || - || denotes the L! norm;
m Pror = Pgr o Pp. In particular, PIJ%V = Ppn.
Assume:
m the faces of 0.5; meet at angles bounded uniformly away from 0;
m the probabilities py(Z) are piecewise C'! functions on the partition P;
m Condition(A):

max, Zm DT sl < e < 1,

where D7, ! () is the derivative matrix of 7, } at Z.
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Outline of

Using the multidimensional notion of variation [Giustil984]:
v = [ I1Dflan
RN
=swp{ [ fdivig)ihy g = (.- ov) € CRY RV
R

Let 2 be a point in 9S; and Jj; the Jacobian of 7y g, at Z.
We recall the following theorem.

Theorem (Bahsoun & Géra 2005, Theorem 6.3)

If R is a random map which satisfies Condition (A), then

V(Prf) < 1+ 1/a)V(f) + (M + =)||f 1,

where a = min{a(S;) :

i= ,...,q}>05fm1n{5( ) i=1...,q} >
0, My = supzeg, (Dpi(Z) —

(_’)) and M = Zk:l maxj<i<q Mk,i~

Consider the Banach space BV (Sg) with the norm || f||gv = || fllz, + V(f).
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Outline of proofs

Step 1: a random map R with position dependent

probabilities on Sj3

Define the piecewise one-to-one and C2, non-singular transformations

(pz—g, if7eE;, (pz—q, ifzek;,
(D) ={p7—¢q, itFeCy, m(E)=Lp7—gq, ifzFeCy,
(87, if 7€ Coio, (87, if 27 € Cyyo,
(pz—g, ifzeE;, (pz—g, ifzekE;,
7‘2(5)2162’—@;, it 7€y, 75(2)=1ﬁ2—qg, it 7€ Oy,
(BZ— ¢, if 7€ Coma, \BZ— ¢, if 7€ Com,
(pz—g, ifzeE,, (pz—g, ifzekE;,

— —

7'3(2): ﬁg—(fi, if 7 ¢ Cij, 7'6(2’)2 ,82?—(]?, if zZe Cij,
(87— @2, if 7€ Cora, (87— @2, if 7€ Cora.



Outline of proofs

Define the probabilities

Lemma

Let R be a random map which is giwen by {r1,...,76;p1(2),. ..
R admits an acim pg.




Outline of proofs

Step 2: for the skew product transformation R’ on

SBX[,)

Let Ji = {(Z,w) : X2, pi(2) Sw < 3, pi2)}
Define @y, : Ji, — I as follows

() = gy Zaci el
P k(@) pr(2)

Define the skew product transformation R’ on Sz x [0,1)

R'(Z,w) = (Te(x), r(Z,w)), (Z,w) € Jp.

Lemma (Bahsoun, Bose & Quas, 2012)

pg s invariant for the random map R if and only if pug ® A1 is invariant for
the skew product R'.
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Outline of proofs

Step 3: for the skew product transformation 3 on

Define
r(aw,a’v,BZ—Ji), Ze E;,i€{0,1,2},
1
A (ow, 00, BE—G),  FE€Cyij € {01,02,12}, w; =0,
Rﬁ(w7vvz):{ o o o ..
(ow,0'v,Z—q;), Ze€Cy,ij€{01,02,12}, w; =1,
( )

ow,0'v,BZ—q), Z€ Coi2,v1 =1,i€ {0,1,2}.

{

(Sp x 1,8 x B(I),ug @ A\1,R") and
(Qx T xS5,AxBxS,m @ma® pg,Rg) are isomorphic.

Idea: I — {0,1,2,3,4,5}" — {0, 1} x {0,1,2}"
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Outline of proofs

Step 4: for the random transformation K3 on

QxT xS

Lemma

Let p be an arbitrary probability measure on Sg. Then
mi ®m2®u0Kﬁ_1 :m1®m2®u0R§1.

Idea: It suffices to verify the measures on sets of the form C; x Cy x S.

The above lemma implies that any product measure of the form
m1 ® mg ® p is Kg-invariant if and only if it is Rg-invariant.
The second main result follows.

Theorem (Main results-2)

Let B € (1,3/2). Then Kg has an invariant measure of the form
m1 ® ma ® g, where pg s absolutely continuous with respect to Ag.



Outline of proofs

Basic properties of Kz for 1 < 5 < 3/2

((w,v,f12), itzeE,i=0,1,2
1 k3
1

(

Kol 0.7) = { (aw,v,f;z), ifw; =0, € Cyy, ij € {01,12,02},
I(Uw,uf(;leL if wy =1, € Gy, ij € {01,12,02},
t(w,a’v, quili'), if Z€ Cp1a, v1 =1 €{0,1,2}.

Let
5, ifZeE;,i=0,1,2,
di(w,v,2) =

or (w,v,2) € {w1 =0} x T x Cy;, ij € {01,12,02},

(

1

{' or (w,v,%) € Q x{vy =i} x Coia,

(@, if (w,v,2) € {wy =1} x T x Cyj, ij € {01,12,02}.

Set d,, = dp(w,v,2) = dl(Kg_l(w,U,E)).
m (di,da,ds,...) is a coding of Z.

32 /46
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Outline of proofs

Basic properties of Kz for 1 < 5 < 3/2

Proposition

Suppose w,w’ € Q,v,v" € T are such that w < W' and v < v'. Then for
7 e SB,

(d1(w,v, 2), da(w,v, 2),...) X (di (W, 0V, 2),da(w', 0, 2),...).

Proposition

For B € (1,3/2], let 7€ Sg and 2=y .0, a;3~" with a; € {0, q1, ¢} be a
representation of Z' in base 3. Then there exists an w €  and an v € T such
that a; = d;(w,v, 2).



Outline of proofs

Theorem (Main results-3)

Let 5 € (1,5.). The measure vg(A) = P(p(Z N A)) is the unique
Kg-invariant measure of mazimal entropy.

Idea:
B (QxTx Sﬁ — {q_’Oa(j‘la(E}N - {0,172}N;
m (T,B,P, ') has the maximal entropy;

m Entropy is isomorphism invariant.



Outline of proofs

[somorphism

Two dynamical systems (X, F, u, Q) and (Y, G,v,U) are isomorphic:
m there exist measurable sets N C X and M C Y with
(u(N) = v(M) =0,
QX \N)CX\NUY\M)CY\M,
m there exists a measurable map ¢ : X \ N — Y \ M such that
(i) ¢ is one-to-one and onto,
(ii)1) is measurable, i.e., ~1(G) € F for all G € G,
(iii)7) preserves the measures, i.e., v(G) = u(yv=1(QG)),
(iv)e) preserves the dynamics of @ and U, i.e., o Q = U o 9,

The map 1 is called an isomorphism.
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Outline of

m Define a map

©:QxYxSs = {0, 0B} =T
(ww,é’) — (dl,dg,dg,,...) — (bl,bg,bg,,...)

m Let Z = Zl OZQ,D = D1 ﬂDQ, where

Zy ={(w,v,2) € Ax T x Sp : Kj(w,v,7) € A x T x C infinitely often},
Zy ={(w,v,2) € Ax T x Sp : Kj(w,v,7) € 2 x T x Cpiz infinitely often}

Dy = {(by,ba,...) €T Z Qb”’ L € C for infinitely many j’s},
Dy = {(b1,b2,...) €T : Z qb”' L € Cpp2 for infinitely many j’s}.

m Let ¢’ = ¢|z. The map ¢’ : Z — D is a bimeasurable bijection.
mIf1 <8 <p,, then P(D) =



Outline of

Lemma

For € (1, B4], the dynamical systems (2 x T x Sg, A x B x S,vg, Kg) and
(Y,B,P,0’) are isomorphic, where vg(A) = P(p(Z N A)).

Remark

The above lemma implies that any other Kg-invariant measure with support
Z has entropy strictly less than log 3. We need investigate the entropy of
K g-invariant measure p for which p(Z¢) > 0.

Divide Z¢ into three Kg-invariant Borel sets: Z¢ = Z3 U Z, U Zs5, where

Zy ={(w,v,2) € A x T x 8 : Kf(w,v,2) € Q2 x T xC for finitely many n’s
and Kg(w,v,?) € Q x T x Cpy2 infinitely often},

Zy ={(w,v,2) € A x T x S : Kf(w,v,2) € 2 x T x Cyp for finitely many n’s,
and Kj(w,v,Z) € Q@ x T x C infinitely often},

Zs ={(w,v,2) € A x T x S : Ki(w,v,2) € Qx T xC for finitely many n’s,
and Kj(w,v,2) € Q x T x Copz for finitely many n’s}.



Outline of

Lemma

Let 5 € (1,3/2]. Let u be a Kg-invariant measure for which (Z°) > 0.
Then h,(Kpg) < log 3.

There exist Kg-invariant probability measures p12, 3, 14 and us
concentrated on 7, Z3, Z4 and Zs, respectively, such that

w=(1—as—os—as)uiz + asps + cupa + asps,
where 0 < a3, 4,05 <1 and 0 < ag + ag4 + a5 < 1. Then
hu(Kg) = (1—ag—au—as)hu,, (Kg) +ashyu, (Kg) +aahy, (Kg) +ashy, (Kp).

Since hﬂlz (Kﬂ) < log3, and hﬂa (Kﬁ)’ hm (Kﬁ)’ hus (Kﬁ) < log 3, then we
have the result.



Outline of proofs

For 3/2 < B < 2

m In this case, we should notice that there are holes in the attractor.

m A special structure of those holes: they are all centered on three radial
lines originating from the center of the attractor and extending to the
three vertices.[Broomhead et al., 2004]
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Outline of proofs

For 3/2 < 8 < B*

Proposition

Let 3* = 1.5437 be the root of ® — 22% + 2z = 2. Then S has a non-empty
interior if B € (%,ﬁ*], and each hole has the form f(%(H), see the following
figure.

Figure: Sg for % <p<pr
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Outline of proofs

Overlaps and non-overlaps

m All holes fz (H) in the attractor Sg are in ‘nonoverlapping areas’.
= The ‘holes’ fz fz (H)(i # j) are covered by fz,(Sp);
= f.13 (H)(i # j) belongs to the nonoverlapping area.
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Outline of proofs

Basic properties of Kp for 3/2 < 5 < *

(w,B7—q), ifZekE;,i=0,1,2

Let
(g, if7eE,i=0,1,2,
dy = di(w, 2) = { if (w, 7) € {w1 = 0} x Oy, ij € {01,12,02},
(3, if (w, ) € {wr =1} x Cyy, ij € {01,12,02}.
Set dp = dp(w, 2) = di (K~ (w, 2)).

m (dy,ds,ds,...) is a coding of Z.

4
BZ—q), ifw =0,and 7€ Cyy, ij € {01,12,02},
BZ—q;), ifw =1l,and 7€ Cyy, ij € {01,12,02}.



Outline of proofs

Basic properties of Kg for 3/2 < 5 < 5*

Proposition

Suppose w,w’ € Q are such that w < w'. Then

(di(w, 2),d2(w, 2),...) 2 (d1 (&', 2),da(, 2),...).

Proposition
For B € (3/2,B%]. Let 7€ Sg and 2= .0, 3t with a; € {90, ¢, 3} be a
representation of Z in base 5. Then there ezists an w € ) such that

—

a; = d;(w, 2)



Outline of proofs

Theorem (Main results-4)

Let 3/2 < B < B*. The dynamical systems (2 x Sg, A x S,vg, Kg) and
(Y,B,P,0') are isomorphic. Moreover, the measure vg is the unique
Kg-invariant measure of mazimal entropy.

Idea: The proof is similar as that of the third main result.
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