# 2-species exclusion processes and combinatorial algebras

Sylvie Corteel Arthur Nunge

IRIF, LIGM

June 2017

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention  $2^{n-1}$ . One can index its bases by compositions.

The algebra of noncommutative symmetric functions  $\mathbf{Sym}$  is an algebra generalizing the symmetric functions. Its component of degree n has dimention  $2^{n-1}$ . One can index its bases by compositions.

A composition of size n is a sequence of integers  $I=(i_1,i_2,\ldots,i_r)$  of sum n.

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention  $2^{n-1}$ . One can index its bases by compositions.

A composition of size n is a sequence of integers  $I = (i_1, i_2, \dots, i_r)$  of sum n.

# Complete basis (analog of $h_{\lambda}$ )

For all n, define

$$S_n = \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_n} a_{j_1} a_{j_2} \cdots a_{j_n}.$$

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention  $2^{n-1}$ . One can index its bases by compositions.

A composition of size n is a sequence of integers  $I=(i_1,i_2,\ldots,i_r)$  of sum n.

# Complete basis (analog of $h_{\lambda}$ )

For all n, define

$$S_n = \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_n} a_{j_1} a_{j_2} \cdots a_{j_n}.$$

For any composition  $I = (i_1, i_2, \dots, i_r)$ ,

$$S^{\prime}=S_{i_1}S_{i_2}\cdots S_{i_r}.$$

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention  $2^{n-1}$ . One can index its bases by compositions.

A composition of size n is a sequence of integers  $I = (i_1, i_2, \dots, i_r)$  of sum n.

# Complete basis (analog of $h_{\lambda}$ )

For all n, define

$$S_n = \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_n} a_{j_1} a_{j_2} \cdots a_{j_n}.$$

For any composition  $I = (i_1, i_2, \dots, i_r)$ ,

$$S^I = S_{i_1} S_{i_2} \cdots S_{i_r}.$$

For example,  $S_2(a_1, a_2, a_3) = a_1^2 + a_1a_2 + a_1a_3 + a_2^2 + a_2a_3 + a_3^2$ .

#### Ribbon basis

$$R_I = \sum_{J \leq I} (-1)^{I(J) - I(I)} S^J.$$

For example,  $R_{221} = S^{221} - S^{41} - S^{23} + S^5$ .

#### Ribbon basis

$$R_I = \sum_{J \leq I} (-1)^{I(J)-I(I)} S^J.$$

For example,  $R_{221} = S^{221} - S^{41} - S^{23} + S^5$ .

# Polynomial realization

$$R_I = \sum_{\mathsf{Des}(w)=I} w.$$

For example,  $R_{221}(a_1, a_2) = a_1 a_2 a_1 a_2 a_1 + a_2 a_2 a_1 a_2 a_1$ .

#### Tevlin's bases

In 2007 L. Tevlin defined the monomial  $(M_I)$  and fundamental  $(L_I)$  that are analog of the monomial basis and elementary basis of  $\operatorname{Sym}$ . They both have binomial structure coefficients.

#### Tevlin's bases

In 2007 L. Tevlin defined the monomial  $(M_l)$  and fundamental  $(L_l)$  that are analog of the monomial basis and elementary basis of  $\operatorname{Sym}$ . They both have binomial structure coefficients.

#### Transition matrices

The transition matrices between the ribbon basis and the fundamental basis of size 3 and 4 are:

$$\mathfrak{M}_{3} = \begin{pmatrix} 1 & . & . & . \\ . & 2 & 1 & . \\ . & . & 1 & . \\ . & . & . & 1 \end{pmatrix}$$

$$\mathfrak{M}_{4} = \begin{pmatrix} 1 & . & . & . & . & . & . \\ . & 3 & 2 & . & 1 & 1 & . & . \\ . & . & 2 & . & 1 & 1 & . & . \\ . & . & 2 & . & 1 & . & . & . \\ . & . & 1 & 3 & . & 2 & 1 & . \\ . & . & . & . & 1 & . & . & . \\ . & . & . & . & . & . & 2 & 1 & . \\ . & . & . & . & . & . & . & . & 1 \end{pmatrix}$$

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).

For  $\sigma =$  25783641, the recoils are  $\{1\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).

For  $\sigma =$  25783641, the recoils are  $\{1\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).

For  $\sigma=$  25783641, the recoils are  $\{1\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$ 

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=1$ .

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=13$ .

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=132$ .

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=1322$ .

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=1322$ .
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k=\sigma_i$  such that  $\sigma_i>\sigma_{i+1}$ ) minus one. For  $\sigma=25783641$ , GC( $\sigma$ ) = .

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).
- For  $\sigma = 25783641$ , the recoils are  $\{1, 4, 6\}$  so Rec(25783641) = 1322.
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k=\sigma_i$  such that  $\sigma_i>\sigma_{i+1}$ ) minus one. For  $\sigma=25783641$ , GC( $\sigma$ ) = .

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=1322$ .
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k=\sigma_i$  such that  $\sigma_i>\sigma_{i+1}$ ) minus one. For  $\sigma=25783641$ , GC( $\sigma$ ) = .

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).
- For  $\sigma = 25783641$ , the recoils are  $\{1, 4, 6\}$  so Rec(25783641) = 1322.
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k = \sigma_i$  such that  $\sigma_i > \sigma_{i+1}$ ) minus one. For  $\sigma = 25783641$ , GC( $\sigma$ ) = 3.

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).
- For  $\sigma = 25783641$ , the recoils are  $\{1, 4, 6\}$  so Rec(25783641) = 1322.
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k=\sigma_i$  such that  $\sigma_i>\sigma_{i+1}$ ) minus one. For  $\sigma=25783641$ , GC( $\sigma$ ) = 3.

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=1322$ .
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k = \sigma_i$  such that  $\sigma_i > \sigma_{i+1}$ ) minus one. For  $\sigma = 25783641$ , GC( $\sigma$ ) = 32.

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).
- For  $\sigma = 25783641$ , the recoils are  $\{1, 4, 6\}$  so Rec(25783641) = 1322.
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k = \sigma_i$  such that  $\sigma_i > \sigma_{i+1}$ ) minus one. For  $\sigma = 25783641$ , GC( $\sigma$ ) = 32.

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left). For  $\sigma=25783641$ , the recoils are  $\{1,4,6\}$  so  $\operatorname{Rec}(25783641)=1322$ .
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k = \sigma_i$  such that  $\sigma_i > \sigma_{i+1}$ ) minus one. For  $\sigma = 25783641$ , GC( $\sigma$ ) = 322.

- $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).
- For  $\sigma = 25783641$ , the recoils are  $\{1, 4, 6\}$  so Rec(25783641) = 1322.
- GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k = \sigma_i$  such that  $\sigma_i > \sigma_{i+1}$ ) minus one. For  $\sigma = 25783641$ , GC( $\sigma$ ) = 3221.

•  $\operatorname{Rec}(\sigma)$  is the composition associated with the values of recoils ( *i.e.*, the values k such that k+1 is on the left).

For  $\sigma = 25783641$ , the recoils are  $\{1, 4, 6\}$  so Rec(25783641) = 1322.

• GC( $\sigma$ ) is the composition associated with the values of descents ( *i.e.*, the values  $k = \sigma_i$  such that  $\sigma_i > \sigma_{i+1}$ ) minus one. For  $\sigma = 25783641$ , GC( $\sigma$ ) = 3221.

Combinatorial interpretation (F. Hivert, J.-C. Novelli, L. Tevlin, J.-Y. Thibon, 2009)

$$\begin{pmatrix} 1 & . & . & . & . & . & . & . \\ . & 3 & 2 & . & 1 & 1 & . & . \\ . & . & 2 & . & 1 & . & . & . \\ . & . & 1 & 3 & . & 2 & 1 & . \\ . & . & . & . & 1 & . & . & . \\ . & . & . & . & . & . & 2 & 1 & . \\ . & . & . & . & . & . & . & . & 1 \end{pmatrix}$$

| GC \ Rec | 4    | 31                 | 22           | 211                | 13   | 121          | 112  | 1111 |
|----------|------|--------------------|--------------|--------------------|------|--------------|------|------|
| 4        | 1234 |                    |              |                    |      |              |      |      |
| 31       |      | 1243, 1423<br>4123 | 1342<br>3412 |                    | 2341 | 2413         |      |      |
| 22       |      |                    | 1324<br>3124 |                    | 2314 |              |      |      |
| 211      |      |                    | 3142         | 1432, 4132<br>4312 |      | 2431<br>4231 | 3241 |      |
| 13       |      |                    |              |                    | 2134 |              |      |      |
| 121      |      |                    |              |                    |      | 2143<br>4213 | 3421 |      |
| 112      |      |                    |              |                    |      |              | 3214 |      |
| 1111     |      |                    |              |                    |      |              |      | 4321 |



















The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.



The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.



The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.



We associate the composition 1213 with the above state of the ASEP.

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.



We associate the composition 1213 with the above state of the ASEP.

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.



We associate the composition 1213 with the above state of the ASEP.

## Combinatorial study of the ASEP

Let I be a composition associated with a state of the ASEP, the un-normalized steady-state probability of this state is given by:

# Permutations

$$\sum_{\mathsf{GC}(\sigma)=I} q^{\#_{31\!-\!2}(\sigma)}$$

# Laguerre histories

$$\sum_{\text{type}(P)=I} q^{\text{weight}(P)}$$

The 2-ASEP is a generalization of the ASEP with two kinds of particles.



The 2-ASEP is a generalization of the ASEP with two kinds of particles.



The 2-ASEP is a generalization of the ASEP with two kinds of particles.



A segmented composition is a sequence of integers separated by commas or bars.

The 2-ASEP is a generalization of the ASEP with two kinds of particles.



A segmented composition is a sequence of integers separated by commas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.

The 2-ASEP is a generalization of the ASEP with two kinds of particles.



A segmented composition is a sequence of integers separated by commas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.

Combinatorial study of the 2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.



A segmented composition is a sequence of integers separated by commas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.

# Combinatorial study of the 2-ASEP



Permutation-like interpretation

The 2-ASEP is a generalization of the ASEP with two kinds of particles.



A segmented composition is a sequence of integers separated by commas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.

# Combinatorial study of the 2-ASEP



Permutation-like interpretation

Algebraic study

# The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (SCQSym) and its complete and ribbon bases.

# The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (**SCQSym**) and its complete and ribbon bases.

# Complete basis

$$S_I \cdot S_J = S_{I \cdot J} + S_{I|J}$$

For example,  $S_{21|1} \cdot S_{32|21} = S_{21|132|21} + S_{21|1|32|21}$ .

# The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (**SCQSym**) and its complete and ribbon bases.

# Complete basis

$$S_I \cdot S_J = S_{I \cdot J} + S_{I|J}$$

For example,  $S_{21|1} \cdot S_{32|21} = S_{21|132|21} + S_{21|1|32|21}$ .

#### Ribbon basis

Again we have

$$R_I = \sum_{J \leq I} (-1)^{I(J) - I(I)} S_J.$$

For example,  $R_{22|41} = S_{22|41} - S_{4|41} - S_{22|5} + S_{4|5}$ .

Let G be the generating series of an algebraic basis of **SCQSym** and B be the generating series of the vectorial basis associated with it.

$$B=1+\sum_{n\geq 1}G^n=\frac{1}{1-G}$$

Let G be the generating series of an algebraic basis of **SCQSym** and B be the generating series of the vectorial basis associated with it.

$$B = 1 + \sum_{n \ge 1} G^n = \frac{1}{1 - G}$$

So,

$$G=1-\frac{1}{B}.$$

Let G be the generating series of an algebraic basis of **SCQSym** and B be the generating series of the vectorial basis associated with it.

$$B=1+\sum_{n\geq 1}G^n=\frac{1}{1-G}$$

So,

$$G=1-\frac{1}{B}.$$

Here  $B = 1 + \sum_{n \ge 1} 3^{n-1} t^n$  so we have

$$G = \frac{t}{1 - 2t} = \sum_{n \ge 1} 2^{n-1} t^n.$$

Let G be the generating series of an algebraic basis of **SCQSym** and B be the generating series of the vectorial basis associated with it.

$$B=1+\sum_{n\geq 1}G^n=\frac{1}{1-G}$$

So,

$$G=1-\frac{1}{B}.$$

Here  $B = 1 + \sum_{n \ge 1} 3^{n-1} t^n$  so we have

$$G = \frac{t}{1 - 2t} = \sum_{n \ge 1} 2^{n-1} t^n.$$

We index our generating family by segmented compositions without bars.

# Analogue of Tevlin's bases

Let I be a non-segmented composition. Define  $M_I$  with the same transition matrix as for the case of  $\mathbf{Sym}$ .

$$M_I = \sum_J B_I^J S_J$$

# Analogue of Tevlin's bases

Let I be a non-segmented composition. Define  $M_I$  with the same transition matrix as for the case of **Sym**.

$$M_I = \sum_J B_I^J S_J$$

We use a generalization of the structure coefficients. We obtain the following transition matrix between the complete basis and this monomial basis.

#### Fundamental basis

Define the fundamental basis from the monomial one as follows.

$$F_{\mathbf{I}} = \sum_{\mathbf{J}\succeq\mathbf{I}} M_{\mathbf{J}}$$

#### Fundamental basis

Define the fundamental basis from the monomial one as follows.

$$F_{\mathbf{I}} = \sum_{\mathbf{J} \succ \mathbf{I}} M_{\mathbf{J}}$$

#### Transition matrix

The transition matrix between the ribbon basis to the fundamental basis is the following for n = 3.

#### Fundamental basis

Define the fundamental basis from the monomial one as follows.

$$F_{\mathbf{I}} = \sum_{\mathbf{J} \succ \mathbf{I}} M_{\mathbf{J}}$$

#### Transition matrix

The transition matrix between the ribbon basis to the fundamental basis is the following for n = 3.

$$(\mathcal{M}_n)_{I,J} = \#\{\sigma \mid \mathsf{GC}(\sigma) = I, \mathrm{Rec}(\sigma) = J\}$$

We define q-analogs of  $S_{\rm I}$  and  $M_{\rm I}$  and we obtain the following transition matrices.

We define q-analogs of  $S_1$  and  $M_1$  and we obtain the following transition matrices.

We define q-analogs of  $S_1$  and  $M_1$  and we obtain the following transition matrices.

We define q-analogs of  $S_1$  and  $M_1$  and we obtain the following transition matrices.

### Enumerative result

We obtain an enumerative formula for the probabilities of the 2-ASEP. Let  $\it I$  be a segmented composition, the steady-state probability of the state of the 2-ASEP encoded by  $\it I$  is given by the following formula.

$$[r+1]_q! \sum_{I \succ J} \left(rac{-1}{q}
ight)^{I(I)-I(J)} q^{-\mathrm{st}(I,J)} c_J(q)$$

Where 
$$c_J(q) = [k]_q^{j_1} [k-1]_q^{j_2} \cdots [2]_q^{j_{k-1}} [1]_q^{j_k}$$
.

# Perspectives

ullet Prove the combinatorial interpretation of the coefficients of the q-matrices.

# Perspectives

- Prove the combinatorial interpretation of the coefficients of the *q*-matrices.
- find  $\alpha$  and  $\beta$  statistics on partially signed permutations.

# Perspectives

- Prove the combinatorial interpretation of the coefficients of the *q*-matrices.
- find  $\alpha$  and  $\beta$  statistics on partially signed permutations.
- Understand the refinement (GC, Rec) on the 2-ASEP.