2-species exclusion processes and combinatorial algebras

Sylvie Corteel Arthur Nunge

IRIF, LIGM

March 2017

Non commutative symmetric functions

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1} . One can index its bases by compositions.

Introduction

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1} . One can index its bases by compositions.

A composition of size n is a sequence of integers $I = (i_1, i_2, \dots, i_r)$ of sum n.

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1} . One can index its bases by compositions.

A composition of size n is a sequence of integers $I = (i_1, i_2, \dots, i_r)$ of sum n.

Complete basis (analog of h_{λ})

For all n, define

$$S_n = \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_n} a_{j_1} a_{j_2} \cdots a_{j_n}.$$

The algebra of noncommutative symmetric functions **Sym** is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1} . One can index its bases by compositions.

A composition of size n is a sequence of integers $I = (i_1, i_2, \dots, i_r)$ of sum n.

Complete basis (analog of h_{λ})

For all n, define

$$S_n = \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_n} a_{j_1} a_{j_2} \cdots a_{j_n}.$$

For any composition $I = (i_1, i_2, \dots, i_r)$,

$$S'=S_{i_1}S_{i_2}\cdots S_{i_r}.$$

The algebra of noncommutative symmetric functions Sym is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1} . One can index its bases by compositions.

A composition of size n is a sequence of integers $I = (i_1, i_2, \dots, i_r)$ of sum n.

Complete basis (analog of h_{λ})

For all n, define

00000

$$S_n = \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_n} a_{j_1} a_{j_2} \cdots a_{j_n}.$$

For any composition $I = (i_1, i_2, \dots, i_r)$,

$$S'=S_{i_1}S_{i_2}\cdots S_{i_r}.$$

For example, $S_2(a_1, a_2, a_3) = a_1^2 + a_1a_2 + a_1a_3 + a_2^2 + a_2a_3 + a_3^2$.

$$R_I = \sum_{J \leq I} (-1)^{I(J)-I(I)} S^J.$$

For example, $R_{221} = S^{221} - S^{41} - S^{23} + S^5$.

Ribbon basis

$$R_I = \sum_{J \leq I} (-1)^{I(J)-I(I)} S^J.$$

For example, $R_{221} = S^{221} - S^{41} - S^{23} + S^5$.

Polynomial realization

$$R_I = \sum_{\mathsf{Des}(w)=I} w.$$

For example, $R_{221}(a_1, a_2) = a_1 a_2 a_1 a_2 a_1 + a_2 a_2 a_1 a_2 a_1$.

Tevlin's bases

In 2007 L. Tevlin defined the monomial (M_l) and fundamental (L_l) that are analog of the monomial basis and elementary basis of Sym . They both have binomial structure coefficients.

00000

In 2007 L. Tevlin defined the monomial (M_I) and fundamental (L_I) that are analog of the monomial basis and elementary basis of Sym. They both have binomial structure coefficients.

Transition matrices

The transition matrices between the ribbon basis and the fundamental basis of size 3 and 4 are:

$$\mathfrak{M}_{3} = \begin{pmatrix} 1 & . & . & . \\ . & 2 & 1 & . \\ . & . & 1 & . \\ . & . & 1 \end{pmatrix}$$

$$\mathfrak{M}_{4} = \begin{pmatrix} 1 & . & . & . & . & . & . \\ . & 3 & 2 & . & 1 & 1 & . & . \\ . & . & 2 & . & 1 & 1 & . & . \\ . & . & 1 & 3 & . & 2 & 1 & . \\ . & . & . & . & 1 & . & . & . \\ . & . & . & . & . & 2 & 1 & . \\ . & . & . & . & . & . & . & 1 \end{pmatrix}$$

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma=25783641$

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).

For $\sigma = 25783641$, the recoils are $\{1\}$

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left). For $\sigma=$ 25783641, the recoils are $\{1\}$ • $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left). For $\sigma=25783641$, the recoils are $\{1\}$ • $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).

For $\sigma = 25783641$, the recoils are $\{1, 4\}$

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma=25783641$, the recoils are $\{1,4\}$

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).

For $\sigma = 25783641$, the recoils are $\{1,4,6\}$

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=1$.

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=13$.

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 132.

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=1322$.

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, GC(σ) = .

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k=\sigma_i$ such that $\sigma_i>\sigma_{i+1}$) minus one. For $\sigma=25783641$, GC(σ) = .

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k=\sigma_i$ such that $\sigma_i>\sigma_{i+1}$) minus one. For $\sigma=25783641$, GC(σ) = .

Introduction 00000

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k + 1 is on the left).
- For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- $GC(\sigma)$ is the composition associated with the values of descents (i.e., the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, $GC(\sigma) = 3$.

00000

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k + 1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- $GC(\sigma)$ is the composition associated with the values of descents (i.e., the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, $GC(\sigma) = 3$.

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, GC(σ) = 32.

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, GC(σ) = 32.

00000

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k + 1 is on the left).
- For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- $GC(\sigma)$ is the composition associated with the values of descents (i.e., the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, GC(σ) = 322.

Introduction

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).
 - For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.
- GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, GC(σ) = 3221.

• $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (*i.e.*, the values k such that k+1 is on the left).

For $\sigma = 25783641$, the recoils are $\{1, 4, 6\}$ so Rec(25783641) = 1322.

• GC(σ) is the composition associated with the values of descents (*i.e.*, the values $k = \sigma_i$ such that $\sigma_i > \sigma_{i+1}$) minus one. For $\sigma = 25783641$, GC(σ) = 3221.

Combinatorial interpretation (F. Hivert, J.-C. Novelli, L. Tevlin, J.-Y. Thibon, 2009)

$$\begin{pmatrix} 1 & . & . & . & . & . & . & . \\ . & 3 & 2 & . & 1 & 1 & . & . \\ . & . & 2 & . & 1 & . & . & . \\ . & . & 1 & 3 & . & 2 & 1 & . \\ . & . & . & . & 1 & . & . & . \\ . & . & . & . & . & 2 & 1 & . \\ . & . & . & . & . & . & . & 1 \end{pmatrix}$$

GC \ Rec	4	31	22	211	13	121	112	1111
4	1234							
31		1243, 1423 4123	1342 3412		2341	2413		
22			1324 3124		2314			
211			3142	1432, 4132 4312		2431 4231	3241	
13					2134			
121						2143 4213	3421	
112							3214	
1111								4321

ASER

ASEP

Introduction

ASLI

Introduction

ASEP (A

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

Introduction 0000

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition 1213 with the above state of the ASEP.

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition 1213 with the above state of the ASEP.

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

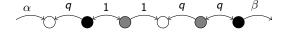
We associate the composition 1213 with the above state of the ASEP.

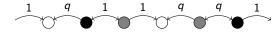
Combinatorial study of the ASEP

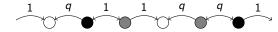
The ASEP is closely related with permutations. Let I be a composition associated to a state of the ASEP, the un-normalized steady-state probability of this state is given by

$$\sum_{\mathsf{GC}(\sigma)=I} q^{\#_{31-2}(\sigma)}$$

where $\#_{31-2}(\sigma)$ count the number of 31-2 patterns in σ .



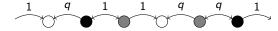




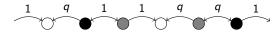
A segmented composition is a sequence of integers separeted by comas or bars.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.



A segmented composition is a sequence of integers separeted by comas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.



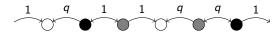
A segmented composition is a sequence of integers separeted by comas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.

What we want.

Let I be a segmented composition, the un-normalized steady-state probability of the state of the 2-ASEP associated with I is:

$$\sum_{\mathsf{GC}(\sigma)=I} q^{\#_{31-2}(\sigma)}$$

where the sum goes over all permutations.



A segmented composition is a sequence of integers separeted by comas or bars. We associate the segmented composition 12|11|2 with the above state of the 2-ASEP.

What we have.

Let I be a segmented composition, the un-normalized steady-state probability of the state of the 2-ASEP associated with I is:

$$\sum_{\mathsf{GC}(\sigma)=I} q^{\#_{31-2}(\sigma)+\#_{(31,\overline{2})}(\sigma)}$$

where the sum goes over all partially signed permutations.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

Statistics on partially signed permutations

• $\mathrm{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\mathrm{Rec}(\overline{2}57836\overline{4}1) = .$

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{41}$, $\operatorname{Rec}(\overline{2}57836\overline{41}) = 1$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1$.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|1$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{25783641}$, $\operatorname{Rec}(\overline{25783641}) = 1|2|1$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{25783641}$, $\operatorname{Rec}(\overline{25783641}) = 1|2|12$.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{25783641}$, $\operatorname{Rec}(\overline{25783641}) = 1|2|12$.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

Statistics on partially signed permutations

• $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, GC($\overline{2}57836\overline{4}1$) = .

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma = \overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, GC($\overline{2}57836\overline{4}1$) = 1|.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, GC($\overline{2}57836\overline{4}1$) = 1|.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, GC($\overline{2}57836\overline{4}1$) = 1|2|.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{25783641}$, GC($\overline{25783641}$) = 1|2|.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}5783\overline{64}1$, GC($\overline{2}5783\overline{64}1$) = 1|2|2.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, GC($\overline{2}57836\overline{4}1$) = 1|2|2.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma = \overline{25783641}$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\text{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- $GC(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{25783641}$, GC($\overline{25783641}$) = 1|2|22.

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2}57836\overline{4}1$.

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, $\operatorname{Rec}(\overline{2}57836\overline{4}1) = 1|2|122$.
- GC(σ) is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ . For $\sigma = \overline{2}57836\overline{4}1$, GC($\overline{2}57836\overline{4}1$) = 1|2|221.

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (**SCQSym**) and its complete and ribbon bases.

Generalization of Sym

The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (SCQSym) and its complete and ribbon bases.

Complete basis

$$S_I \cdot S_J = S_{I \cdot J} + S_{I|J}$$

For example, $S_{21|1} \cdot S_{32|21} = S_{21|132|21} + S_{21|1|32|21}$.

The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (SCQSym) and its complete and ribbon bases.

Complete basis

$$S_I \cdot S_J = S_{I \cdot J} + S_{I|J}$$

Generalization of Sym

For example, $S_{21|1} \cdot S_{32|21} = S_{21|132|21} + S_{21|1|32|21}$.

Ribbon basis

Again we have

$$R_I = \sum_{J \leq I} (-1)^{I(J) - I(I)} S^J.$$

For example, $R_{22|41} = S_{22|41} - S_{4|41} - S_{22|5} + S_{4|5}$.

Analogue of Tevlin's bases

We define a monomial basis (M_I) and a fundamental basis (L_I) in **SCQSym**.

Analogue of Tevlin's bases

We define a monomial basis (M_l) and a fundamental basis (L_l) in **SCQSym**.

Transition matrix

The coefficients in the transition matrices from the ribbon basis to the fundamental basis are

$$(\mathcal{M}_n)_{I,J} = \#\{\sigma \mid \mathsf{GC}(\sigma) = I, \mathrm{Rec}(\sigma) = J\}$$

 Definition of q-analogs of the bases of SCQSym and study of the transition matrices.

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.
- Enumerative formula for the probabilities of the 2-ASEP

$$[r+1]_q! \sum_{I \succ J} \left(\frac{-1}{q}\right)^{l(I)-l(J)} q^{-\mathrm{st}(I,J)} c_J(q)$$

where
$$c_J(q) = [k]_q^{j_1} [k-1]_q^{j_2} \cdots [2]_q^{j_{k-1}} [1]_q^{j_k}$$

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.
- Enumerative formula for the probabilities of the 2-ASEP

$$[r+1]_q! \sum_{I \succ J} \left(\frac{-1}{q}\right)^{l(I)-l(J)} q^{-\mathrm{st}(I,J)} c_J(q)$$

where
$$c_J(q) = [k]_q^{j_1} [k-1]_q^{j_2} \cdots [2]_q^{j_{k-1}} [1]_q^{j_k}$$

Perspectives

• find α and β statistics on partially signed permutations.

Other results

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.
- Enumerative formula for the probabilities of the 2-ASEP

$$[r+1]_q! \sum_{I \succ J} \left(\frac{-1}{q}\right)^{l(I)-l(J)} q^{-\mathrm{st}(I,J)} c_J(q)$$

where
$$c_J(q) = [k]_q^{j_1} [k-1]_q^{j_2} \cdots [2]_q^{j_{k-1}} [1]_q^{j_k}$$

Perspectives

- find α and β statistics on partially signed permutations.
- Understand the refinement (GC, Rec) on the 2-ASEP.