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PASEP

The PASEP (Partialy ASymmetric Exclusion Process) is a physical model in
which particles hop back and forth (and in and out) of a one-dimensional
lattice.

α

1 β

1

We associate the composition (2, 3, 1, 1) to the above step of the PASEP.

Combinatorial study of the PASEP

The PASEP is closely related with permutations. Let I be a composition
associated to a state of the PASEP, the steady-state probability of this state is
given by

∑
GC(σ)=I q

tot(σ) renormalized to make it a probability.

GC(σ) (Genocchi composition) is the descent composition of the values
of σ

tot(σ) is the number of 31-2 patterns in σ.
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Tevlin’s basis (2007)

Tevlin defined a “monomial basis” LI of the non commutative symmetric
functions algebra (NCSF). He conjectured that the expansion of the ribbon
basis on the LI has nonnegative integer coefficients.

Combinatorial interpretation of Tevlin’s basis

GC \ Rec 4 31 22 211 13 121 112 1111

4 1234

31 1243, 1423
4123

1342
3412

2341 2413

22 1324
3124

2314

211 3142 1432, 4132
4312

2431
4231

3241

13 2134

121 2143
4213

3421

112 3214

1111 4321

Theorem (Hivert, Novelli, Tevlin, Thibon, 2009)

For I a composition of n, we have RI =
∑

J GIJLJ where GIJ is equal to the
number of permutations σ satisfying Rec(σ) = I and GC(σ) = J.
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q-analog of Tevlin’s basis (2010)

Novelli, Thibon, and Williams defined a q-analog of NCSF where the transition matrix

from LI (q) to RJ(q) is given by the following matrix:
1 . . .
. 1 + q 1 .
. . 1 .
. . . 1




1 . . . . . . .
. 1 + q + q2 1 + q . 1 q . .
. . 1 + q . 1 . . .
. . q 1 + q + q2 . 1 + q 1 .
. . . . 1 . . .
. . . . . 1 + q 1 .
. . . . . . 1 .
. . . . . . . 1



Theorem (Novelli, Thibon, Williams, 2010)

For I a composition of n, we have RI (q) =
∑

J FIJ(q)LJ(q) where:

FIJ(q) =
∑

Rec(σ)=I
LC(σ)=J

qα(σ)
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Remark

PASEP theory implies that the previous matrix should also be described with
the statistics Rec, GC, and tot.

Two ways of grouping the permutations

LC \ Rec 4 31 22 211 13 121 112 1111

4 1234

31 1243, 1423
4123

1324
3124

2134 2143

22 1342
3142

2314

211 3412 1432, 4132
4312

2413
4213

3214

13 2341

121 2431
4231

3241

112 3421

1111 4321

GC \ Rec 4 31 22 211 13 121 112 1111

4 1234

31 1243, 1423
4123

1342
3412

2341 2413

22 1324
3124

2314

211 3142 1432, 4132
4312

2431
4231

3241

13 2134

121 2143
4213

3421

112 3214

1111 4321

Conjecture (Novelli, Thibon, Williams, 2010)

Sending permutations of the left table to qα(σ) gives the same matrix than
sending the permutations of the right table to qtot(σ).

Arthur Nunge An equivalence of multistatistics on permutations
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Sketch of proof: let’s make some bijections

Involved combinatorial objects

Permutations;

Weighted Dyck Paths;

Subexceedent Functions;

Decreasing Weighted Subexceedent Functions.

Steps of the bijection

P

φFV←→WDP
φ1←→WDP

ψ2←→ DWSF
ψ1←→ SF

Lh←→

P

Catalan Catalan Catalan
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Weighted Dyck paths

A weight for a Dyck path is a word w satisfying for all i , wi ≤ (hi − 1)/2 where
hi is the height of the Dyck path between the (2i − 1)-th and 2i-th steps.

2 2

1

Arthur Nunge An equivalence of multistatistics on permutations
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The Françon-Viennot bijection: P → WDP

Let σ ∈ Sn we construct ψFV (σ) as follows:

The (2k − 1)-th is / iff k = σi < σi+1,

The (2k)-th is / iff σi−1 > σi = k.

Moreover, wk is equal to the number of 31-2 patterns such that k plays the
rôle of 2.

Example

φFV (0.528713649.∞) =

Arthur Nunge An equivalence of multistatistics on permutations
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The Françon-Viennot bijection: P → WDP

Let σ ∈ Sn we construct ψFV (σ) as follows:

The (2k − 1)-th is / iff k = σi < σi+1,

The (2k)-th is / iff σi−1 > σi = k.

Moreover, wk is equal to the number of 31-2 patterns such that k plays the
rôle of 2.

Example

φFV (0.528713649.∞) =

Arthur Nunge An equivalence of multistatistics on permutations



Introduction
Permutations to weighted Dyck paths

Subexceedent functions to weighted Dyck paths
Conclusion
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Summary

P
φFV←→WDP

φ1←→WDP
ψ2←→WDSF

ψ1←→ SF
Lh←→ P

Arthur Nunge An equivalence of multistatistics on permutations
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Subexceedent functions

A subexceedent function of size n is a word of nonnegative integers f such that
for all i ≤ n, we have fi ≤ n − i .

Bijection with permutations

We use the Lehmer code of the inverse of a permutation σ to construc a
subexceedent function f as follows: fσj = #{i < j |σi > σj}. For instance,

σ = 528197634 , Lh(σ) =

315503200

Decreasing subexceedent functions

A subexceedent function is decreasing if the word obtained by removing all the
zeros is strictly decreasing.
For example, L = 540300200.

Arthur Nunge An equivalence of multistatistics on permutations
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for all i ≤ n, we have fi ≤ n − i .
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zeros is strictly decreasing.
For example, L = 540300200.
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ψ1: SF → DWSF
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L = 512403200, P = 001100000
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ψ1: SF → DWSF

L = 315503200, P = 000000000, then pivot = 5;

L = 315403200, P = 000100000, then pivot = 5;

L = 512403200, P = 001100000, then pivot = 4;
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ψ2: DSF → DP

Let σ ∈ Sn we construct ψFV (σ) as follows:

The (2k)-th step is \ iff n − k is a value of f ,

The (2k + 1)-th step is \ iff fk = 0.

Example

ψ2(540300200) =
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Conclusion

Summary

P
φFV←→WDP

φ1←→WDP
ψ2←→ DWSF

ψ1←→ SF
Lh←→ P

Theorem

The map φ = Lh−1 ◦ ψ−1
1 ◦ ψ

−1
2 ◦ φ1 ◦ φFV is a bijection satisfying

Rec(φ(σ)) = Rec(σ);

LC(φ(σ)) = GC(σ);

α(φ(σ)) = tot(σ).
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Perspectives

Generalisation of the bijection for a larger type of PASEP.

study of a variant of φFV applied after the involution on weighted Dyck
paths implying a third combinatorial interpretation and a new bijection
preserving sylvester classes on permutations.
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Thank you !
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φ1: WDP → WDP

φ1 is the involution exchanging with .

Example

2 2

1

φ1

2 2

1
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