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Descents of a permutation

A position i of a permutation σ is a descent if σi > σi+1. We denote by des(σ)
the number of descents of σ.
For σ = 514798263, the descents are Des(σ) = {1, 5, 6, 8}

and des(σ) = 4.

Eulerian numbers
For any n and k < n, define

A(n, k) = #{σ ∈ Sn | des(σ) = k}

n\k 0 1 2 3 4
0 1
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1

A(n, k) = (n − k)A(n − 1, k − 1) + (k + 1)A(n − 1, k)
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Eulerian polynomials

For any n ≥ 0, define the Eulerian polynomials as:

An(t) =
∑
σ∈Sn

tdes(σ) =
n−1∑
k=0

A(n, k)tk .

For example, we have

A3(t) = 1 + 4t + t2;
A4(t) = 1 + 11t + 11t2 + t3.



Some results about Eulerian numbers and polynomials

• Worpitzky’s identity: For any positive integers n and k,

kn =
k−1∑
i=0

(
k + n − i − 1

n

)
A(n, i)

• For any n, we have
An(t)

(1− t)n+1
=
∑
k≥0

kntk−1

• For any n, we have

An(t) =
n−1∑
r=0

tr (1− t)n−1−rS(n, r + 1),

where S(n, k) are the Stirling numbers of the second kind.

How to prove these ?
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Generating function

Define the exponential generating function for the Eulerian polynomials as

G(t, x) =
∑
n≥0

An(t)
xn

n!
.

Theorem
The expression of the generating function of the Eulerian polynomials is

G(t, x) =
(1− t)ex(1−t)

1− tex(1−t)
. (1)

First proof

Using the recurrence of the Eulerian numbers, one proves that G satisfies the
following differential equation

(1− tx)
∂

∂x
G(t, x)− t(1− t)

∂

∂t
G(t, x)− G(t, x) = 0.

Then prove that (??) is a solution.
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Algebraic study of the Eulerian polynomials

• Foata-Schützenberger (1970)

• Désarménien (1983)

• Duchamp-Hivert-Thibon (2002)
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How to construct FQSym

We want an algebra such that the bases are indexed by permutations.

If G is
our basis, we want a morphism φ such that for any permutation σ ∈ Sn we
have φ(Gσ) = xn

n!
. We need a product, for any permutations σ ∈ Sn and

τ ∈ Sp,

Gσ · Gτ =
∑
µ∈σ∗τ

Gµ,

where the permutations in the sum are in Sn+p. In order to have φ a morphism
we need exactly

(
n+p
n

)
elements in the sum.

There are two possibilities, we consider the one where we concatenate σ and τ
and consider all the possibilities to create a permutation. For example,

G312 · G21 = G31254 + G41253 + G41352 + G42351 + G51243 + · · ·+ G53421
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Noncommutative analog

For any n ≥ 0, define

An(t) =
∑
σ∈Sn

tdes(σ)+1Gσ.

For example, A3(t) = tG123 + t2
(
G132 + G213 + G231 + G312

)
+ t3G321.

Using φ we have φ(An(t)) = tAn(t)
xn

n!
.
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A3(t) = tG123 +t2
(
G132 + G213 + G231 + G312

)
+ t3G321

= tR3 +t2
(

R21 + R12

)
+ t3R111

And more generally,

An =
∑
I |=n

t`(I )RI

where R is the ribbon basis of the noncommutative symmetric functions
algebra (Sym) and the sum goes over all composition of size n (sequences of
integers of sum n).
We use the complete basis S of Sym with

RI =
∑
I�J

(−1)`(I )−`(J)SJ .

For example,
R121 = S121 − S13 − S31 + S4.

Then,

A3(t) = t(1− t)2S3 + t2(1− t)
(
S12 + S21

)
+ t3S111.
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We have

An =
∑
I |=n

t`(I )(1− t)n−`(I )SI ;

=
n∑

r=1

tr (1− t)n−r
∑
I|=n

`(I )=r

SI .

To apply φ, we use the fact that S is a multiplicative basis. For example,

S312 = S31 · S2 = S3 · S12 = S3 · S1 · S2.

Moreover, φ (Sk) =
xk

k!
so φ

∑
I|=n

`(I )=r

SI

 = r !S(n, r)
xn

n!
. Then,

tAn(t) =
n∑

r=1

tr (1− t)n−r r !S(n, r).
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An =
n∑

r=1

tr (1− t)n−r
∑
I|=n

`(I )=r

SI .

If we consider the generating function of the (1− t)−nAn, we obtain∑
n≥0

An

(1− t)n
=
∑
r≥0

(
t

1− t

)r

(S1 + S2 + S3 + · · · )r .

We use the fact that

φ(S1 + S2 + S3 + · · · ) = ex − 1.

Then applying φ to the previous equation we obtain

1 +
∑
n≥0

tAn(t)

(1− t)n
xn

n!
=

1− t

1− tex
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ASEP
The ASEP is a model representing the displacement of particles on a finite one
dimensional lattice.

α

1 β

1

We associate the word 010011 with the above state of the ASEP.

The steady-state probabilities of the states of the ASEP can be described
combinatorialy using some statistics on permutations.
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Recoils of a permutation

A recoil of a permutation σ is a value σi such that 1 + σi is to its left. For
example, the recoils of σ = 52178643 are the values {1, 3, 4, 6}.

We denote by
PRec(σ) the set of the positions of the recoils of σ minus one. For
σ = 52178643, PRec(σ) = {2, 5, 6, 7}.

Theorem
Let X be a state of size n of the ASEP. The steady-state probability of X is
proportional to the number of permutations of Sn+1 having their recoils in the
same position as the empty spots of X
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In fact, sorting the permutations according to their position of recoils and
position of descents allow us to compute transitions matrices between to bases
of Sym.

PRec \Des ∅ {3} {2} {2, 3} {1} {1, 3} {1, 2} {1, 2, 3}

∅ 1234

{3} 1243, 1423
4123

1342
3412

2341 2413

{2} 1324
3124

2314

{2, 3} 3142 1432, 4132
4312

2431
4231

3241

{1} 2134

{1, 3} 2143
4213

3421

{1, 2} 3214

{1, 2, 3} 4321

Theorem (Hivert, Novelli, Tevlin, Thibon, 2009)

Let G n be the transition matrix between the ribbon basis of Sym and the
fundamental one in degree n. Let S and T be two subsets of [n − 1], then

G n
S,T = #{σ ∈ Sn+1|Des(σ) = S ,PRec(σ) = T}.



2-ASEP
The 2-ASEP is a generalization of the ASEP with two kinds of particles.

α

1

q 1 1 q q β

1

We associate the word 012021 with the above state of the 2-ASEP.

In 2016, O. Mandelshtam and X. Viennot defined a statistic on “Assemblées of
permutations” to describe the combinatorics of the 2-ASEP at q = 1. Where
an assemblée of permutation is a permutation σ segmented in blocks where the
order of the blocks is not important.
For example, σ = [251][84][637] = [84][251][637].
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Segmented permutations

A segmented permutation is a permutation where each values may be
separated by bars. We denote by Pn the set of segmented permutations of
size n. For example, σ = 52|7138|46 ∈ P8.

Some statistics on segmented permutation

A position i of a permutation σ is a segmentation if there is a bar between σi

and σi+1.

A recoil of σ is a value σi such that i is not a segmentation and 1 + σi is to the
left of σi . Denote by PRec(σ) the set of the position of recoils minus one.
A descent is a position i that is not a segmentation and such that σi > σi+1

For σ = 52|7138|46, the segmentations are Seg(σ) = {2, 6}

, the positions of
recoils minus one are PRec(σ) = {3, 6, 7}, and the descents are
Des(σ) = {1, 3}.

Theorem (Corteel, N., 2018+)

Let X be a state of the 2-ASEP of size n. The steady-state probability of X is
proportional to the number of segmented permutations σ ∈ Pn+1 such that
Seg(σ) corresponds to the position of the particles of type 2 and PRec(σ)
corresponds to the position of the empty spots.
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Eulerian numbers on segmented permutations

We define the following numbers:

T (n, k) = #{σ ∈ Pn| des(σ) = k}

n\k 0 1 2 3 4
0 1
1 1
2 3 1
3 13 10 1
4 75 91 21 1
5 541 896 426 56 1

Note that the numbers on the first column are the ordered Bell numbers (or
Fubini numbers). We have the recurrence relation

T (n, k) = (n− k)T (n− 1, k − 1) + (n+ 1)T (n− 1, k) + (k + 1)T (n− 1, k + 1).

We also have

T (n, n − k − 1) = #{σ ∈ Pn| des(σ) + seg(σ) = k}.
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Generalized Eulerian numbers with two parameters

We also consider the following refinement

K(n, i , j) = #{σ ∈ Pn| des(σ) = i , seg(σ) = j}

n = 2 :
j\i 0 1

0 1 1
1 2

n = 3 :

j\i 0 1 2
0 1 4 1
1 6 6
2 6

n = 4 :

j\i 0 1 2 3
0 1 11 11 1
1 14 44 14
2 36 36
3 24

For any n, the numbers on each first row are the usual Eulerian numbers and
the numbers on each first column are the j!S(n, j). We have

K(n, i , j) = (i + j + 1)
[
K(n − 1, i , j) + K(n − 1, i , j − 1)

]
+(n − i − j)

[
K(n − 1, i − 1, j) + K(n − 1, i − 1, j − 1)

]
.
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Generalized Eulerian polynomials

Define our polynomials as

αn(t, q) =
∑
σ∈Pn

tdes(σ)qseg(σ).

Some specialization of the variables give the following properties

αn(t, 0) = An(t)

αn(0, q) = Bn(q)

αn(1, 1) = 2n−1n!

αn(−1, 1) = 2n−1

αn(2, 1) = A050352

αn(2, 2) = A050351
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Define our polynomials as

αn(t, q) =
∑
σ∈Pn

tdes(σ)qseg(σ).

Some specialization of the variables give the following properties

αn(t, 0) = An(t)

αn(0, q) = Bn(q)

αn(1, 1) = 2n−1n!

αn(−1, 1) = 2n−1

αn(2, 1) = A050352

αn(2, 2) = A050351



Generating Function

We define the generating function of the generalized Eulerian polynomials as
follows:

G(t, q, x) =
∑
n≥0

αn(t, q)
xn

n!
.

The generating function satisfies the following differential equation:

(tq − 2q − 1)G(t, q, x)+(1− tqx − tx)
∂

∂x
G(t, q, x)− (t − t2)(q + 1)

∂

∂t
G(t, q, x)−

(1− t)(q2 + q)
∂

∂q
G(t, q, x) = −2q + tq.

Theorem (N., 2018+)

We have the following expression of the generating function:

G(t, q, x) = 1 +
ex(1−t) − 1

1 + q − (t + q)ex(1−t)
.
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Some properties of the generalized Eulerian polynomials

• Worpitzky’s identity: for any positive integers r , k, and n,(
k + r − 1

r

)
∆r+1((k − 1)n) =

k−1∑
i=0

(
n + k − i

n − 1

)
K(n, i , r),

where ∆(kn) = (k + 1)n − kn.

• For any n ≥ 0 we have

αn(t, 1)

(1− t)n+1
=
∑
k≥0

(1 + t)k−1 kn

2k−1
.

• For any n ≥ 0 we have

αn(t, q) =
∑

0≤i+j≤n−1

t i (q−t)j(1−t)n−i−j−12i (i+j+1)!

(
i + j

j

)
S(n, i+j+1).
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Merci de votre attention !


