Random β -transformation on fat Sierpiński gasket

Tingyu Zhang tingyuzhangecnu@163.com

Department of Mathematics East China Normal University, Shanghai, China

One World Numeration Seminar March 29, 2022

joint work with Karma Dajani and Wenxia Li

Contents

2 main results

3 Outline of proofs

• Let $\beta > 1$.

• The greedy transformation T_{β} [Rényi1957] on [0, 1):

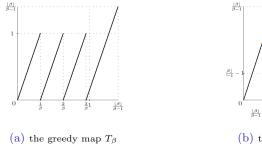
$$T_{\beta}x = \beta x - \lfloor \beta x \rfloor = \beta x \pmod{1}.$$

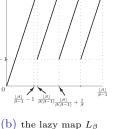
- T_{β} -invariant Parry measure; [Gelfond1959, Parry1960]
- unique measure that is equivalent to Lebesgue measure; [Rényi1957, Parry1960]
- unique T_{β} -invariant measure of maximal entropy.[Hofbauer1980]

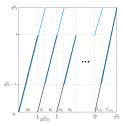
• The greedy transformation T_{β} on $[0, \frac{\lfloor \beta \rfloor}{\beta - 1})$:

$$T_{\beta}(x) = \begin{cases} \beta x \pmod{1}, & \text{if } 0 < x < 1, \\ \beta x - \lfloor \beta \rfloor, & \text{if } 1 \le x < \frac{\lfloor \beta \rfloor}{\beta - 1}. \end{cases}$$

• The lazy transformation L_{β} on $[0, \frac{\lfloor \beta \rfloor}{\beta - 1})$:







• $(\{0,1\}^{\mathbb{N}} \times [0, \frac{[\beta]}{\beta-1}], K_{\beta})$ [Dajani & Kraaikamp, 2003]

$$K_{\beta}(\omega, x) = \begin{cases} (\omega, \beta x - l), & \text{if } x \in E_l, l = 0, \dots, \lfloor \beta \rfloor, \\ (\sigma(\omega), \beta x - l), & \text{if } \omega_1 = 1, \text{and } x \in S_l, l = 1, \dots, \lfloor \beta \rfloor, \\ (\sigma(\omega), \beta x - l + 1), & \text{if } \omega_1 = 0, \text{and } x \in S_l, l = 1, \dots, \lfloor \beta \rfloor. \end{cases}$$

- $(\{0,1\}^{\mathbb{N}} \times [0,\frac{\lfloor\beta\rfloor}{\beta-1}],K_{\beta})$ [Dajani & Kraaikamp, 2003]
 - unique K_{β} -invariant measure of maximal entropy; [Dajani & de Vries, 2005]
 - unique K_{β} -invariant probability measure, absolutely continuous with respect to $m_p \otimes \lambda_1$; the measure of maximal entropy and $m_p \otimes \lambda_1$ are mutually singular.[Dajani & de Vries, 2007]
- Question: β -transformations on \mathbb{R}^2 ?

Sierpinski gasket

• Let $\beta > 1$. Consider the *iterated function system*(IFS):

$$f_{\vec{q}_0}(\vec{z}) = \frac{\vec{z} + \vec{q}_0}{\beta}, f_{\vec{q}_1}(\vec{z}) = \frac{\vec{z} + \vec{q}_1}{\beta}, f_{\vec{q}_2}(\vec{z}) = \frac{\vec{z} + \vec{q}_2}{\beta},$$

where $\vec{q}_0, \vec{q}_1, \vec{q}_2$ are (0, 0), (1, 0), (0, 1), respectively. $\vec{q}_0 < \vec{q}_1 < \vec{q}_2$. There exists a unique non-empty compact set $S_\beta \subset \mathbb{R}^2$ such that

$$S_{\beta} = f_{\vec{q}_0}(S_{\beta}) \cup f_{\vec{q}_1}(S_{\beta}) \cup f_{\vec{q}_2}(S_{\beta}).$$

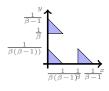
• For $\vec{z} \in S_{\beta}$, there exists a sequence $(a_i)_{i=1}^{\infty} \in {\{\vec{q}_0, \vec{q}_1, \vec{q}_2\}}^{\mathbb{N}}$ such that

$$\vec{z} = \lim_{n \to \infty} f_{a_1} \circ \dots \circ f_{a_n}(\vec{q}_0) = \sum_{i=1}^{\infty} \frac{a_i}{\beta^i}.$$

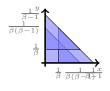
We call $(a_i)_{i=1}^{\infty}$ a coding of \vec{z} and $\sum_{i=1}^{\infty} a_i \beta^{-i}$ a representation of \vec{z} in base β .

For different β

- Δ : the convex hull of S_{β} ;
 - a triangle with vertices at $(0,0), (\frac{1}{\beta-1},0)$ and $(0,\frac{1}{\beta-1})$.

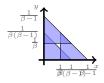


(c)
$$f_{\vec{q}_i}(\Delta)$$
 for $\beta > 2$



(e) $f_{\vec{q}_i}(\Delta)$ for $1 < \beta \le \frac{3}{2}$

(d)
$$f_{\vec{q}_i}(\Delta)$$
 for $\beta = 2$



(f) $f_{\vec{q}_i}(\Delta)$ for $\frac{3}{2} < \beta \le 2$

For $\beta > 2$

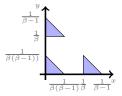


Figure: $f_{\vec{q}_i}(\Delta)$ for $\beta > 2$

Since $S_{\beta} = f_{\vec{q}_0}(S_{\beta}) \cup f_{\vec{q}_1}(S_{\beta}) \cup f_{\vec{q}_2}(S_{\beta})$ and $f_{\vec{q}_i}(S_{\beta})$ are disjoint, then we define

$$T(\vec{z}) = \begin{cases} f_{\vec{q}_0}^{-1} \vec{z}, & \text{if } \vec{z} \in f_{\vec{q}_0}(S_\beta), \\ f_{\vec{q}_1}^{-1} \vec{z}, & \text{if } \vec{z} \in f_{\vec{q}_1}(S_\beta), \\ f_{\vec{q}_2}^{-1} \vec{z}, & \text{if } \vec{z} \in f_{\vec{q}_2}(S_\beta). \end{cases}$$

Question: how is the transformation like if there is overlap?

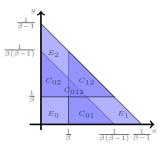


Figure: $f_{\vec{q}_i}(\Delta)$ for $1 < \beta \leq \frac{3}{2}$

The greedy transformation T_{β} from S_{β} into S_{β} is given by

$$T_{\beta}(\vec{z}) = \begin{cases} f_{\vec{q}_0}^{-1} \vec{z}, & \text{if } \vec{z} \in E_0, \\ f_{\vec{q}_1}^{-1} \vec{z}, & \text{if } \vec{z} \in C_{01} \cup E_1, \\ f_{\vec{q}_2}^{-1} \vec{z}, & \text{if } \vec{z} \in C_{012} \cup C_{12} \cup C_{02} \cup E_2. \end{cases}$$

The lazy transformation L_{β} from S_{β} into S_{β} is given by

$$L_{\beta}(\vec{z}) = \begin{cases} f_{\vec{q}_0}^{-1}\vec{z}, & \text{if } \vec{z} \in C_{012} \cup C_{01} \cup C_{02} \cup E_0, \\ f_{\vec{q}_1}^{-1}\vec{z}, & \text{if } \vec{z} \in C_{12} \cup E_1, \\ f_{\vec{q}_2}^{-1}\vec{z}, & \text{if } \vec{z} \in E_2. \end{cases}$$

Let μ be an arbitrary T_{β} -invariant probability measure on (S_{β}, \mathcal{S}) .

Proposition

For $\beta \in (1, 3/2]$, the systems $(S_{\beta}, S, \mu, T_{\beta})$ and $(S_{\beta}, S, \nu, L_{\beta})$ are isomorphic, where $\nu = \mu \circ \psi^{-1}$.

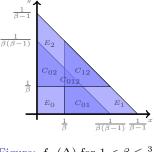


Figure: $f_{\vec{q}_i}(\Delta)$ for $1 < \beta \leq \frac{3}{2}$

- To define a random transformation, we need to randomly select the map used in the switch regions C_{ij} and C_{012} .
- Inspired by the method in [Dajani & Kraaikamp, 2003], we introduce two symbolic spaces: $\Omega = \{0, 1\}^{\mathbb{N}}$ and $\Upsilon = \{0, 1, 2\}^{\mathbb{N}}$.

Define random transformation K_{β} on $\Omega \times \Upsilon \times S_{\beta}$

$$K_{\beta}(\omega, v, \vec{z}) = \begin{cases} (\omega, v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \vec{z} \in E_i, i = 0, 1, 2, \\ (\sigma \omega, v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \omega_1 = 0, \ \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}, \\ (\sigma \omega, v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \omega_1 = 1, \ \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}, \\ (\omega, \sigma' v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \vec{z} \in C_{012}, \ v_1 = i \in \{0, 1, 2\}. \end{cases}$$

For these transformations, we consider

- the existence of acim;
- the existence of the measure of maximal entropy.

2 main results

3 Outline of proofs

For $1 < \beta < 3/2$

Theorem (Main results-1)

 T_{β} admits an acim. And so does L_{β} .

Theorem (Main results-2)

Let $\beta \in (1, 3/2)$. Then K_{β} has an invariant measure of the form $m_1 \otimes m_2 \otimes \mu_{\beta}$, where μ_{β} is absolutely continuous with respect to λ_2 .

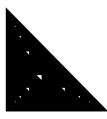
Theorem (Main results-3)

Let $\beta \in (1, \beta_*)$, where $\beta_* \approx 1.4656$ is the root of $x^3 - x^2 - 1 = 0$. The measure $\nu_{\beta}(A) = \mathbb{P}(\varphi(Z \cap A))$ is the unique K_{β} -invariant measure of maximal entropy.

Broomhead, Montaldi and Sidorov(2004) gave a special class of Sierpinski gasket with positive Hausdorff measure. By a simple affine map, we have this proposition.

Proposition

Let $\beta^* \approx 1.5437$ be the root of $x^3 - 2x^2 + 2x = 2$. Then S_β has a non-empty interior if $\beta \in (\frac{3}{2}, \beta^*]$, and each hole has the form $f_{\vec{q}_i}^n(H)$, see the following figure.



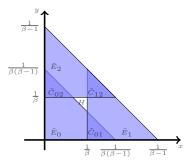


Figure: $f_{\vec{q}_i}(\Delta)$ for $\frac{3}{2} < \beta \le \beta^*$

- The triple overlapping region C_{012} disappears.
- S_{β} has holes and duplex overlapping areas.

Define the random transformation $K_{\beta} : \Omega \times S_{\beta} \to \Omega \times S_{\beta}$:

$$K_{\beta}(\omega, \vec{z}) = \begin{cases} (\omega, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \vec{z} \in E_i, i = 0, 1, 2, \\ (\sigma \omega, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \omega_1 = 0, \text{and } \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}, \\ (\sigma \omega, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \omega_1 = 1, \text{and } \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}. \end{cases}$$

Theorem (Main results-4)

Let $3/2 < \beta \leq \beta^*$. The dynamical systems $(\Omega \times S_{\beta}, \mathcal{A} \times \mathcal{S}, \nu_{\beta}, K_{\beta})$ and $(\Upsilon, \mathcal{B}, \mathbb{P}, \sigma')$ are isomorphic. Moreover, the measure ν_{β} is the unique K_{β} -invariant measure of maximal entropy.

1 Motivation

2 main results

3 Outline of proofs

Piecewise C^2 and expanding maps

Let S be a bounded region in \mathbb{R}^N .

Let $\mathcal{P} = \{S_1, S_2, \dots, S_m\}$ be a finite partition of S.

Let τ be a transformation from S into S.

We say τ is piecewise C^2 and expanding with respect to \mathcal{P} if:

- each S_i is a bounded closed domain having a piecewise C^2 boundary of finite (N-1)-dimensional measure;
- $\tau_i = \tau|_{S_i}$ is a C^2 , 1-1 transformation from $int(S_i)$ onto its image and can be extended as a C^2 transformation onto S_i ;
- there exists 0 < c < 1 such that for any $i = 1, 2, \ldots, m$,

$$\|D\tau_i^{-1}\| < c,$$

where $D\tau_i^{-1}$ is the derivative matrix of τ_i^{-1} and $\|\cdot\|$ is the euclidean matrix norm, i.e., $\|A\| = (\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2)^{\frac{1}{2}}$ for $m \times n$ order matrix $A = (a_{ij})$.

Assume that the faces of ∂S_i meet at angles bounded uniformly away from 0.

Theorem (Boyarsky & Góra 1989, Corollary 1)

Let $\tau: S \to S, S \subset \mathbb{R}^N$, be piecewise C^2 and such that some iterate τ^k satisfies c(1+1/a) < 1 (c and a corresponds to τ^k), then τ admits an absolutely continuous invariant measure (acim).

Then we can prove the first main result.

Theorem (Main results-1)

 T_{β} admits an acim. And so does L_{β} .

Theorem (Main results-2)

Let $\beta \in (1, 3/2)$. Then K_{β} has an invariant measure of the form $m_1 \otimes m_2 \otimes \mu_{\beta}$, where μ_{β} is absolutely continuous with respect to λ_2 .

- Idea: Bahsoun and Góra (2005), gave a sufficient condition for the existence of an acim for a random map with position dependent probabilities on a bounded domain of \mathbb{R}^N .
- Steps:
 - step 1: a random map R with position dependent probabilities on S_{β} ;
 - step 2: for the skew product transformation R' on $S_{\beta} \times [0, 1)$;
 - step 3: for the skew product transformation R_{β} on $\Omega \times \Upsilon \times S_{\beta}$;
 - step 4: for the random transformation K_{β} on $\Omega \times \Upsilon \times S_{\beta}$.

The position dependent random map R

Let \mathcal{P} be a partition of $S_{\beta} : \mathcal{P} = \{S_1, \ldots, S_q\}$. For $k = 1, \ldots, K$, let $\tau_k : S_{\beta} \to S_{\beta}$ be piecewise one-to-one and C^2 , non-singular maps. Let $p_k : S_{\beta} \to [0, 1]$ be piecewise C^1 functions such that $\sum_{k=1}^K p_k = 1$.

Denote the position dependent random map by

$$R = \{\tau_1, \ldots, \tau_K; p_1(\vec{z}), \ldots, p_K(\vec{z})\},\$$

which means $R(\vec{z}) = \tau_k(\vec{z})$ with probability $p_k(\vec{z})$.

The Perron-Frobenius operator P_R

The transition function for R:

$$\mathbf{P}(\vec{z}, A) = \sum_{k=1}^{K} p_k(\vec{z}) \mathbb{1}_A(\tau_k(\vec{z})) \nleftrightarrow T^{-1}(A)$$

 $-\rightarrow$ An operator \mathbf{P}_* on the set of probability measure on (S_β, \mathcal{S}) :

$$\mathbf{P}_*\mu(A) = \sum_{k=1}^K \sum_{i=1}^q \int_{\tau_{k,i}^{-1}(A)} p_k(\vec{z}) d\mu(\vec{z}) \rightsquigarrow \mu(T^{-1}(A))$$

 $-\rightarrow$ The Perron-Frobenius operator of the random map R:

$$\int_{A} P_{R}f(\vec{z})d\lambda_{2}(\vec{z}) = \sum_{k=1}^{K} \sum_{i=1}^{q} \int_{\tau_{k,i}^{-1}(A)} p_{k}(\vec{z})f(\vec{z})d\lambda_{2}(\vec{z}).$$

We call P_R the Perron-Frobenius operator of the random map R.

The Perron-Frobenius operator P_R

The properties of P_R :

- P_R is linear;
- P_R is non-negative;

•
$$P_R f = f \iff \mu = f \cdot \lambda_2$$
 is *R*-invariant;

 $\blacksquare \|P_R f\|_1 \le \|f\|_1, \text{ where } \|\cdot\|_1 \text{ denotes the } L^1 \text{ norm};$

$$P_{R\circ T} = P_R \circ P_T$$
. In particular, $P_R^N = P_{R^N}$.

Assume:

- the faces of ∂S_i meet at angles bounded uniformly away from 0;
- the probabilities $p_k(\vec{z})$ are piecewise C^1 functions on the partition \mathcal{P} ;

Condition(A):

$$\max_{1 \le i \le q} \sum_{k=1}^{K} p_k(\vec{z}) \| D\tau_{k,i}^{-1}(\tau_{k,i}(\vec{z})) \| < c < 1,$$

where $D\tau_{k,i}^{-1}(\vec{z})$ is the derivative matrix of $\tau_{k,i}^{-1}$ at \vec{z} .

Using the multidimensional notion of variation [Giusti1984]:

$$V(f) = \int_{\mathbb{R}^N} \|Df\| d\lambda_N$$

= sup $\left\{ \int_{\mathbb{R}^N} f \operatorname{div}(g) d\lambda_N : g = (g_1, \dots, g_N) \in C_0^1(\mathbb{R}^N, \mathbb{R}^N) \right\}$

Let \vec{z} be a point in ∂S_i and $J_{k,i}$ the Jacobian of $\tau_{k|S_i}$ at \vec{z} . We recall the following theorem.

Theorem (Bahsoun & Góra 2005, Theorem 6.3)

If R is a random map which satisfies Condition (A), then

$$V(P_R f) \le c(1+1/a)V(f) + (M + \frac{c}{a\delta})||f||_1,$$

where $a = \min\{a(S_i) : i = 1, \dots, q\} > 0, \delta = \min\{\delta(S_i) : i = 1, \dots, q\} > 0, M_{k,i} = \sup_{\vec{z} \in S_i} (Dp_k(\vec{z}) - \frac{DJ_{k,i}}{J_{k,i}} p_k(\vec{z})) \text{ and } M = \sum_{k=1}^K \max_{1 \le i \le q} M_{k,i}.$

Consider the Banach space $BV(S_{\beta})$ with the norm $||f||_{BV} = ||f||_{L_1} + V(f)$.

Step 1: a random map R with position dependent probabilities on S_β

Define the piecewise one-to-one and C^2 , non-singular transformations

$$\begin{split} \tau_1(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in E_i, \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{ij}, \\ \beta \vec{z}, & \text{if } \vec{z} \in C_{012}, \end{cases} & \tau_4(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in E_i, \\ \beta \vec{z} - \vec{q_j}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_2(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in E_i, \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} & \tau_5(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in E_i, \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_3(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} & \tau_6(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in E_i, \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_3(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_6(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_6(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_6(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \beta \vec{z} - \vec{q_i}, & \text{if } \vec{z} \in C_{012}, \end{cases} \\ \tau_7(\vec{z}) &= \begin{cases} \tau_7(\vec{z}) &= \\ \tau_7$$

Define the probabilities

$$p_1(\vec{z}) = p \cdot s, \qquad p_4(\vec{z}) = (1-p) \cdot s, \\ p_2(\vec{z}) = p \cdot t, \qquad p_5(\vec{z}) = (1-p) \cdot t, \\ p_3(\vec{z}) = p \cdot (1-s-t), \qquad p_6(\vec{z}) = (1-p) \cdot (1-s-t).$$

Lemma

Let R be a random map which is given by $\{\tau_1, \ldots, \tau_6; p_1(\vec{z}), \ldots, p_6(\vec{z})\}$. Then R admits an acim μ_β .

Step 2: for the skew product transformation R' on $S_{\beta} \times [0, 1)$

Let $J_k = \{(\vec{z}, w) : \sum_{i < k} p_i(\vec{z}) \le w < \sum_{i \le k} p_i(\vec{z})\}.$ Define $\varphi_k : J_k \to I$ as follows

$$\varphi_k(\vec{z}, w) = \frac{1}{p_k(\vec{z})} w - \frac{\sum_{r=1}^{k-1} p_r(\vec{z})}{p_k(\vec{z})}$$

Define the skew product transformation R' on $S_{\beta} \times [0, 1)$

$$R'(\vec{z}, w) = (\tau_k(x), \varphi_k(\vec{z}, w)), \quad (\vec{z}, w) \in J_k.$$

Lemma (Bahsoun, Bose & Quas, 2012)

 μ_{β} is invariant for the random map R if and only if $\mu_{\beta} \otimes \lambda_1$ is invariant for the skew product R'.

Step 3: for the skew product transformation R_{β} on $\Omega \times \Upsilon \times S_{\beta}$

Define

$$R_{\beta}(\omega, \upsilon, \vec{z}) = \begin{cases} (\sigma\omega, \sigma'\upsilon, \beta\vec{z} - \vec{q_i}), & \vec{z} \in E_i, i \in \{0, 1, 2\}, \\ (\sigma\omega, \sigma'\upsilon, \beta\vec{z} - \vec{q_i}), & \vec{z} \in C_{ij}, ij \in \{01, 02, 12\}, & \omega_1 = 0, \\ (\sigma\omega, \sigma'\upsilon, \beta\vec{z} - \vec{q_j}), & \vec{z} \in C_{ij}, ij \in \{01, 02, 12\}, & \omega_1 = 1, \\ (\sigma\omega, \sigma'\upsilon, \beta\vec{z} - \vec{q_i}), & \vec{z} \in C_{012}, \upsilon_1 = i, i \in \{0, 1, 2\}. \end{cases}$$

Lemma

 $(S_{\beta} \times I, \mathcal{S} \times \mathcal{B}(I), \mu_{\beta} \otimes \lambda_1, R')$ and $(\Omega \times \Upsilon \times S_{\beta}, \mathcal{A} \times \mathcal{B} \times \mathcal{S}, m_1 \otimes m_2 \otimes \mu_{\beta}, R_{\beta})$ are isomorphic.

Idea: $I \rightarrow \{0,1,2,3,4,5\}^{\mathbb{N}} \rightarrow \{0,1\}^{\mathbb{N}} \times \{0,1,2\}^{\mathbb{N}}$

Step 4: for the random transformation K_{β} on $\Omega \times \Upsilon \times S_{\beta}$

Lemma

Let μ be an arbitrary probability measure on S_{β} . Then $m_1 \otimes m_2 \otimes \mu \circ K_{\beta}^{-1} = m_1 \otimes m_2 \otimes \mu \circ R_{\beta}^{-1}$.

Idea: It suffices to verify the measures on sets of the form $C_1 \times C_2 \times S$.

The above lemma implies that any product measure of the form $m_1 \otimes m_2 \otimes \mu$ is K_β -invariant if and only if it is R_β -invariant. The second main result follows.

Theorem (Main results-2)

Let $\beta \in (1, 3/2)$. Then K_{β} has an invariant measure of the form $m_1 \otimes m_2 \otimes \mu_{\beta}$, where μ_{β} is absolutely continuous with respect to λ_2 .

Basic properties of K_{β} for $1 < \beta \leq 3/2$

$$K_{\beta}(\omega, v, \vec{z}) = \begin{cases} (\omega, v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \vec{z} \in E_i, i = 0, 1, 2, \\ (\sigma \omega, v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \omega_1 = 0, \ \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}, \\ (\sigma \omega, v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \omega_1 = 1, \ \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}, \\ (\omega, \sigma' v, f_{\vec{q}_i}^{-1} \vec{z}), & \text{if } \vec{z} \in C_{012}, \ v_1 = i \in \{0, 1, 2\}. \end{cases}$$

Let

$$d_{1}(\omega, \upsilon, \vec{z}) = \begin{cases} \vec{q_{i}}, & \text{if } \vec{z} \in E_{i}, i = 0, 1, 2, \\ & \text{or } (\omega, \upsilon, \vec{z}) \in \Omega \times \{\upsilon_{1} = i\} \times C_{012}, \\ & \text{or } (\omega, \upsilon, \vec{z}) \in \{\omega_{1} = 0\} \times \Upsilon \times C_{ij}, \, ij \in \{01, 12, 02\}, \\ & \vec{q_{j}}, & \text{if } (\omega, \upsilon, \vec{z}) \in \{\omega_{1} = 1\} \times \Upsilon \times C_{ij}, \, ij \in \{01, 12, 02\}. \end{cases}$$

Set $d_n = d_n(\omega, \upsilon, \vec{z}) = d_1(K_\beta^{n-1}(\omega, \upsilon, \vec{z})).$ (d_1, d_2, d_3, \ldots) is a coding of \vec{z} .

Basic properties of K_{β} for $1 < \beta \leq 3/2$

Proposition

Suppose $\omega, \omega' \in \Omega, \upsilon, \upsilon' \in \Upsilon$ are such that $\omega \prec \omega'$ and $\upsilon \prec \upsilon'$. Then for $\vec{z} \in S_{\beta}$,

$$(d_1(\omega, \upsilon, \vec{z}), d_2(\omega, \upsilon, \vec{z}), \ldots) \preceq (d_1(\omega', \upsilon', \vec{z}), d_2(\omega', \upsilon', \vec{z}), \ldots).$$

Proposition

For $\beta \in (1, 3/2]$, let $\vec{z} \in S_{\beta}$ and $\vec{z} = \sum_{i=1}^{\infty} a_i \beta^{-i}$ with $a_i \in \{\vec{q}_0, \vec{q}_1, \vec{q}_2\}$ be a representation of \vec{z} in base β . Then there exists an $\omega \in \Omega$ and an $\upsilon \in \Upsilon$ such that $a_i = d_i(\omega, \upsilon, \vec{z})$.

Theorem (Main results-3)

Let $\beta \in (1, \beta_*)$. The measure $\nu_{\beta}(A) = \mathbb{P}(\varphi(Z \cap A))$ is the unique K_{β} -invariant measure of maximal entropy.

Idea:

- $\square \ \Omega \times \Upsilon \times S_{\beta} \to \{ \vec{q_0}, \vec{q_1}, \vec{q_2} \}^{\mathbb{N}} \to \{ 0, 1, 2 \}^{\mathbb{N}};$
- $(\Upsilon, \mathcal{B}, \mathbb{P}, \sigma')$ has the maximal entropy;
- Entropy is isomorphism invariant.

Isomorphism

Two dynamical systems (X, \mathcal{F}, μ, Q) and (Y, \mathcal{G}, ν, U) are isomorphic:

- there exist measurable sets $N \subset X$ and $M \subset Y$ with (i) $\mu(N) = \nu(M) = 0$, (ii) $Q(X \setminus N) \subset X \setminus N, U(Y \setminus M) \subset Y \setminus M$,
- there exists a measurable map $\psi: X \setminus N \to Y \setminus M$ such that (i) ψ is one-to-one and onto, (``) ψ is one-to-one $(-1)(C) \in T$ for all $C \in C$
 - (ii) ψ is measurable, i.e., $\psi^{-1}(G) \in \mathcal{F}$ for all $G \in \mathcal{G}$,
 - (iii) ψ preserves the measures, i.e., $\nu(G) = \mu(\psi^{-1}(G))$,
 - (iv) ψ preserves the dynamics of Q and U, i.e., $\psi \circ Q = U \circ \psi$,

The map ψ is called an isomorphism.

Define a map

$$\begin{split} \varphi: \Omega \times \Upsilon \times S_{\beta} \to \{\vec{q}_1, \vec{q}_2, \vec{q}_3\}^{\mathbb{N}} & \to \Upsilon \\ (\omega, \upsilon, \vec{z}) \to (d_1, d_2, d_3, \ldots) \to (b_1, b_2, b_3, \ldots) \end{split}$$

• Let $Z = Z_1 \cap Z_2, D = D_1 \cap D_2$, where

$$\begin{split} &Z_1 = \{(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times S_\beta : K_\beta^n(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C \text{ infinitely often}\}, \\ &Z_2 = \{(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times S_\beta : K_\beta^n(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C_{012} \text{ infinitely often}\} \\ &D_1 = \{(b_1, b_2, \ldots) \in \Upsilon : \sum_{i=1}^{\infty} \frac{\vec{q}_{b_{j+i-1}}}{\beta^i} \in C \text{ for infinitely many } j\text{'s}\}, \\ &D_2 = \{(b_1, b_2, \ldots) \in \Upsilon : \sum_{i=1}^{\infty} \frac{\vec{q}_{b_{j+i-1}}}{\beta^i} \in C_{012} \text{ for infinitely many } j\text{'s}\}. \end{split}$$

Let φ' = φ|_Z. The map φ' : Z → D is a bimeasurable bijection.
If 1 < β < β_{*}, then ℙ(D) = 1.

Lemma

For $\beta \in (1, \beta_*]$, the dynamical systems $(\Omega \times \Upsilon \times S_\beta, \mathcal{A} \times \mathcal{B} \times \mathcal{S}, \nu_\beta, K_\beta)$ and $(\Upsilon, \mathcal{B}, \mathbb{P}, \sigma')$ are isomorphic, where $\nu_\beta(A) = \mathbb{P}(\varphi(Z \cap A))$.

Remark

The above lemma implies that any other K_{β} -invariant measure with support Z has entropy strictly less than log 3. We need investigate the entropy of K_{β} -invariant measure μ for which $\mu(Z^c) > 0$.

Divide Z^c into three K_{β} -invariant Borel sets: $Z^c = Z_3 \cup Z_4 \cup Z_5$, where $Z_3 = \{(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times S_{\beta} : K^n_{\beta}(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C \text{ for finitely many } n$'s and $K^n_{\beta}(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C_{012}$ infinitely often}, $Z_4 = \{(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times S_{\beta} : K^n_{\beta}(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C_{012} \text{ for finitely many } n$'s, and $K^n_{\beta}(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C$ infinitely often}, $Z_5 = \{(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times S_{\beta} : K^n_{\beta}(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C \text{ for finitely many } n$'s,

and $K^n_{\beta}(\omega, v, \vec{z}) \in \Omega \times \Upsilon \times C_{012}$ for finitely many *n*'s}.

Lemma

Let $\beta \in (1, 3/2]$. Let μ be a K_{β} -invariant measure for which $\mu(Z^c) > 0$. Then $h_{\mu}(K_{\beta}) < \log 3$.

Proof

There exist K_{β} -invariant probability measures μ_{12}, μ_3, μ_4 and μ_5 concentrated on Z, Z_3, Z_4 and Z_5 , respectively, such that

$$\mu = (1 - \alpha_3 - \alpha_4 - \alpha_5)\mu_{12} + \alpha_3\mu_3 + \alpha_4\mu_4 + \alpha_5\mu_5,$$

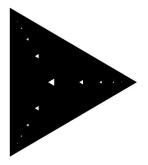
where $0 \le \alpha_3, \alpha_4, \alpha_5 \le 1$ and $0 < \alpha_3 + \alpha_4 + \alpha_5 \le 1$. Then

$$h_{\mu}(K_{\beta}) = (1 - \alpha_3 - \alpha_4 - \alpha_5)h_{\mu_{12}}(K_{\beta}) + \alpha_3 h_{\mu_3}(K_{\beta}) + \alpha_4 h_{\mu_4}(K_{\beta}) + \alpha_5 h_{\mu_5}(K_{\beta}).$$

Since $h_{\mu_{12}}(K_{\beta}) \leq \log 3$, and $h_{\mu_3}(K_{\beta}), h_{\mu_4}(K_{\beta}), h_{\mu_5}(K_{\beta}) < \log 3$, then we have the result.

For $3/2 < \beta < 2$

- In this case, we should notice that there are holes in the attractor.
- A special structure of those holes: they are all centered on three radial lines originating from the center of the attractor and extending to the three vertices.[Broomhead et al., 2004]



Proposition

Let $\beta^* \approx 1.5437$ be the root of $x^3 - 2x^2 + 2x = 2$. Then S_β has a non-empty interior if $\beta \in (\frac{3}{2}, \beta^*]$, and each hole has the form $f_{\vec{q}_i}^n(H)$, see the following figure.

Figure: S_{β} for $\frac{3}{2} < \beta \leq \beta^*$

Overlaps and non-overlaps

- All holes $f_{\vec{q}_i}^n(H)$ in the attractor S_β are in 'nonoverlapping areas'.
- The 'holes' $f_{\vec{q}_i} f_{\vec{q}_i}^n(H) (i \neq j)$ are covered by $f_{\vec{q}_j}(S_\beta)$;
- $f_{\vec{q}_i} f_{\vec{q}_i}^n(H) (i \neq j)$ belongs to the nonoverlapping area.

Basic properties of K_{β} for $3/2 < \beta \leq \beta^*$

$$K_{\beta}(\omega, \vec{z}) = \begin{cases} (\omega, \beta \vec{z} - \vec{q_i}), & \text{if } \vec{z} \in E_i, i = 0, 1, 2, \\ (\sigma \omega, \beta \vec{z} - \vec{q_i}), & \text{if } \omega_1 = 0, \text{and } \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}, \\ (\sigma \omega, \beta \vec{z} - \vec{q_j}), & \text{if } \omega_1 = 1, \text{and } \vec{z} \in C_{ij}, \ ij \in \{01, 12, 02\}. \end{cases}$$

Let

$$d_1 = d_1(w, \vec{z}) = \begin{cases} \vec{q_i}, & \text{if } \vec{z} \in E_i, i = 0, 1, 2, \\ & \text{if } (\omega, \vec{z}) \in \{\omega_1 = 0\} \times C_{ij}, \ ij \in \{01, 12, 02\}, \\ \vec{q_j}, & \text{if } (\omega, \vec{z}) \in \{\omega_1 = 1\} \times C_{ij}, \ ij \in \{01, 12, 02\}. \end{cases}$$

Set $d_n = d_n(\omega, \vec{z}) = d_1(K_{\beta}^{n-1}(\omega, \vec{z})).$ (d_1, d_2, d_3, \ldots) is a coding of \vec{z} .

Basic properties of K_{β} for $3/2 < \beta \leq \beta^*$

Proposition

Suppose $\omega, \omega' \in \Omega$ are such that $\omega \prec \omega'$. Then

 $(d_1(\omega, \vec{z}), d_2(\omega, \vec{z}), \ldots) \preceq (d_1(\omega', \vec{z}), d_2(\omega', \vec{z}), \ldots).$

Proposition

For $\beta \in (3/2, \beta^*]$. Let $\vec{z} \in S_\beta$ and $\vec{z} = \sum_{i=1}^{\infty} \frac{a_i}{\beta^i}$ with $a_i \in \{\vec{q}_0, \vec{q}_1, \vec{q}_2\}$ be a representation of \vec{z} in base β . Then there exists an $\omega \in \Omega$ such that $a_i = d_i(\omega, \vec{z})$.

Theorem (Main results-4)

Let $3/2 < \beta \leq \beta^*$. The dynamical systems $(\Omega \times S_{\beta}, \mathcal{A} \times \mathcal{S}, \nu_{\beta}, K_{\beta})$ and $(\Upsilon, \mathcal{B}, \mathbb{P}, \sigma')$ are isomorphic. Moreover, the measure ν_{β} is the unique K_{β} -invariant measure of maximal entropy.

Idea: The proof is similar as that of the third main result.

[1] Bahsoun W, Bose C and Quas A.

Deterministic representation for position dependent random maps. Discrete Conti. Dyn. Syst. 22(3):529-540, 2012.

[2] Boyarsky A and Góra P.

Absolutely continuous invariant measures for piecewise expanding C^2 transformations in $\mathbb{R}^N.$ Israel Jour. Math. 67(3): 272-286, 1989.

- [3] Bahsoun W and Góra P. Position dependent random maps in one and higher dimensions. Studia Mathematica, 166(3): 271-286, 2005.
- [4] Broomhead D, Montaldi J and Sidorov N. Golden Gasket: Variations on the Sierpiński Sieve. Nonlinearity, 17: 1455-1480, 2004.
- [5] Dajani K and Kraaikamp C.
 On random β-expansions.
 Ergodic Theory Dynam. Systems, 23: 461479, 2003.
- [6] Dajani K and de Vries M. Measures of maximal entropy for random β-expansions. J. Eur. Math. Soc. 7: 51-68, 2005.
- [7] Dajani K and de Vries M. Invariant densities for random β-expansions. J. Eur. Math. Soc. 9: 157-176, 2007.
- [8] Giusti E. Minimal Surfaces and Functions of Bounded Variation. Birkhauser, 1984.
- Hofbauer F.
 The topological entropy of the transformation x → ax(1 x).
 Mh. Math. 90: 117-141, 1980.
- [10] Parry W.

On the β -expansions of real numbers.

Thank you!