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A position i of a permutation o is a descent if o; > oi;1. We denote by des(o)
the number of descents of o.
For 0 = 514798263, the descents are Des(c) = {1,5, 6,8} and des(c) = 4.
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A(n, k) =(n—k)A(n—1,k — 1)+ (k+1)A(n— 1, k)



Eulerian polynomials

For any n > 0, define the Eulerian polynomials as:

n—1

An(t) = D ) =N A(n, k)tk.
ce6, k=0
For example, we have
As(t) = 1+4+4t+t%

Aa(t) 14+ 11t + 1187 + 2.
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Some results about Eulerian numbers and polynomials
o Worpitzky's identity: For any positive integers n and k,
k—1 .
k+n—i—-1 .
k" = A

e For any n, we have

A"(t) — antk—l

— n+1
(1—¢t)+ =
e For any n, we have
n—1
A(t) =D t'@—1)""S(n, r+1),
r=0

where S(n, k) are the Stirling numbers of the second kind.

How to prove these ?
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Generating function
Define the exponential generating function for the Eulerian polynomials as

G(t,x) = ZA (t

n>0

Theorem
The expression of the generating function of the Eulerian polynomials is

(1—t)ext-0

G(t,x) = e

(1)

First proof
Using the recurrence of the Eulerian numbers, one proves that G satisfies the
following differential equation

(1- tx)%G(t,x) . t)%G(t, X) = G(t,x) = 0.

Then prove that (??) is a solution.
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Algebraic study of the Eulerian polynomials
e Foata-Schiitzenberger (1970)

e Désarménien (1983)
e Duchamp-Hivert-Thibon (2002)
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How to construct FQSym

We want an algebra such that the bases are indexed by permutations. If G is
our basis, we want a morphism ¢ such that for any permutation 0 € G, we
have ¢(G,) = :—? We need a product, for any permutations o € &, and

T € Gy,
G, G- = Y G,
HETHT
where the permutations in the sum are in &,4,. In order to have ¢ a morphism
we need exactly ("t”) elements in the sum.
There are two possibilities, we consider the one where we concatenate ¢ and 7
and consider all the possibilities to create a permutation. For example,

Gz12 - G21 = G354 + Gaioss + Gaizso 4 Gazssy + Gsi243 + - - - + Gszaon
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For any n > 0, define
An(t) = D =G,

cES,

For example, A3z(t) = tGioz + t* (G132 + Gaiz + Gos1 + G312) + t°Gaa.

Xn

Using ¢ we have ¢(A,(t)) = tAn(t) pr
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As(t) = tGixs +2 ( Gi32 + G213 + G231 + Gar2 ) + t3Gax
= tRs3 +t2( R + Ri» ) + °Run;

And more generally,
A, = 3 HOR,
I=n

where R is the ribbon basis of the noncommutative symmetric functions

algebra (Sym) and the sum goes over all composition of size n (sequences of
integers of sum n).

We use the complete basis S of Sym with
R =) (-1)"""Vs’.
1=J

For example,
R — S — S8 _ g3 15,

Then,
As(t) = t(1 —t)°Ss + t7(1 — t) (512 + 521) + 251,
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To apply ¢, we use the fact that S is a multiplicative basis. For example,

53122531'52253'512253-51-52.

k n
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We have
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To apply ¢, we use the fact that S is a multiplicative basis. For example,

P =8%.5,=5;-5=5;-5;-S,.

Moreover, ¢ (S¢) = = r!S(n, r)—. Then,

I=n

e(l)=r

tAn(t) = i t"(1—t)"""r!S(n, r).
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A= t(1-1)"" Y s
r=1 I=n
L(h)=r
If we consider the generating function of the (1 — t)™"A,, we obtain
An t \ ,
= —— ) (S1+S2+S3+---)".
> s =2 () s s
n>0 r>0
We use the fact that
&(S1+S2+S3+---)=¢€"—1.

Then applying ¢ to the previous equation we obtain

1+Z(tAn(t) X" 1-t

1—t)"nl 1 tex
n>0
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ASEP
The ASEP is a model representing the displacement of particles on a finite one
dimensional lattice.

1 q 1 q 1
T e O O e @ ¢
We associate the word 010011 with the above state of the ASEP.

The steady-state probabilities of the states of the ASEP can be described
combinatorialy using some statistics on permutations.
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Recoils of a permutation

A recoil of a permutation o is a value o; such that 1+ o; is to its left. For
example, the recoils of o = 52178643 are the values {1,3,4,6}. We denote by
PRec(c) the set of the positions of the recoils of & minus one. For

o = 52178643, PRec(c) = {2,5,6,7}.

Theorem

Let X be a state of size n of the ASEP. The steady-state probability of X is
proportional to the number of permutations of &,11 having their recoils in the
same position as the empty spots of X



In fact, sorting the permutations according to their position of recoils and

position of descents allow us to compute transitions matrices between to bases
of Sym.

‘ PRec \ Des“ [} ‘ {3} ‘ {2} ‘ {2,3} ‘ {1} ‘ {1,3} ‘{1,2} ‘{1,2,3}
0 1234
Gy Pin | sz 2341 | 2413
{2} e 2314
{2,3} 3142 | T2 12 | 3241
{1} 2134
{1,3} o] za21
{1,2} 3214
{1,2,3} 4321

Theorem (Hivert, Novelli, Tevlin, Thibon, 2009)

Let G" be the transition matrix between the ribbon basis of Sym and the
fundamental one in degree n. Let S and T be two subsets of [n — 1], then

Gs 1 = #{o € Gny1|Des(o) = S,PRec(o) = T}.
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2-ASEP
The 2-ASEP is a generalization of the ASEP with two kinds of particles.

1 q 1 1 q q 1

T e e U @ e

We associate the word 012021 with the above state of the 2-ASEP.

In 2016, O. Mandelshtam and X. Viennot defined a statistic on “Assemblées of
permutations” to describe the combinatorics of the 2-ASEP at g = 1. Where
an assemblée of permutation is a permutation o segmented in blocks where the
order of the blocks is not important.

For example, o = [251][84][637] = [84][251][637].
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Segmented permutations
A segmented permutation is a permutation where each values may be

separated by bars. We denote by 3, the set of segmented permutations of
size n. For example, o = 52|7138]46 € Ps.

Some statistics on segmented permutation

A position i of a permutation ¢ is a segmentation if there is a bar between ¢;
and oj41.

A recoil of o is a value o; such that i is not a segmentation and 1+ o; is to the
left of o;. Denote by PRec(o) the set of the position of recoils minus one.

A descent is a position i that is not a segmentation and such that o; > i1
For o = 52|7138|46, the segmentations are Seg(c) = {2, 6}, the positions of
recoils minus one are PRec(o) = {3,6,7}, and the descents are

Des(o) = {1, 3}.

Theorem (Corteel, N., 2018+)

Let X be a state of the 2-ASEP of size n. The steady-state probability of X is
proportional to the number of segmented permutations o € 3,41 such that
Seg(o) corresponds to the position of the particles of type 2 and PRec(o)
corresponds to the position of the empty spots.
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Eulerian numbers on segmented permutations
We define the following numbers:

T(n, k) = #{o € P,|des(c) = k}

Mkl 0 1 2 3 4
0 | 1

1|1

2 | 3 1

3 /13 10 1

4 |75 91 21 1
5 | 541 896 426 56 1

Note that the numbers on the first column are the ordered Bell numbers (or
Fubini numbers). We have the recurrence relation

T(nk)=(n—kK)T(n=1,k—-1)+(n+1)T(n—1,k)+(k+1)T(n—1,k+1).
We also have

T(n,n—k—1) = #{o € Pa|des(o) + seg(c) = k}.
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We also consider the following refinement
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n=2 01 1 n=3
1]2 !
2
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n==4: 1|14 44 14
2136 36
3|24

For any n, the numbers on each first row are the usual Eulerian numbers and
the numbers on each first column are the j15(n, ).



Generalized Eulerian numbers with two parameters
We also consider the following refinement

K(n,i,j) = #{o € Bn|des(a) = i, seg(o) = j}

J\i|o 1 0
n=2 01 1 n=3
1]2 !
2
aNiJo 1 2 3
o1 11 11 1
n==4: 1|14 44 14
2136 36
3|24

For any n, the numbers on each first row are the usual Eulerian numbers and
the numbers on each first column are the j1S(n, ). We have

K(n,irj) = (i +j+ D[K(n—1,i,) + K(n = 1,i,j — 1)]

+(nfifj)[K(n71,if1,j)+K(n71,i71,j71)].



Generalized Eulerian polynomials
Define our polynomials as

Oln(t, q) _ Z tdes(o’)qseg(a).
o€Pn



Generalized Eulerian polynomials
Define our polynomials as

an(t, q Z tdes o) seg(a
oE€Pn

Some specialization of the variables give the following properties




Generating Function

We define the generating function of the generalized Eulerian polynomials as

follows:
t q7 Zan t q)

n>0



Generating Function
We define the generating function of the generalized Eulerian polynomials as

follows:
t q7 Zan t q)

n>0
The generating function satisfies the following differential equation:
0 0
(tg =2 = 1)G(t, g, x)+(1 — tox — tx) 5= G(t, g, x) — (t = t*)(q + 1) 5 6(t:9, %)~

E
(1—-1)(q" + 9)54C(ta.x) = —2q + tq.



Generating Function
We define the generating function of the generalized Eulerian polynomials as

follows:
t q7 Zan t q)

n>0
The generating function satisfies the following differential equation:
0 17}
(tg =2 = 1)G(t, g, x)+(1 — tox — tx) 5= G(t, g, x) — (t = t*)(q + 1) 5 6(t:9, %)~

E
(1—-1)(q" + 9)54C(ta.x) = —2q + tq.

Theorem (N., 2018+)

We have the following expression of the generating function:

ex(lft) 1
1+qg—(t+q)ext=0"

G(t,q,x) =1+



Some properties of the generalized Eulerian polynomials

o Worpitzky's identity: for any positive integers r, k, and n,

(k_'_: )A'H kz:l <n+k ) K(n,i,r),

where A(k") = (k +1)" — k".
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e For any n > 0 we have

. k"
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k>0



Some properties of the generalized Eulerian polynomials

o Worpitzky's identity: for any positive integers r, k, and n,

<k+: )A'H ka <n+k ) K(n,i,r),

where A(k") = (k +1)" — k".

e For any n > 0 we have

. k"
n+1 Z(1+ t 2k—1"

k>0

e For any n > 0 we have

an(t,g)= > gty (1-1)" I (1)) (’jf>5<n i+j+1).

0<i+j<n—1



Merci de votre attention !



