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β-transformations

Let β > 1.

The greedy transformation Tβ [Rényi1957] on [0, 1):

Tβx = βx− bβxc = βx (mod 1).

Tβ-invariant Parry measure;[Gelfond1959, Parry1960]

unique measure that is equivalent to Lebesgue

measure;[Rényi1957,Parry1960]

unique Tβ-invariant measure of maximal entropy.[Hofbauer1980]
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β-transformations

The greedy transformation Tβ on [0, bβcβ−1 ):

Tβ(x) =

(
βx (mod 1), if 0 < x < 1,

βx− bβc, if 1 ≤ x < bβc
β−1 .

The lazy transformation Lβ on [0, bβcβ−1 ):

(a) the greedy map Tβ (b) the lazy map Lβ
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β-transformations

({0, 1}N × [0, [β]
β−1 ],Kβ) [Dajani & Kraaikamp, 2003]

Kβ(ω, x) =

8><
>:

(ω, βx− l), if x ∈ El, l = 0, . . . , bβc,
(σ(ω), βx− l), if ω1 = 1, and x ∈ Sl, l = 1, . . . , bβc,
(σ(ω), βx− l + 1), if ω1 = 0, and x ∈ Sl, l = 1, . . . , bβc.
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β-transformations

({0, 1}N × [0, bβcβ−1 ],Kβ)[Dajani & Kraaikamp, 2003]

unique Kβ-invariant measure of maximal entropy;[Dajani & de Vries,

2005]

unique Kβ-invariant probability measure, absolutely continuous with

respect to mp ⊗ λ1; the measure of maximal entropy and mp ⊗ λ1 are

mutually singular.[Dajani & de Vries, 2007]

Question: β-transformations on R2?
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Sierpinski gasket

Let β > 1. Consider the iterated function system(IFS):

f~q0(~z) =
~z + ~q0

β
, f~q1(~z) =

~z + ~q1

β
, f~q2(~z) =

~z + ~q2

β
,

where ~q0, ~q1, ~q2 are (0, 0), (1, 0), (0, 1), respectively. ~q0 < ~q1 < ~q2.

There exists a unique non-empty compact set Sβ ⊂ R2 such that

Sβ = f~q0(Sβ) ∪ f~q1(Sβ) ∪ f~q2(Sβ).

For ~z ∈ Sβ , there exists a sequence (ai)
∞
i=1 ∈ {~q0, ~q1, ~q2}N such that

~z = lim
n→∞

fa1
◦ · · · ◦ fan(~q0) =

∞X
i=1

ai
βi
.

We call (ai)
∞
i=1 a coding of ~z and

P∞
i=1 aiβ

−i a representation of ~z in

base β.
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For different β

∆ : the convex hull of Sβ ;

a triangle with vertices at (0, 0), ( 1
β−1 , 0) and (0, 1

β−1 ).
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(c) f~qi (∆) for β > 2
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(d) f~qi (∆) for β = 2
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(e) f~qi (∆) for 1 < β ≤ 3
2
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(f) f~qi (∆) for 3
2 < β ≤ 2
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For β > 2
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Figure: f~qi(∆) for β > 2

Since Sβ = f~q0(Sβ) ∪ f~q1(Sβ) ∪ f~q2(Sβ) and f~qi(Sβ) are disjoint, then we

define

T (~z) =

8><
>:
f−1
~q0
~z, if ~z ∈ f~q0(Sβ),

f−1
~q1
~z, if ~z ∈ f~q1(Sβ),

f−1
~q2
~z, if ~z ∈ f~q2(Sβ).

Question: how is the transformation like if there is overlap?
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Transformations for 1 < β ≤ 3/2
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Figure: f~qi(∆) for 1 < β ≤ 3
2

The greedy transformation Tβ from Sβ into Sβ is given by

Tβ(~z) =

8><
>:
f−1
~q0
~z, if ~z ∈ E0,

f−1
~q1
~z, if ~z ∈ C01 ∪ E1,

f−1
~q2
~z, if ~z ∈ C012 ∪ C12 ∪ C02 ∪ E2.
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Transformations for 1 < β ≤ 3/2

The lazy transformation Lβ from Sβ into Sβ is given by

Lβ(~z) =

8><
>:
f−1
~q0
~z, if ~z ∈ C012 ∪ C01 ∪ C02 ∪ E0,

f−1
~q1
~z, if ~z ∈ C12 ∪ E1,

f−1
~q2
~z, if ~z ∈ E2.

Let µ be an arbitrary Tβ-invariant probability measure on (Sβ ,S).

Proposition

For β ∈ (1, 3/2], the systems (Sβ ,S, µ, Tβ) and (Sβ ,S, ν, Lβ) are isomorphic,

where ν = µ ◦ ψ−1.
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Transformations for 1 < β ≤ 3/2
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Figure: f~qi(∆) for 1 < β ≤ 3
2

To define a random transformation, we need to randomly select the

map used in the switch regions Cij and C012.

Inspired by the method in [Dajani & Kraaikamp, 2003], we introduce

two symbolic spaces: Ω = {0, 1}N and Υ = {0, 1, 2}N.
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Transformations for 1 < β ≤ 3/2

Define random transformation Kβ on Ω×Υ× Sβ

Kβ(ω, υ, ~z) =

8>>><
>>>:

(ω, υ, f−1
~qi
~z), if ~z ∈ Ei, i = 0, 1, 2,

(σω, υ, f−1
~qi
~z), if ω1 = 0, ~z ∈ Cij , ij ∈ {01, 12, 02},

(σω, υ, f−1
~qj
~z), if ω1 = 1, ~z ∈ Cij , ij ∈ {01, 12, 02},

(ω, σ′υ, f−1
~qi
~z), if ~z ∈ C012, υ1 = i ∈ {0, 1, 2}.

For these transformations, we consider

the existence of acim;

the existence of the measure of maximal entropy.
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For 1 < β < 3/2

Theorem (Main results-1)

Tβ admits an acim. And so does Lβ.

Theorem (Main results-2)

Let β ∈ (1, 3/2). Then Kβ has an invariant measure of the form

m1 ⊗m2 ⊗ µβ, where µβ is absolutely continuous with respect to λ2.

Theorem (Main results-3)

Let β ∈ (1, β∗), where β∗ ≈ 1.4656 is the root of x3 − x2 − 1 = 0. The

measure νβ(A) = P(ϕ(Z ∩A)) is the unique Kβ-invariant measure of

maximal entropy.
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For 3/2 < β ≤ β∗

Broomhead, Montaldi and Sidorov(2004) gave a special class of Sierpinski

gasket with positive Hausdorff measure. By a simple affine map, we have

this proposition.

Proposition

Let β∗ ≈ 1.5437 be the root of x3 − 2x2 + 2x = 2. Then Sβ has a non-empty

interior if β ∈ ( 3
2 , β
∗], and each hole has the form fn~qi(H), see the following

figure.

Figure: Sβ for 3
2
< β ≤ β∗
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For 3/2 < β ≤ β∗

1
β(β−1)

1
β(β−1)

1
β

1
β−1

1
β

1
β−1

x

y
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Figure: f~qi(∆) for 3
2
< β ≤ β∗

The triple overlapping region C012 disappears.

Sβ has holes and duplex overlapping areas.
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For 3/2 < β ≤ β∗

Define the random transformation Kβ : Ω× Sβ → Ω× Sβ :

Kβ(ω, ~z) =

8><
>:

(ω, f−1
~qi
~z), if ~z ∈ Ei, i = 0, 1, 2,

(σω, f−1
~qi
~z), if ω1 = 0, and ~z ∈ Cij , ij ∈ {01, 12, 02},

(σω, f−1
~qj
~z), if ω1 = 1, and ~z ∈ Cij , ij ∈ {01, 12, 02}.

Theorem (Main results-4)

Let 3/2 < β ≤ β∗. The dynamical systems (Ω× Sβ ,A× S, νβ ,Kβ) and

(Υ,B,P, σ′) are isomorphic. Moreover, the measure νβ is the unique

Kβ-invariant measure of maximal entropy.
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Piecewise C2 and expanding maps

Let S be a bounded region in RN .

Let P = {S1, S2, . . . , Sm} be a finite partition of S.

Let τ be a transformation from S into S.

We say τ is piecewise C2 and expanding with respect to P if:

each Si is a bounded closed domain having a piecewise C2 boundary of

finite (N − 1)-dimensional measure;

τi = τ |Si is a C2, 1-1 transformation from int(Si) onto its image and

can be extended as a C2 transformation onto Si;

there exists 0 < c < 1 such that for any i = 1, 2, . . . ,m,

‖Dτ−1
i ‖ < c,

where Dτ−1
i is the derivative matrix of τ−1

i and ‖ · ‖ is the euclidean

matrix norm, i.e., ‖A‖ = (
Pm
i=1

Pn
j=1 a

2
ij)

1
2 for m× n order matrix

A = (aij).
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Assume that the faces of ∂Si meet at angles bounded uniformly away from 0.

Theorem (Boyarsky & Góra 1989, Corollary 1)

Let τ : S → S, S ⊂ RN , be piecewise C2 and such that some iterate τk

satisfies c(1 + 1/a) < 1(c and a corresponds to τk), then τ admits an

absolutely continuous invariant measure (acim).

Then we can prove the first main result.

Theorem (Main results-1)

Tβ admits an acim. And so does Lβ.
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Theorem (Main results-2)

Let β ∈ (1, 3/2). Then Kβ has an invariant measure of the form

m1 ⊗m2 ⊗ µβ, where µβ is absolutely continuous with respect to λ2.

Idea: Bahsoun and Góra (2005), gave a sufficient condition for the

existence of an acim for a random map with position dependent

probabilities on a bounded domain of RN .

Steps:

step 1: a random map R with position dependent probabilities on Sβ ;

step 2: for the skew product transformation R′ on Sβ × [0, 1);

step 3: for the skew product transformation Rβ on Ω × Υ × Sβ ;

step 4: for the random transformation Kβ on Ω × Υ × Sβ .
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The position dependent random map R

Let P be a partition of Sβ : P = {S1, . . . , Sq}.
For k = 1, . . . ,K, let τk : Sβ → Sβ be piecewise one-to-one and C2 ,

non-singular maps.

Let pk : Sβ → [0, 1] be piecewise C1 functions such that
PK
k=1 pk = 1.

Denote the position dependent random map by

R = {τ1, . . . , τK ; p1(~z), . . . , pK(~z)},

which means R(~z) = τk(~z) with probability pk(~z).
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The Perron-Frobenius operator PR

The transition function for R:

P(~z,A) =
KX
k=1

pk(~z)1A(τk(~z)) ! T−1(A)

99K An operator P∗ on the set of probability measure on (Sβ ,S):

P∗µ(A) =
KX
k=1

qX
i=1

Z
τ−1
k,i

(A)
pk(~z)dµ(~z) ! µ(T−1(A))

99K The Perron-Frobenius operator of the random map R:

Z
A
PRf(~z)dλ2(~z) =

KX
k=1

qX
i=1

Z
τ−1
k,i

(A)
pk(~z)f(~z)dλ2(~z).

We call PR the Perron-Frobenius operator of the random map R.
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The Perron-Frobenius operator PR

The properties of PR:

PR is linear;

PR is non-negative;

PRf = f ⇐⇒ µ = f · λ2 is R-invariant;

‖PRf‖1 ≤ ‖f‖1, where ‖ · ‖1 denotes the L1 norm;

PR◦T = PR ◦ PT . In particular, PNR = PRN .

Assume:

the faces of ∂Si meet at angles bounded uniformly away from 0;

the probabilities pk(~z) are piecewise C1 functions on the partition P;

Condition(A):

max
1≤i≤q

KX
k=1

pk(~z)‖Dτ−1
k,i (τk,i(~z))‖ < c < 1,

where Dτ−1
k,i (~z) is the derivative matrix of τ−1

k,i at ~z.
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Using the multidimensional notion of variation [Giusti1984]:

V (f) =

Z
RN
‖Df‖dλN

= sup

§Z
RN

fdiv(g)dλN : g = (g1, . . . , gN ) ∈ C1
0 (RN ,RN )

ª

Let ~z be a point in ∂Si and Jk,i the Jacobian of τk|Si at ~z.

We recall the following theorem.

Theorem (Bahsoun & Góra 2005, Theorem 6.3)

If R is a random map which satisfies Condition (A), then

V (PRf) ≤ c(1 + 1/a)V (f) + (M +
c

aδ
)‖f‖1,

where a = min{a(Si) : i = 1, . . . , q} > 0, δ = min{δ(Si) : i = 1 . . . , q} >
0,Mk,i = sup~z∈Si(Dpk(~z)− DJk,i

Jk,i
pk(~z)) and M =

PK
k=1 max1≤i≤qMk,i.

Consider the Banach space BV (Sβ) with the norm ‖f‖BV = ‖f‖L1
+ V (f).
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Step 1: a random map R with position dependent

probabilities on Sβ

Define the piecewise one-to-one and C2, non-singular transformations

τ1(~z) =

8><
>:
β~z − ~qi, if ~z ∈ Ei,
β~z − ~qi, if ~z ∈ Cij ,
β~z, if ~z ∈ C012,

τ4(~z) =

8><
>:
β~z − ~qi, if ~z ∈ Ei,
β~z − ~qj , if ~z ∈ Cij ,
β~z, if ~z ∈ C012,

τ2(~z) =

8><
>:
β~z − ~qi, if ~z ∈ Ei,
β~z − ~qi, if ~z ∈ Cij ,
β~z − ~q1, if ~z ∈ C012,

τ5(~z) =

8><
>:
β~z − ~qi, if ~z ∈ Ei,
β~z − ~qj , if ~z ∈ Cij ,
β~z − ~q1, if ~z ∈ C012,

τ3(~z) =

8><
>:
β~z − ~qi, if ~z ∈ Ei,
β~z − ~qi, if ~z ∈ Cij ,
β~z − ~q2, if ~z ∈ C012,

τ6(~z) =

8><
>:
β~z − ~qi, if ~z ∈ Ei,
β~z − ~qj , if ~z ∈ Cij ,
β~z − ~q2, if ~z ∈ C012.
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Define the probabilities

p1(~z) = p · s, p4(~z) = (1− p) · s,
p2(~z) = p · t, p5(~z) = (1− p) · t,
p3(~z) = p · (1− s− t), p6(~z) = (1− p) · (1− s− t).

Lemma

Let R be a random map which is given by {τ1, . . . , τ6; p1(~z), . . . , p6(~z)}. Then

R admits an acim µβ.
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Step 2: for the skew product transformation R′ on

Sβ × [0, 1)

Let Jk = {(~z, w) :
P
i<k pi(~z) ≤ w <

P
i≤k pi(~z)}.

Define ϕk : Jk → I as follows

ϕk(~z, w) =
1

pk(~z)
w −

Pk−1
r=1 pr(~z)

pk(~z)
.

Define the skew product transformation R′ on Sβ × [0, 1)

R′(~z, w) = (τk(x), ϕk(~z, w)), (~z, w) ∈ Jk.

Lemma (Bahsoun, Bose & Quas, 2012)

µβ is invariant for the random map R if and only if µβ ⊗ λ1 is invariant for

the skew product R′.
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Step 3: for the skew product transformation Rβ on

Ω×Υ× Sβ

Define

Rβ(ω, υ, ~z) =

8>>><
>>>:

(σω, σ′υ, β~z − ~qi), ~z ∈ Ei, i ∈ {0, 1, 2},
(σω, σ′υ, β~z − ~qi), ~z ∈ Cij , ij ∈ {01, 02, 12}, ω1 = 0,

(σω, σ′υ, β~z − ~qj), ~z ∈ Cij , ij ∈ {01, 02, 12}, ω1 = 1,

(σω, σ′υ, β~z − ~qi), ~z ∈ C012, υ1 = i, i ∈ {0, 1, 2}.

Lemma

(Sβ × I,S × B(I), µβ ⊗ λ1, R
′) and

(Ω×Υ× Sβ ,A× B × S,m1 ⊗m2 ⊗ µβ , Rβ) are isomorphic.

Idea: I → {0, 1, 2, 3, 4, 5}N → {0, 1}N × {0, 1, 2}N
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Step 4: for the random transformation Kβ on

Ω×Υ× Sβ

Lemma

Let µ be an arbitrary probability measure on Sβ. Then

m1 ⊗m2 ⊗ µ ◦K−1
β = m1 ⊗m2 ⊗ µ ◦R−1

β .

Idea: It suffices to verify the measures on sets of the form C1 × C2 × S.

The above lemma implies that any product measure of the form

m1 ⊗m2 ⊗ µ is Kβ-invariant if and only if it is Rβ-invariant.

The second main result follows.

Theorem (Main results-2)

Let β ∈ (1, 3/2). Then Kβ has an invariant measure of the form

m1 ⊗m2 ⊗ µβ, where µβ is absolutely continuous with respect to λ2.
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Basic properties of Kβ for 1 < β ≤ 3/2

Kβ(ω, υ, ~z) =

8>>><
>>>:

(ω, υ, f−1
~qi
~z), if ~z ∈ Ei, i = 0, 1, 2,

(σω, υ, f−1
~qi
~z), if ω1 = 0, ~z ∈ Cij , ij ∈ {01, 12, 02},

(σω, υ, f−1
~qj
~z), if ω1 = 1, ~z ∈ Cij , ij ∈ {01, 12, 02},

(ω, σ′υ, f−1
~qi
~z), if ~z ∈ C012, υ1 = i ∈ {0, 1, 2}.

Let

d1(ω, υ, ~z) =

8>>><
>>>:

~qi, if ~z ∈ Ei, i = 0, 1, 2,

or (ω, υ, ~z) ∈ Ω× {υ1 = i} × C012,

or (ω, υ, ~z) ∈ {ω1 = 0} ×Υ× Cij , ij ∈ {01, 12, 02},
~qj , if (ω, υ, ~z) ∈ {ω1 = 1} ×Υ× Cij , ij ∈ {01, 12, 02}.

Set dn = dn(ω, υ, ~z) = d1(Kn−1
β (ω, υ, ~z)).

(d1, d2, d3, . . .) is a coding of ~z.
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Basic properties of Kβ for 1 < β ≤ 3/2

Proposition

Suppose ω, ω′ ∈ Ω, υ, υ′ ∈ Υ are such that ω ≺ ω′ and υ ≺ υ′. Then for

~z ∈ Sβ,

(d1(ω, υ, ~z), d2(ω, υ, ~z), . . .) � (d1(ω′, υ′, ~z), d2(ω′, υ′, ~z), . . .).

Proposition

For β ∈ (1, 3/2], let ~z ∈ Sβ and ~z =
P∞
i=1 aiβ

−i with ai ∈ {~q0, ~q1, ~q2} be a

representation of ~z in base β. Then there exists an ω ∈ Ω and an υ ∈ Υ such

that ai = di(ω, υ, ~z).
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Theorem (Main results-3)

Let β ∈ (1, β∗). The measure νβ(A) = P(ϕ(Z ∩A)) is the unique

Kβ-invariant measure of maximal entropy.

Idea:

Ω×Υ× Sβ → {~q0, ~q1, ~q2}N → {0, 1, 2}N;

(Υ,B,P, σ′) has the maximal entropy;

Entropy is isomorphism invariant.
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Isomorphism

Two dynamical systems (X,F , µ,Q) and (Y,G, ν, U) are isomorphic:

there exist measurable sets N ⊂ X and M ⊂ Y with

(i)µ(N) = ν(M) = 0,

(ii)Q(X \N) ⊂ X \N,U(Y \M) ⊂ Y \M,

there exists a measurable map ψ : X \N → Y \M such that

(i) ψ is one-to-one and onto,

(ii)ψ is measurable, i.e., ψ−1(G) ∈ F for all G ∈ G,

(iii)ψ preserves the measures, i.e., ν(G) = µ(ψ−1(G)),

(iv)ψ preserves the dynamics of Q and U , i.e., ψ ◦Q = U ◦ ψ,

The map ψ is called an isomorphism.
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Define a map

ϕ : Ω×Υ× Sβ → {~q1, ~q2, ~q3}N → Υ

(ω, υ, ~z)→ (d1, d2, d3, . . .)→ (b1, b2, b3, . . .)

Let Z = Z1 ∩ Z2, D = D1 ∩D2, where

Z1 = {(ω, υ, ~z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, ~z) ∈ Ω×Υ× C infinitely often},

Z2 = {(ω, υ, ~z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, ~z) ∈ Ω×Υ× C012 infinitely often},

D1 = {(b1, b2, . . .) ∈ Υ :
∞X
i=1

~qbj+i−1

βi
∈ C for infinitely many j’s},

D2 = {(b1, b2, . . .) ∈ Υ :
∞X
i=1

~qbj+i−1

βi
∈ C012 for infinitely many j’s}.

Let ϕ′ = ϕ|Z . The map ϕ′ : Z → D is a bimeasurable bijection.

If 1 < β < β∗, then P(D) = 1.
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Lemma

For β ∈ (1, β∗], the dynamical systems (Ω×Υ× Sβ ,A× B × S, νβ ,Kβ) and

(Υ,B,P, σ′) are isomorphic, where νβ(A) = P(ϕ(Z ∩A)).

Remark

The above lemma implies that any other Kβ-invariant measure with support

Z has entropy strictly less than log 3. We need investigate the entropy of

Kβ-invariant measure µ for which µ(Zc) > 0.

Divide Zc into three Kβ-invariant Borel sets: Zc = Z3 ∪ Z4 ∪ Z5, where

Z3 ={(ω, υ, ~z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, ~z) ∈ Ω×Υ× C for finitely many n’s

and Kn
β (ω, υ, ~z) ∈ Ω×Υ× C012 infinitely often},

Z4 ={(ω, υ, ~z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, ~z) ∈ Ω×Υ× C012 for finitely many n’s,

and Kn
β (ω, υ, ~z) ∈ Ω×Υ× C infinitely often},

Z5 ={(ω, υ, ~z) ∈ Ω×Υ× Sβ : Kn
β (ω, υ, ~z) ∈ Ω×Υ× C for finitely many n’s,

and Kn
β (ω, υ, ~z) ∈ Ω×Υ× C012 for finitely many n’s}.
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Lemma

Let β ∈ (1, 3/2]. Let µ be a Kβ-invariant measure for which µ(Zc) > 0.

Then hµ(Kβ) < log 3.

Proof

There exist Kβ-invariant probability measures µ12, µ3, µ4 and µ5

concentrated on Z,Z3, Z4 and Z5, respectively, such that

µ = (1− α3 − α4 − α5)µ12 + α3µ3 + α4µ4 + α5µ5,

where 0 ≤ α3, α4, α5 ≤ 1 and 0 < α3 + α4 + α5 ≤ 1. Then

hµ(Kβ) = (1−α3−α4−α5)hµ12
(Kβ)+α3hµ3

(Kβ)+α4hµ4
(Kβ)+α5hµ5

(Kβ).

Since hµ12(Kβ) ≤ log 3, and hµ3(Kβ), hµ4(Kβ), hµ5(Kβ) < log 3, then we

have the result.
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For 3/2 < β < 2

In this case, we should notice that there are holes in the attractor.

A special structure of those holes: they are all centered on three radial

lines originating from the center of the attractor and extending to the

three vertices.[Broomhead et al., 2004]
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For 3/2 < β ≤ β∗

Proposition

Let β∗ ≈ 1.5437 be the root of x3 − 2x2 + 2x = 2. Then Sβ has a non-empty

interior if β ∈ ( 3
2 , β
∗], and each hole has the form fn~qi(H), see the following

figure.

Figure: Sβ for 3
2
< β ≤ β∗
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Overlaps and non-overlaps

All holes fn~qi(H) in the attractor Sβ are in ‘nonoverlapping areas’.

The ‘holes’ f~qif
n
~qj

(H)(i 6= j) are covered by f~qj (Sβ);

f~qif
n
~qj

(H)(i 6= j) belongs to the nonoverlapping area.
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Basic properties of Kβ for 3/2 < β ≤ β∗

Kβ(ω, ~z) =

8><
>:

(ω, β~z − ~qi), if ~z ∈ Ei, i = 0, 1, 2,

(σω, β~z − ~qi), if ω1 = 0, and ~z ∈ Cij , ij ∈ {01, 12, 02},
(σω, β~z − ~qj), if ω1 = 1, and ~z ∈ Cij , ij ∈ {01, 12, 02}.

Let

d1 = d1(w, ~z) =

8><
>:
~qi, if ~z ∈ Ei, i = 0, 1, 2,

if (ω, ~z) ∈ {ω1 = 0} × Cij , ij ∈ {01, 12, 02},
~qj , if (ω, ~z) ∈ {ω1 = 1} × Cij , ij ∈ {01, 12, 02}.

Set dn = dn(ω, ~z) = d1(Kn−1
β (ω, ~z)).

(d1, d2, d3, . . .) is a coding of ~z.
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Basic properties of Kβ for 3/2 < β ≤ β∗

Proposition

Suppose ω, ω′ ∈ Ω are such that ω ≺ ω′. Then

(d1(ω, ~z), d2(ω, ~z), . . .) � (d1(ω′, ~z), d2(ω′, ~z), . . .).

Proposition

For β ∈ (3/2, β∗]. Let ~z ∈ Sβ and ~z =
P∞
i=1

ai
βi with ai ∈ {~q0, ~q1, ~q2} be a

representation of ~z in base β. Then there exists an ω ∈ Ω such that

ai = di(ω, ~z).
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Theorem (Main results-4)

Let 3/2 < β ≤ β∗. The dynamical systems (Ω× Sβ ,A× S, νβ ,Kβ) and

(Υ,B,P, σ′) are isomorphic. Moreover, the measure νβ is the unique

Kβ-invariant measure of maximal entropy.

Idea: The proof is similar as that of the third main result.
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