Eulerian polynomials and generalizations

Arthur Nunge

LIGM

February 2018

1 1 1 1 4 1 1 11 11 1

$$A_3(t) = 1 + 4t + t^2$$

•

-

•
$$\mathcal{A}_3(t) = t\mathbf{G}_{123} + t^2 (\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312}) + t^3 \mathbf{G}_{321}$$

•
$$\mathcal{A}_3(t) = t\mathbf{G}_{123} + t^2 \Big(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312}\Big) + t^3 \mathbf{G}_{321}$$

•
$$\mathcal{A}_3(t) = t\mathbf{G}_{123} + t^2 (\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312}) + t^3 \mathbf{G}_{321}$$

•
$$\alpha_n(t,q) = \sum_{\sigma \in \mathfrak{P}_n} t^{\operatorname{des}(\sigma)} q^{\operatorname{seg}(\sigma)}$$

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

For $\sigma = 514798263$, the descents are $Des(\sigma) = \{1, 5, 6, 8\}$ and $des(\sigma) = 4$.

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

For $\sigma = 514798263$, the descents are $Des(\sigma) = \{1, 5, 6, 8\}$ and $des(\sigma) = 4$.

Eulerian numbers

For any n and k < n, define

$$A(n,k) = \#\{\sigma \in \mathfrak{S}_n \mid \mathsf{des}(\sigma) = k\}$$

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

For $\sigma = 514798263$, the descents are $Des(\sigma) = \{1, 5, 6, 8\}$ and $des(\sigma) = 4$.

Eulerian numbers

For any n and k < n, define

$$A(n,k) = \#\{\sigma \in \mathfrak{S}_n \mid \mathsf{des}(\sigma) = k\}$$

n∖k	0	1	2	3	4
0	1				
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

A position *i* of a permutation σ is a descent if $\sigma_i > \sigma_{i+1}$. We denote by des (σ) the number of descents of σ .

For $\sigma = 514798263$, the descents are $Des(\sigma) = \{1, 5, 6, 8\}$ and $des(\sigma) = 4$.

Eulerian numbers

For any n and k < n, define

$$A(n,k) = \#\{\sigma \in \mathfrak{S}_n \mid \mathsf{des}(\sigma) = k\}$$

n∖k	0	1	2	3	4
0	1				
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

$$A(n,k) = (n-k)A(n-1,k-1) + (k+1)A(n-1,k)$$

Eulerian polynomials

For any $n \ge 0$, define the Eulerian polynomials as:

$$A_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{des}(\sigma)} = \sum_{k=0}^{n-1} A(n,k) t^k.$$

For example, we have

$$\begin{array}{rcl} A_3(t) &=& 1+4t+t^2;\\ A_4(t) &=& 1+11t+11t^2+t^3. \end{array}$$

• Worpitzky's identity: For any positive integers n and k,

$$k^{n} = \sum_{i=0}^{k-1} \binom{k+n-i-1}{n} A(n,i)$$

• Worpitzky's identity: For any positive integers n and k,

$$k^{n} = \sum_{i=0}^{k-1} \binom{k+n-i-1}{n} A(n,i)$$

• For any *n*, we have

$$\frac{A_n(t)}{(1-t)^{n+1}} = \sum_{k \ge 0} k^n t^{k-1}$$

• Worpitzky's identity: For any positive integers n and k,

$$k^{n} = \sum_{i=0}^{k-1} \binom{k+n-i-1}{n} A(n,i)$$

• For any *n*, we have

$$\frac{A_n(t)}{(1-t)^{n+1}} = \sum_{k \ge 0} k^n t^{k-1}$$

• For any *n*, we have

$$A_n(t) = \sum_{r=0}^{n-1} t^r (1-t)^{n-1-r} S(n, r+1),$$

where S(n, k) are the Stirling numbers of the second kind.

• Worpitzky's identity: For any positive integers n and k,

$$k^{n} = \sum_{i=0}^{k-1} \binom{k+n-i-1}{n} A(n,i)$$

• For any *n*, we have

$$\frac{A_n(t)}{(1-t)^{n+1}} = \sum_{k \ge 0} k^n t^{k-1}$$

• For any *n*, we have

$$A_n(t) = \sum_{r=0}^{n-1} t^r (1-t)^{n-1-r} S(n, r+1),$$

where S(n, k) are the Stirling numbers of the second kind.

How to prove these ?

Generating function

Define the exponential generating function for the Eulerian polynomials as

$$G(t,x) = \sum_{n\geq 0} A_n(t) \frac{x^n}{n!}$$

Generating function

Define the exponential generating function for the Eulerian polynomials as

$$G(t,x) = \sum_{n\geq 0} A_n(t) \frac{x^n}{n!}$$

Theorem

The expression of the generating function of the Eulerian polynomials is

$$G(t,x) = \frac{(1-t)e^{x(1-t)}}{1-te^{x(1-t)}}.$$
(1)

Generating function

Define the exponential generating function for the Eulerian polynomials as

$$G(t,x) = \sum_{n\geq 0} A_n(t) \frac{x^n}{n!}$$

Theorem

The expression of the generating function of the Eulerian polynomials is

$$G(t,x) = \frac{(1-t)e^{x(1-t)}}{1-te^{x(1-t)}}.$$
(1)

First proof

Using the recurrence of the Eulerian numbers, one proves that G satisfies the following differential equation

$$(1-tx)\frac{\partial}{\partial x}G(t,x)-t(1-t)\frac{\partial}{\partial t}G(t,x)-G(t,x)=0.$$

Then prove that (??) is a solution.

Algebraic study of the Eulerian polynomials

• Foata-Schützenberger (1970)

Algebraic study of the Eulerian polynomials

- Foata-Schützenberger (1970)
- Désarménien (1983)

Algebraic study of the Eulerian polynomials

- Foata-Schützenberger (1970)
- Désarménien (1983)
- Duchamp-Hivert-Thibon (2002)

We want an algebra such that the bases are indexed by permutations.

We want an algebra such that the bases are indexed by permutations. If **G** is our basis, we want a morphism ϕ such that for any permutation $\sigma \in \mathfrak{S}_n$ we have $\phi(\mathbf{G}_{\sigma}) = \frac{x^n}{n!}$.

We want an algebra such that the bases are indexed by permutations. If **G** is our basis, we want a morphism ϕ such that for any permutation $\sigma \in \mathfrak{S}_n$ we have $\phi(\mathbf{G}_{\sigma}) = \frac{x^n}{n!}$. We need a product, for any permutations $\sigma \in \mathfrak{S}_n$ and $\tau \in \mathfrak{S}_p$,

$$\mathsf{G}_{\sigma}\cdot\mathsf{G}_{ au}=\sum_{\mu\in\sigma* au}\mathsf{G}_{\mu},$$

where the permutations in the sum are in \mathfrak{S}_{n+p} . In order to have ϕ a morphism we need exactly $\binom{n+p}{n}$ elements in the sum.

We want an algebra such that the bases are indexed by permutations. If **G** is our basis, we want a morphism ϕ such that for any permutation $\sigma \in \mathfrak{S}_n$ we have $\phi(\mathbf{G}_{\sigma}) = \frac{x^n}{n!}$. We need a product, for any permutations $\sigma \in \mathfrak{S}_n$ and $\tau \in \mathfrak{S}_p$,

$$\mathbf{G}_{\sigma}\cdot\mathbf{G}_{ au}=\sum_{\mu\in\sigma* au}\mathbf{G}_{\mu},$$

where the permutations in the sum are in \mathfrak{S}_{n+p} . In order to have ϕ a morphism we need exactly $\binom{n+p}{n}$ elements in the sum.

There are two possibilities, we consider the one where we concatenate σ and τ and consider all the possibilities to create a permutation. For example,

$$\textbf{G}_{312} \cdot \textbf{G}_{21} = \textbf{G}_{31254} + \textbf{G}_{41253} + \textbf{G}_{41352} + \textbf{G}_{42351} + \textbf{G}_{51243} + \dots + \textbf{G}_{53421}$$

Noncommutative analog

For any $n \ge 0$, define

$$\mathcal{A}_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\mathsf{des}(\sigma)+1} \mathbf{G}_{\sigma}.$$

Noncommutative analog

For any $n \ge 0$, define

$$\mathcal{A}_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{des}(\sigma)+1} \mathbf{G}_{\sigma}.$$

For example, $\mathcal{A}_3(t) = t\mathbf{G}_{123} + t^2 \Big(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312}\Big) + t^3 \mathbf{G}_{321}.$

Noncommutative analog

For any $n \ge 0$, define

$$\mathcal{A}_n(t) = \sum_{\sigma \in \mathfrak{S}_n} t^{\operatorname{des}(\sigma)+1} \mathbf{G}_{\sigma}.$$

For example,
$$\mathcal{A}_3(t) = t\mathbf{G}_{123} + t^2 \Big(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312}\Big) + t^3 \mathbf{G}_{321}$$
.

Using ϕ we have $\phi(\mathcal{A}_n(t)) = t\mathcal{A}_n(t)\frac{x^n}{n!}$.

$$\mathcal{A}_{3}(t) = t\mathbf{G}_{123} + t^{2} \left(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312} \right) + t^{3}\mathbf{G}_{321}$$

= $t\mathbf{R}_{3} + t^{2} \left(\mathbf{R}_{21} + \mathbf{R}_{12} \right) + t^{3}\mathbf{R}_{111}$

$$\mathcal{A}_{3}(t) = t\mathbf{G}_{123} + t^{2} \left(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312} \right) + t^{3}\mathbf{G}_{321}$$

= $t\mathbf{R}_{3} + t^{2} \left(\mathbf{R}_{21} + \mathbf{R}_{12} \right) + t^{3}\mathbf{R}_{111}$

And more generally,

$$\mathcal{A}_n = \sum_{I \models n} t^{\ell(I)} \mathbf{R}_I$$

where **R** is the ribbon basis of the noncommutative symmetric functions algebra (**Sym**) and the sum goes over all composition of size n (sequences of integers of sum n).

$$\mathcal{A}_{3}(t) = t\mathbf{G}_{123} + t^{2} \left(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312} \right) + t^{3}\mathbf{G}_{321}$$

= $t\mathbf{R}_{3} + t^{2} \left(\mathbf{R}_{21} + \mathbf{R}_{12} \right) + t^{3}\mathbf{R}_{111}$

And more generally,

$$\mathcal{A}_n = \sum_{I \models n} t^{\ell(I)} \mathbf{R}_I$$

where **R** is the ribbon basis of the noncommutative symmetric functions algebra (**Sym**) and the sum goes over all composition of size n (sequences of integers of sum n).

We use the complete basis **S** of **Sym** with

$$\mathbf{R}_I = \sum_{I \succeq J} (-1)^{\ell(I) - \ell(J)} \mathbf{S}^J.$$

For example,

$$\label{eq:R121} {\bm{\mathsf{R}}}_{121} = {\bm{\mathsf{S}}}^{121} - {\bm{\mathsf{S}}}^{13} - {\bm{\mathsf{S}}}^{31} + {\bm{\mathsf{S}}}_{4}.$$

$$\mathcal{A}_{3}(t) = t\mathbf{G}_{123} + t^{2} \left(\mathbf{G}_{132} + \mathbf{G}_{213} + \mathbf{G}_{231} + \mathbf{G}_{312} \right) + t^{3}\mathbf{G}_{321}$$

= $t\mathbf{R}_{3} + t^{2} \left(\mathbf{R}_{21} + \mathbf{R}_{12} \right) + t^{3}\mathbf{R}_{111}$

And more generally,

$$\mathcal{A}_n = \sum_{I \models n} t^{\ell(I)} \mathbf{R}_I$$

where **R** is the ribbon basis of the noncommutative symmetric functions algebra (**Sym**) and the sum goes over all composition of size n (sequences of integers of sum n).

We use the complete basis ${\boldsymbol{\mathsf{S}}}$ of ${\boldsymbol{\mathsf{Sym}}}$ with

$$\mathbf{R}_I = \sum_{I \succeq J} (-1)^{\ell(I) - \ell(J)} \mathbf{S}^J.$$

For example,

$$\mathbf{R}_{121} = \mathbf{S}^{121} - \mathbf{S}^{13} - \mathbf{S}^{31} + \mathbf{S}_4.$$

Then,

$$\mathcal{A}_3(t) = t(1-t)^2 \mathbf{S}_3 + t^2(1-t) \Big(\mathbf{S}^{12} + \mathbf{S}^{21} \Big) + t^3 S^{111}.$$
$$egin{aligned} \mathcal{A}_n &= \sum_{I \models n} t^{\ell(I)} (1-t)^{n-\ell(I)} \mathbf{S}^I; \ &= \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{I \models n \ \ell(I) = r} \mathbf{S}^I. \end{aligned}$$

$$egin{aligned} \mathcal{A}_n &= \sum_{l \models n} t^{\ell(l)} (1-t)^{n-\ell(l)} \mathbf{S}^l; \ &= \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \models n \ \ell(l) = r}} \mathbf{S}^l. \end{aligned}$$

To apply ϕ , we use the fact that **S** is a multiplicative basis. For example,

$$\mathbf{S}^{312} = \mathbf{S}^{31} \cdot \mathbf{S}_2 = \mathbf{S}_3 \cdot \mathbf{S}^{12} = \mathbf{S}_3 \cdot \mathbf{S}_1 \cdot \mathbf{S}_2$$

$$egin{aligned} \mathcal{A}_n &= \sum_{l \models n} t^{\ell(l)} (1-t)^{n-\ell(l)} \mathbf{S}^l; \ &= \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \models n \ \ell(l) = r}} \mathbf{S}^l. \end{aligned}$$

To apply ϕ , we use the fact that **S** is a multiplicative basis. For example,

$$\mathbf{S}^{312} = \mathbf{S}^{31} \cdot \mathbf{S}_2 = \mathbf{S}_3 \cdot \mathbf{S}^{12} = \mathbf{S}_3 \cdot \mathbf{S}_1 \cdot \mathbf{S}_2.$$

Moreover,
$$\phi(S_k) = \frac{x^k}{k!}$$
 so $\phi\left(\sum_{\substack{l=n\\\ell(l)=r}} \mathbf{S}^l\right) = r!S(n,r)\frac{x^n}{n!}$

$$egin{aligned} \mathcal{A}_n &= \sum_{l \models n} t^{\ell(l)} (1-t)^{n-\ell(l)} \mathbf{S}^l; \ &= \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \models n \ \ell(l) = r}} \mathbf{S}^l. \end{aligned}$$

To apply ϕ , we use the fact that **S** is a multiplicative basis. For example,

$$\mathbf{S}^{312} = \mathbf{S}^{31} \cdot \mathbf{S}_2 = \mathbf{S}_3 \cdot \mathbf{S}^{12} = \mathbf{S}_3 \cdot \mathbf{S}_1 \cdot \mathbf{S}_2.$$

Moreover,
$$\phi(S_k) = \frac{x^k}{k!}$$
 so $\phi\left(\sum_{\substack{l|n\\\ell(l)=r}} \mathbf{S}^l\right) = r!S(n,r)\frac{x^n}{n!}$. Then,

$$tA_n(t) = \sum_{r=1}^n t^r (1-t)^{n-r} r! S(n,r).$$

$$\mathcal{A}_n = \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \models n \\ \ell(l) = r}} \mathbf{S}'.$$

$$\mathcal{A}_n = \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \models n \\ \ell(l) = r}} \mathbf{S}^l.$$

If we consider the generating function of the $(1-t)^{-n}\mathcal{A}_n$, we obtain

$$\sum_{n\geq 0}\frac{\mathcal{A}_n}{(1-t)^n}=\sum_{r\geq 0}\left(\frac{t}{1-t}\right)^r(\mathbf{S}_1+\mathbf{S}_2+\mathbf{S}_3+\cdots)^r.$$

$$\mathcal{A}_n = \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \mid = n \\ \ell(l) = r}} \mathbf{S}^l.$$

If we consider the generating function of the $(1-t)^{-n}\mathcal{A}_n$, we obtain

$$\sum_{n\geq 0}\frac{\mathcal{A}_n}{(1-t)^n}=\sum_{r\geq 0}\left(\frac{t}{1-t}\right)^r(\mathbf{S}_1+\mathbf{S}_2+\mathbf{S}_3+\cdots)^r.$$

We use the fact that

$$\phi(\mathbf{S}_1+\mathbf{S}_2+\mathbf{S}_3+\cdots)=e^x-1.$$

$$\mathcal{A}_n = \sum_{r=1}^n t^r (1-t)^{n-r} \sum_{\substack{l \mid = n \\ \ell(l) = r}} \mathbf{S}^l.$$

If we consider the generating function of the $(1-t)^{-n}\mathcal{A}_n$, we obtain

$$\sum_{n\geq 0}\frac{\mathcal{A}_n}{(1-t)^n}=\sum_{r\geq 0}\left(\frac{t}{1-t}\right)^r(\mathbf{S}_1+\mathbf{S}_2+\mathbf{S}_3+\cdots)^r.$$

We use the fact that

$$\phi(\mathbf{S}_1+\mathbf{S}_2+\mathbf{S}_3+\cdots)=e^x-1.$$

Then applying ϕ to the previous equation we obtain

$$1 + \sum_{n \ge 0} \frac{tA_n(t)}{(1-t)^n} \frac{x^n}{n!} = \frac{1-t}{1-te^x}$$

The ASEP is a model representing the displacement of particles on a finite one dimensional lattice.

We associate the word 010011 with the above state of the ASEP.

The ASEP is a model representing the displacement of particles on a finite one dimensional lattice.

We associate the word 010011 with the above state of the ASEP.

The steady-state probabilities of the states of the ASEP can be described combinatorialy using some statistics on permutations.

A recoil of a permutation σ is a value σ_i such that $1 + \sigma_i$ is to its left. For example, the recoils of $\sigma = 52178643$ are the values $\{1, 3, 4, 6\}$. We denote by $\mathsf{PRec}(\sigma)$ the set of the positions of the recoils of σ minus one. For $\sigma = 52178643$, $\mathsf{PRec}(\sigma) = \{2, 5, 6, 7\}$.

A recoil of a permutation σ is a value σ_i such that $1 + \sigma_i$ is to its left. For example, the recoils of $\sigma = 52178643$ are the values $\{1, 3, 4, 6\}$. We denote by $PRec(\sigma)$ the set of the positions of the recoils of σ minus one. For $\sigma = 52178643$, $PRec(\sigma) = \{2, 5, 6, 7\}$.

Theorem

Let X be a state of size n of the ASEP. The steady-state probability of X is proportional to the number of permutations of \mathfrak{S}_{n+1} having their recoils in the same position as the empty spots of X

In fact, sorting the permutations according to their position of recoils and position of descents allow us to compute transitions matrices between to bases of **Sym**.

$PRec \setminus Des$	Ø	{3}	{2}	{2,3}	{1}	$\{1, 3\}$	$\{1, 2\}$	$\{1, 2, 3\}$
Ø	1234							
{3}		1243, 1423 4123	1342 3412		2341	2413		
{2}			1324 3124		2314			
{2,3}			3142	1432, 4132 4312		2431 4231	3241	
{1}					2134			
{1,3}						2143 4213	3421	
{1,2}							3214	
{1,2,3}								4321

Theorem (Hivert, Novelli, Tevlin, Thibon, 2009)

Let G^n be the transition matrix between the ribbon basis of **Sym** and the fundamental one in degree n. Let S and T be two subsets of [n - 1], then

$$G_{S,T}^{n} = \#\{\sigma \in \mathfrak{S}_{n+1} | \operatorname{Des}(\sigma) = S, \operatorname{PRec}(\sigma) = T\}.$$

2-ASEP The 2-ASEP is a generalization of the ASEP with two kinds of particles.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

We associate the word 012021 with the above state of the 2-ASEP.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

We associate the word 012021 with the above state of the 2-ASEP.

In 2016, O. Mandelshtam and X. Viennot defined a statistic on "Assemblées of permutations" to describe the combinatorics of the 2-ASEP at q = 1. Where an assemblée of permutation is a permutation σ segmented in blocks where the order of the blocks is not important.

For example, $\sigma = [251][84][637] = [84][251][637]$.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

For $\sigma = 52|7138|46$, the segmentations are Seg $(\sigma) = \{2, 6\}$

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

For $\sigma = 52|7138|46$, the segmentations are Seg $(\sigma) = \{2, 6\}$

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one.
A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one. A descent is a position *i* that is not a segmentation and such that $\sigma_i > \sigma_{i+1}$ For $\sigma = 52|7138|46$, the segmentations are $Seg(\sigma) = \{2, 6\}$, the positions of recoils minus one are $PRec(\sigma) = \{3, 6, 7\}$, and the descents are $Des(\sigma) = \{1, 3\}$.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one. A descent is a position *i* that is not a segmentation and such that $\sigma_i > \sigma_{i+1}$ For $\sigma = 52|7138|46$, the segmentations are $Seg(\sigma) = \{2, 6\}$, the positions of recoils minus one are $PRec(\sigma) = \{3, 6, 7\}$, and the descents are $Des(\sigma) = \{1, 3\}$.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one. A descent is a position *i* that is not a segmentation and such that $\sigma_i > \sigma_{i+1}$ For $\sigma = 52|7138|46$, the segmentations are $Seg(\sigma) = \{2, 6\}$, the positions of recoils minus one are $PRec(\sigma) = \{3, 6, 7\}$, and the descents are $Des(\sigma) = \{1, 3\}$.

A segmented permutation is a permutation where each values may be separated by bars. We denote by \mathfrak{P}_n the set of segmented permutations of size *n*. For example, $\sigma = 52|7138|46 \in \mathfrak{P}_8$.

Some statistics on segmented permutation

A position *i* of a permutation σ is a segmentation if there is a bar between σ_i and σ_{i+1} .

A recoil of σ is a value σ_i such that *i* is not a segmentation and $1 + \sigma_i$ is to the left of σ_i . Denote by $PRec(\sigma)$ the set of the position of recoils minus one. A descent is a position *i* that is not a segmentation and such that $\sigma_i > \sigma_{i+1}$ For $\sigma = 52|7138|46$, the segmentations are $Seg(\sigma) = \{2, 6\}$, the positions of recoils minus one are $PRec(\sigma) = \{3, 6, 7\}$, and the descents are $Des(\sigma) = \{1, 3\}$.

Theorem (Corteel, N., 2018+)

Let X be a state of the 2-ASEP of size n. The steady-state probability of X is proportional to the number of segmented permutations $\sigma \in \mathfrak{P}_{n+1}$ such that $\operatorname{Seg}(\sigma)$ corresponds to the position of the particles of type 2 and $\operatorname{PRec}(\sigma)$ corresponds to the position of the empty spots.

We define the following numbers:

$$T(n,k) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = k\}$$

n∖k	0	1	2	3	4
0	1				
1	1				
2	3	1			
3	13	10	1		
4	75	91	21	1	
5	541	896	426	56	1

We define the following numbers:

$$T(n,k) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = k\}$$

n∖k	0	1	2	3	4
0	1				
1	1				
2	3	1			
3	13	10	1		
4	75	91	21	1	
5	541	896	426	56	1

Note that the numbers on the first column are the ordered Bell numbers (or Fubini numbers).

We define the following numbers:

$$T(n,k) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = k\}$$

n∖k	0	1	2	3	4
0	1				
1	1				
2	3	1			
3	13	10	1		
4	75	91	21	1	
5	541	896	426	56	1

Note that the numbers on the first column are the ordered Bell numbers (or Fubini numbers). We have the recurrence relation

$$T(n,k) = (n-k)T(n-1,k-1) + (n+1)T(n-1,k) + (k+1)T(n-1,k+1).$$

We define the following numbers:

$$T(n,k) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = k\}$$

n∖k	0	1	2	3	4
0	1				
1	1				
2	3	1			
3	13	10	1		
4	75	91	21	1	
5	541	896	426	56	1

Note that the numbers on the first column are the ordered Bell numbers (or Fubini numbers). We have the recurrence relation

$$T(n,k) = (n-k)T(n-1,k-1) + (n+1)T(n-1,k) + (k+1)T(n-1,k+1).$$

We also have

$$T(n, n-k-1) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) + \operatorname{seg}(\sigma) = k\}.$$

We also consider the following refinement

$$\mathcal{K}(n, i, j) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = i, \operatorname{seg}(\sigma) = j\}$$

We also consider the following refinement

We also consider the following refinement

$$K(n, i, j) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = i, \operatorname{seg}(\sigma) = j\}$$

$$n = 2: \quad \frac{j \setminus i \mid 0 \quad 1}{1 \mid 2} \qquad n = 3: \quad \frac{j \setminus i \mid 0 \quad 1 \quad 2}{0 \mid 1 \quad 4 \quad 1}$$

$$n = 4: \quad \frac{j \setminus i \mid 0 \quad 1 \quad 2 \quad 3}{0 \mid 1 \quad 11 \quad 11 \quad 1}$$

$$n = 4: \quad 1 \quad 14 \quad 44 \quad 14$$

$$2 \quad 36 \quad 36$$

$$3 \quad 24$$

For any *n*, the numbers on each first row are the usual Eulerian numbers and the numbers on each first column are the j!S(n,j).

We also consider the following refinement

$$K(n, i, j) = \#\{\sigma \in \mathfrak{P}_n | \operatorname{des}(\sigma) = i, \operatorname{seg}(\sigma) = j\}$$

$$n = 2: \quad \frac{j \setminus i \mid 0 \quad 1}{1 \mid 2} \qquad n = 3: \quad \frac{j \setminus i \mid 0 \quad 1 \quad 2}{0 \mid 1 \quad 4 \quad 1}$$

$$n = 4: \quad \frac{j \setminus i \mid 0 \quad 1 \quad 2 \quad 3}{0 \quad 1 \quad 11 \quad 11 \quad 1}$$

$$n = 4: \quad 1 \quad 14 \quad 44 \quad 14$$

$$2 \quad 36 \quad 36$$

$$3 \quad 24$$

For any *n*, the numbers on each first row are the usual Eulerian numbers and the numbers on each first column are the j!S(n,j). We have

$$\begin{split} \mathcal{K}(n,i,j) &= (i+j+1) \Big[\mathcal{K}(n-1,i,j) + \mathcal{K}(n-1,i,j-1) \Big] \\ &+ (n-i-j) \Big[\mathcal{K}(n-1,i-1,j) + \mathcal{K}(n-1,i-1,j-1) \Big]. \end{split}$$

Generalized Eulerian polynomials

Define our polynomials as

$$\alpha_n(t,q) = \sum_{\sigma \in \mathfrak{P}_n} t^{\operatorname{des}(\sigma)} q^{\operatorname{seg}(\sigma)}.$$

Generalized Eulerian polynomials

Define our polynomials as

$$lpha_n(t,q) = \sum_{\sigma \in \mathfrak{P}_n} t^{\operatorname{des}(\sigma)} q^{\operatorname{seg}(\sigma)}.$$

Some specialization of the variables give the following properties

$$\alpha_n(t,0) = A_n(t)$$

$$\alpha_n(0,q) = B_n(q)$$

$$\alpha_n(1,1) = 2^{n-1}n!$$

$$\alpha_n(-1,1) = 2^{n-1}$$

$$\alpha_n(2,1) = A050352$$

$$\alpha_n(2,2) = A050351$$

Generating Function

We define the generating function of the generalized Eulerian polynomials as follows:

$$G(t,q,x)=\sum_{n\geq 0}\alpha_n(t,q)\frac{x^n}{n!}.$$

Generating Function

We define the generating function of the generalized Eulerian polynomials as follows:

$$G(t,q,x)=\sum_{n\geq 0}\alpha_n(t,q)\frac{x^n}{n!}.$$

The generating function satisfies the following differential equation:

$$(tq-2q-1)G(t,q,x)+(1-tqx-tx)rac{\partial}{\partial x}G(t,q,x)-(t-t^2)(q+1)rac{\partial}{\partial t}G(t,q,x)-(1-t)(q^2+q)rac{\partial}{\partial q}G(t,q,x)=-2q+tq.$$

Generating Function

We define the generating function of the generalized Eulerian polynomials as follows:

$$G(t,q,x)=\sum_{n\geq 0}\alpha_n(t,q)\frac{x^n}{n!}.$$

The generating function satisfies the following differential equation:

$$(tq-2q-1)G(t,q,x)+(1-tqx-tx)rac{\partial}{\partial x}G(t,q,x)-(t-t^2)(q+1)rac{\partial}{\partial t}G(t,q,x)-(1-t)(q^2+q)rac{\partial}{\partial q}G(t,q,x)=-2q+tq.$$

Theorem (N., 2018+)

We have the following expression of the generating function:

$$G(t,q,x) = 1 + rac{e^{x(1-t)} - 1}{1 + q - (t+q)e^{x(1-t)}}$$

Some properties of the generalized Eulerian polynomials

• Worpitzky's identity: for any positive integers r, k, and n,

$$\binom{k+r-1}{r}\Delta^{r+1}((k-1)^n)=\sum_{i=0}^{k-1}\binom{n+k-i}{n-1}K(n,i,r),$$

where $\Delta(k^{n}) = (k + 1)^{n} - k^{n}$.

Some properties of the generalized Eulerian polynomials

• Worpitzky's identity: for any positive integers r, k, and n,

$$\binom{k+r-1}{r}\Delta^{r+1}((k-1)^n)=\sum_{i=0}^{k-1}\binom{n+k-i}{n-1}K(n,i,r),$$

where $\Delta(k^n) = (k+1)^n - k^n$.

• For any $n \ge 0$ we have

$$rac{lpha_n(t,1)}{(1-t)^{n+1}} = \sum_{k\geq 0} (1+t)^{k-1} rac{k^n}{2^{k-1}}.$$

Some properties of the generalized Eulerian polynomials

• Worpitzky's identity: for any positive integers r, k, and n,

$$\binom{k+r-1}{r}\Delta^{r+1}((k-1)^n)=\sum_{i=0}^{k-1}\binom{n+k-i}{n-1}K(n,i,r),$$

where $\Delta(k^n) = (k+1)^n - k^n$.

• For any $n \ge 0$ we have

$$rac{lpha_n(t,1)}{(1-t)^{n+1}} = \sum_{k\geq 0} (1+t)^{k-1} rac{k^n}{2^{k-1}}.$$

• For any $n \ge 0$ we have

$$\alpha_n(t,q) = \sum_{0 \le i+j \le n-1} t^i (q-t)^j (1-t)^{n-i-j-1} 2^i (i+j+1)! \binom{i+j}{j} S(n,i+j+1).$$

Merci de votre attention !